CN109473485B - 碳化硅二极管及其制备方法 - Google Patents

碳化硅二极管及其制备方法 Download PDF

Info

Publication number
CN109473485B
CN109473485B CN201811636740.9A CN201811636740A CN109473485B CN 109473485 B CN109473485 B CN 109473485B CN 201811636740 A CN201811636740 A CN 201811636740A CN 109473485 B CN109473485 B CN 109473485B
Authority
CN
China
Prior art keywords
ion implantation
silicon carbide
layer
patterned
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811636740.9A
Other languages
English (en)
Other versions
CN109473485A (zh
Inventor
何钧
郑柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Weitesen Electronic Technology Co ltd
Original Assignee
Chongqing Weitesen Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Weitesen Electronic Technology Co ltd filed Critical Chongqing Weitesen Electronic Technology Co ltd
Priority to CN201811636740.9A priority Critical patent/CN109473485B/zh
Publication of CN109473485A publication Critical patent/CN109473485A/zh
Application granted granted Critical
Publication of CN109473485B publication Critical patent/CN109473485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种碳化硅二极管及其制备方法,该碳化硅二极管包括一碳化硅衬底(11)、一碳化硅外延层(12)、一图形化的场板介质层(16b)、一图形化的肖特基接触电极(17b)和一欧姆接触电极层(18);碳化硅外延层(12)设置于碳化硅衬底(11)的正面;在碳化硅外延层(12)内且沿着碳化硅外延层(12)的上表面设置有图形化的离子注入区(15);碳化硅外延层(12)的上表面设置有图形化的场板介质层(16b),且碳化硅外延层(12)的上表面未图形化的场板介质层(16b)覆盖的区域设置有图形化的肖特基接触电极(17b);图形化的场板介质层(16b)的上表面的部分区域被图形化的肖特基接触电极(17b)覆盖,其余区域裸露;欧姆接触电极层(18)设置于碳化硅衬底(11)的背面。

Description

碳化硅二极管及其制备方法
技术领域
本发明属于半导体器件技术领域,尤其是涉及一种碳化硅二极管及其制备方法。
背景技术
碳化硅材料具有宽带隙,高击穿场强,高热导率,高饱和电子迁移速率,以及极好的物理化学稳定性等特性,适于在高温、高频、大功率和极端环境下工作。碳化硅二极管包括单极型器件和双极型器件两大类,单极型器件指的是在工作状态下只有一种载流子导电的器件,如肖特基二极管和结势垒肖特基二极管;双极型器件指的是在工作状态下有两种载流子导电的器件,如PiN二极管。单极型器件开启电压小,但是制备高压器件时,漂移层厚度随之增加,导致通态电阻增大,器件通态损耗较大;双极型器件具有少子的电导调制效应可以降低通态电阻,但是由于碳化硅的PN结自建电势差较大,开启电压高达3V,同样导致了较大的通态损耗。
应用中,碳化硅二极管的浪涌电流、雪崩电流耐量有待提高。
发明内容
本发明要解决的技术问题是提供一种碳化硅二极管及其制备方法。
为解决上述技术问题,发明采用如下的技术方案:
本发明提供一种碳化硅二极管的制备方法,该制备方法包括如下步骤:
S1:在碳化硅衬底的正面形成一碳化硅外延层;
S2:在碳化硅外延层的表面形成一离子注入掩膜层;
S3:对离子注入掩膜层进行图形化处理,得到图形化的离子注入掩膜层,且碳化硅外延层表面未被图形化的离子注入掩膜层覆盖的区域形成离子注入窗口;
S4:采用离子注入法经离子注入窗口向碳化硅外延层上表面注入离子,形成离子注入区;
S5:离子注入结束后将图形化的离子注入掩膜层剥离,然后进行高温退火处理;
S6:高温退火处理后,在碳化硅外延层表面形成一场板介质层;
S7:对场板介质层进行图形化处理,得到图形化的场板介质层;
S8:在图形化的场板介质层表面形成一肖特基接触电极层,且在碳化硅衬底的背面形成一欧姆接触电极层;
S9:对肖特基接触电极层进行图形化处理,使得图形化的场板介质层表面的部分区域裸露,得到图形化的肖特基接触电极。
优选地,所述步骤S4中,所述离子注入区内包含至少一个离子注入基准区域,每一个离子注入基准区域内包含至少一个离子注入最小单元区,且每一个离子注入基准区域的边缘设置有环形边界区域。
进一步优选地,所述离子注入区内的每一个所述离子注入基准区域的形状为正多边形,且每一个所述离子注入基准区域内的每一个所述离子注入最小单元区的形状为正多边形。
进一步优选地,当所述离子注入区内包含两个以上所述离子注入基准区域时,其中任意两个所述离子注入基准区域相同,且所有的所述离子注入基准区域均匀排列。
进一步优选地,对于所述离子注入区内的任意一个所述离子注入基准区域,当该所述离子注入基准区域内包含两个以上所述离子注入最小单元区时,该所述离子注入基准区域内的所有所述离子注入最小单元区的大小和形状均相同,且均匀排列。
进一步优选地,所述离子注入区内的每一个所述离子注入基准区域的形状为正六边形,且每一个所述离子注入基准区域内的每一个所述离子注入最小单元区的形状为正六边形。
优选地,所述步骤S4中,所述离子注入法的离子注入温度为0℃至1000℃,离子注入能量为1kev至500MeV,离子注入剂量为1×1010atom/cm-2至1×1016atom/cm-2
优选地,所述离子注入掩膜层为由硅、硅氧化合物、硅氮化合物或金属构成的单层薄膜层,或者为多层薄膜层;当所述离子注入掩膜层为多层薄膜层时,其中每一层薄膜层由硅、硅氧化合物、硅氮化合物和金属中至少两种材料构成,且各薄膜层的厚度相等,均为0.001~200μm。
本发明还提供一种碳化硅二极管,该碳化硅二极管采用所述的碳化硅二极管的制备方法制成,该碳化硅二极管包括一碳化硅衬底、一碳化硅外延层、一图形化的场板介质层、一图形化的肖特基接触电极和一欧姆接触电极层;
碳化硅外延层设置于碳化硅衬底的正面;
在碳化硅外延层内且沿着碳化硅外延层的上表面设置有图形化的离子注入区;
碳化硅外延层的上表面设置有图形化的场板介质层,且碳化硅外延层的上表面未图形化的场板介质层覆盖的区域设置有图形化的肖特基接触电极;
图形化的场板介质层的上表面的部分区域被图形化的肖特基接触电极覆盖,其余区域裸露;
欧姆接触电极层设置于碳化硅衬底的背面。
优选地,所述碳化硅衬底为n型碳化硅或p型碳化硅,其材质为4H-SiC或6H-SiC;所述碳化硅外延层的厚度为0.1μm至500μm。
本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。
如无特殊说明,本发明中的各原料均可通过市售购买获得,本发明中所用的设备可采用所属领域中的常规设备或参照所属领域的现有技术进行。
与现有技术相比较,本发明具有如下有益效果:
(1)本发明提供的碳化硅二极管的制备方法,通过在离子注入基准区域的边缘设置环形边界区域来增加离子注入区域的面积,从而有利于提高碳化硅二极管的浪涌电流和雪崩电流耐量,且不需增加其他工艺步骤。
(2)本发明提供的碳化硅二极管,通过在离子注入基准区域的边缘设置环形边界区域来增加离子注入区域的面积,从而有利于提高碳化硅二极管的浪涌电流和雪崩电流耐量。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明
图1-9为本发明实施例提供的碳化硅二极管的制备方法的各步骤的示意图;
图10为本发明实施例的离子注入区的俯视示意图之一;
图11为本发明实施例的离子注入区的俯视示意图之二。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本实施例提供一种碳化硅二极管的制备方法,该制备方法包括如下步骤:
S1:在碳化硅衬底11的正面形成一碳化硅外延层12,如图1所示;该步骤中形成的碳化硅外延层12将成为要制备的碳化硅二极管的漂移区;
S2:在碳化硅外延层12的表面形成一离子注入掩膜层13a,如图2所示;
S3:对离子注入掩膜层13a进行图形化处理,得到图形化的离子注入掩膜层13b,且碳化硅外延层12表面未被图形化的离子注入掩膜层13b覆盖的区域形成离子注入窗口14,如图3所示;
本实施例中,按照例如图3(b)所示的图形对离子注入掩膜层13a进行图形化处理,且图形化的离子注入掩膜层13b沿着图3(b)所示OO线的剖面如图3(a)所示;
S4:采用离子注入法经离子注入窗口14向碳化硅外延层12上表面注入离子,形成离子注入区15,如图4所示;本实施例中,离子注入结束后的俯视图例如如图3(b)所示(图中的空白区域为图形化的离子注入掩膜层13b,其余区域为离子注入区15);
S5:离子注入结束后将图形化的离子注入掩膜层13b剥离,如图5所示,然后进行高温退火处理(图中未示出);
S6:高温退火处理后,在碳化硅外延层12表面形成一场板介质层16a,如图6所示;
S7:对场板介质层16a进行图形化处理,得到图形化的场板介质层16b,如图7所示;
S8:在图形化的场板介质层16b表面形成一肖特基接触电极层17a,且在碳化硅衬底11的背面形成一欧姆接触电极层18,如图8所示;
S9:对肖特基接触电极层17a进行图形化处理,使得图形化的场板介质层16b表面的部分区域裸露,得到图形化的肖特基接触电极17b,如图9所示。
本实施例中,如图10所示,上述步骤S4中,离子注入区15内包含至少一个离子注入基准区域20,每一个离子注入基准区域20内包含至少一个离子注入最小单元区21,且每一个离子注入基准区域20的边缘设置有环形边界区域22。本实施例中,离子注入区15内的每一个离子注入基准区域20的形状为正多边形,且每一个离子注入基准区域20内的每一个离子注入最小单元区21的形状为正多边形。
本实施例中,当离子注入区15内包含两个以上离子注入基准区域20时,其中任意两个离子注入基准区域20的形状可以相同(例如均为正六边形或均为正五边形),也可以不同(例如一个为正六边形,另一个为正五边形)。
在本实施例的一种优选实施方式中,如图10所示,当离子注入区15内包含两个以上离子注入基准区域20时,其中任意两个离子注入基准区域20相同,且所有的离子注入基准区域20均匀排列。本实施例中,两个离子注入基准区域20相同指的是其中一个离子注入基准区域20由另一个离子注入基准区域20复制得到。
本实施例中,对于离子注入区15内的任意一个离子注入基准区域20,当该离子注入基准区域20内包含两个以上离子注入最小单元区21时,其中任意两个离子注入最小单元区21的形状可以相同(例如均为正六边形或均为正五边形),也可以不同(例如一个为正六边形,另一个为正五边形)。
在本实施例的一种优选实施方式中,对于离子注入区15内的任意一个离子注入基准区域20,当该离子注入基准区域20内包含两个以上离子注入最小单元区21时,该离子注入基准区域20内的所有离子注入最小单元区21的大小和形状均相同,且均匀排列。图10示出了本实施例的该种优选实施方式,图中的离子注入区15包含4个相同的、正六边形的离子注入基准区域20,其中每一个离子注入基准区域20内包含10个大小相同的、均匀排列的、正六边形的离子注入最小单元区21。
上述离子注入区15为p型注入区(以漂移层为n型的二极管为例),其余区域(图10所示的空白区域)为无离子注入区。
很容易理解,本实施例的离子注入区15内的离子注入基准区域20的数量不限于图10示出的4个,可以多于4个,也可以少于4个,例如2个或3个,离子注入基准区域20的形状不限于图10示出的正六边形,可以是正五边形(如图11所示)、正七边形、正八边形等;本实施例的每一个离子注入基准区域20内的离子注入最小单元区21的数量不限于图10示出的10个,可以多于10个,也可以少于10个(如图11所示的9个),且离子注入最小单元区21的形状不限于图10示出的正六边形,可以是正五边形(如图11所示)、正七边形、正八边形等。
上述步骤S4中,上述离子注入法的离子注入温度为0℃至1000℃,离子注入能量为1kev至500MeV,离子注入剂量为1×1010(atom/cm-2)至1×1016(atom/cm-2)。
上述步骤S5中,高温退火处理的温度为1200℃至2200℃,高温退火处理的时间为10s至1000min。
上述碳化硅衬底11优选为n型碳化硅或p型碳化硅,其材质优选为4H-SiC或6H-SiC。
上述碳化硅外延层12的厚度优选为0.1μm至500μm。
上述离子注入掩膜层13a可以为由硅、硅氧化合物、硅氮化合物或金属构成的单层薄膜层,也可以为多层薄膜层;当上述离子注入掩膜层13a为多层薄膜层时,其中每一层薄膜层由硅、硅氧化合物、硅氮化合物和金属中至少两种材料构成,且各薄膜层的厚度相等,均为0.001μm至200μm。
本实施例还提供一种碳化硅二极管,该碳化硅二极管采用上述碳化硅二极管的制备方法制成。
如图9所示,本实施例提供的碳化硅二极管包括一碳化硅衬底11、一碳化硅外延层12、一图形化的场板介质层16b、一图形化的肖特基接触电极17b和一欧姆接触电极层18;碳化硅外延层12设置于碳化硅衬底11的正面;在碳化硅外延层12内且沿着碳化硅外延层12的上表面设置有图形化的离子注入区15;碳化硅外延层12的上表面设置有图形化的场板介质层16b,且碳化硅外延层12的上表面未图形化的场板介质层16b覆盖的区域设置有图形化的肖特基接触电极17b;图形化的场板介质层16b的上表面的部分区域被图形化的肖特基接触电极17b覆盖,图形化的场板介质层16b的上表面的其余区域裸露;欧姆接触电极层18设置于碳化硅衬底11的背面。
上述碳化硅衬底11优选为n型碳化硅或p型碳化硅,其材质优选为4H-SiC或6H-SiC。
上述碳化硅外延层12的厚度优选为0.1μm至500μm。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (8)

1.一种碳化硅二极管的制备方法,其特征在于,该制备方法包括如下步骤:
S1:在碳化硅衬底(11)的正面形成一碳化硅外延层(12);
S2:在碳化硅外延层(12)的表面形成一离子注入掩膜层(13a);
S3:对离子注入掩膜层(13a)进行图形化处理,得到图形化的离子注入掩膜层(13b),且碳化硅外延层(12)表面未被图形化的离子注入掩膜层(13b)覆盖的区域形成离子注入窗口(14);
S4:采用离子注入法经离子注入窗口(14)向碳化硅外延层(12)上表面注入离子,形成离子注入区(15);
S5:离子注入结束后将图形化的离子注入掩膜层(13b)剥离,然后进行高温退火处理;
S6:高温退火处理后,在碳化硅外延层(12)表面形成一场板介质层(16a);
S7:对场板介质层(16a)进行图形化处理,得到图形化的场板介质层(16b);
S8:在图形化的场板介质层(16b)表面形成一肖特基接触电极层(17a),且在碳化硅衬底(11)的背面形成一欧姆接触电极层(18);
S9:对肖特基接触电极层(17a)进行图形化处理,使得图形化的场板介质层(16b)表面的部分区域裸露,得到图形化的肖特基接触电极(17b);
所述步骤S4中,所述离子注入区(15)内包含至少一个离子注入基准区域(20),每一个离子注入基准区域(20)内包含至少一个离子注入最小单元区(21),且每一个离子注入基准区域(20)的边缘设置有环形边界区域(22);
所述离子注入区(15)内的每一个所述离子注入基准区域(20)的形状为正多边形,且每一个所述离子注入基准区域(20)内的每一个所述离子注入最小单元区(21)的形状为正多边形。
2.根据权利要求1所述的碳化硅二极管的制备方法,其特征在于,当所述离子注入区(15)内包含两个以上所述离子注入基准区域(20)时,其中任意两个所述离子注入基准区域(20)相同,且所有的所述离子注入基准区域(20)均匀排列。
3.根据权利要求1所述的碳化硅二极管的制备方法,其特征在于,对于所述离子注入区(15)内的任意一个所述离子注入基准区域(20),当该所述离子注入基准区域(20)内包含两个以上所述离子注入最小单元区(21)时,该所述离子注入基准区域(20)内的所有所述离子注入最小单元区(21)的大小和形状均相同,且均匀排列。
4.根据权利要求3所述的碳化硅二极管的制备方法,其特征在于,所述离子注入区(15)内的每一个所述离子注入基准区域(20)的形状为正六边形,且每一个所述离子注入基准区域(20)内的每一个所述离子注入最小单元区(21)的形状为正六边形。
5.根据权利要求1所述的碳化硅二极管的制备方法,其特征在于,所述步骤S4中,所述离子注入法的离子注入温度为0℃至1000℃,离子注入能量为1kev至500MeV,离子注入剂量为1×1010atom/cm-2至1×1016atom/cm-2
6.根据权利要求1所述的碳化硅二极管的制备方法,其特征在于,所述离子注入掩膜层(13a)为由硅、硅氧化合物、硅氮化合物或金属构成的单层薄膜层,或者为多层薄膜层;当所述离子注入掩膜层(13a)为多层薄膜层时,其中每一层薄膜层由硅、硅氧化合物、硅氮化合物和金属中至少两种材料构成,且各薄膜层的厚度相等,均为0.001μm至200μm。
7.一种碳化硅二极管,该碳化硅二极管采用所述权利要求1-6中任一项所述的碳化硅二极管的制备方法制成,其特征在于,该碳化硅二极管包括一碳化硅衬底(11)、一碳化硅外延层(12)、一图形化的场板介质层(16b)、一图形化的肖特基接触电极(17b)和一欧姆接触电极层(18);
碳化硅外延层(12)设置于碳化硅衬底(11)的正面;
在碳化硅外延层(12)内且沿着碳化硅外延层(12)的上表面设置有图形化的离子注入区(15);
碳化硅外延层(12)的上表面设置有图形化的场板介质层(16b),且碳化硅外延层(12)的上表面未图形化的场板介质层(16b)覆盖的区域设置有图形化的肖特基接触电极(17b);
图形化的场板介质层(16b)的上表面的部分区域被图形化的肖特基接触电极(17b)覆盖,其余区域裸露;
欧姆接触电极层(18)设置于碳化硅衬底(11)的背面。
8.根据权利要求7所述的碳化硅二极管,其特征在于,所述碳化硅衬底(11)为n型碳化硅或p型碳化硅,其材质为4H-SiC或6H-SiC;所述碳化硅外延层(12)的厚度为0.1μm至500μm。
CN201811636740.9A 2018-12-29 2018-12-29 碳化硅二极管及其制备方法 Active CN109473485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811636740.9A CN109473485B (zh) 2018-12-29 2018-12-29 碳化硅二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811636740.9A CN109473485B (zh) 2018-12-29 2018-12-29 碳化硅二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN109473485A CN109473485A (zh) 2019-03-15
CN109473485B true CN109473485B (zh) 2023-07-04

Family

ID=65677454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811636740.9A Active CN109473485B (zh) 2018-12-29 2018-12-29 碳化硅二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN109473485B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335815A (ja) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp 炭化珪素ショットキーバリアダイオードの製造方法
JP2014204087A (ja) * 2013-04-09 2014-10-27 新日鐵住金株式会社 炭化ケイ素ショットキーバリアダイオード。
CN105720110A (zh) * 2016-04-01 2016-06-29 江苏捷捷微电子股份有限公司 一种SiC环状浮点型P+结构结势垒肖特基二极管及制备方法
CN106067415A (zh) * 2015-04-24 2016-11-02 富士电机株式会社 碳化硅半导体装置的制造方法
CN106611776A (zh) * 2015-10-22 2017-05-03 南京励盛半导体科技有限公司 一种n型碳化硅肖特基二极管结构
CN108242394A (zh) * 2016-12-27 2018-07-03 全球能源互联网研究院 一种碳化硅mos栅控功率器件及其制备方法
CN108242463A (zh) * 2016-12-27 2018-07-03 全球能源互联网研究院 一种碳化硅超结二极管及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573128B1 (en) * 2000-11-28 2003-06-03 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
CN102709184B (zh) * 2011-05-13 2016-08-17 京东方科技集团股份有限公司 含有多晶硅有源层的薄膜晶体管、其制造方法及阵列基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335815A (ja) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp 炭化珪素ショットキーバリアダイオードの製造方法
JP2014204087A (ja) * 2013-04-09 2014-10-27 新日鐵住金株式会社 炭化ケイ素ショットキーバリアダイオード。
CN106067415A (zh) * 2015-04-24 2016-11-02 富士电机株式会社 碳化硅半导体装置的制造方法
CN106611776A (zh) * 2015-10-22 2017-05-03 南京励盛半导体科技有限公司 一种n型碳化硅肖特基二极管结构
CN105720110A (zh) * 2016-04-01 2016-06-29 江苏捷捷微电子股份有限公司 一种SiC环状浮点型P+结构结势垒肖特基二极管及制备方法
CN108242394A (zh) * 2016-12-27 2018-07-03 全球能源互联网研究院 一种碳化硅mos栅控功率器件及其制备方法
CN108242463A (zh) * 2016-12-27 2018-07-03 全球能源互联网研究院 一种碳化硅超结二极管及其制备方法

Also Published As

Publication number Publication date
CN109473485A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US7863682B2 (en) SIC semiconductor having junction barrier Schottky diode
US20130140584A1 (en) Semiconductor device
JP5474218B2 (ja) 半導体装置
CN115241270A (zh) 针对碳化硅超结功率装置的有源区设计
TWI466183B (zh) 肖特基二極體及其製造方法
CN104011865A (zh) 在GaN材料中制造浮置保护环的方法及系统
KR101955055B1 (ko) 전력용 반도체 소자 및 그 소자의 제조 방법
JP4006879B2 (ja) ショットキーバリアダイオードおよびその製造方法
JP2003318413A (ja) 高耐圧炭化珪素ダイオードおよびその製造方法
JP2012186318A (ja) 高耐圧半導体装置
Lynch et al. Design considerations for high voltage SiC power devices: An experimental investigation into channel pinching of 10kV SiC junction barrier schottky (JBS) diodes
JP5827020B2 (ja) 高耐圧半導体装置
JP2012174895A (ja) 高耐圧半導体装置
JP6275353B2 (ja) 炭化珪素半導体装置
CN109509706B (zh) 一种碳化硅二极管的制备方法及碳化硅二极管
JP2013168549A (ja) 半導体装置およびその製造方法
CN109473485B (zh) 碳化硅二极管及其制备方法
US6707131B2 (en) Semiconductor device and manufacturing method for the same
TWI798254B (zh) 用於具有快速切換能力的電荷平衡半導體功率裝置之系統和方法
CN116487445A (zh) 一种用n-区包围p+渐变环的碳化硅功率器件及其制备方法
CN210926028U (zh) 一种碳化硅二极管
DE112013000866T5 (de) SiC Vorrichtung mit hoher Sperrspannung, abgeschlossen durch einen Abflachungskantenabschluss
CN115483104A (zh) 一种变容二极管的制作方法
CN112397566A (zh) 碳化硅器件及其制备方法
CN106384718B (zh) 一种中高压沟槽型mosfet器件的制作方法及结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant