一种高生物相容性水刺无纺布
技术领域
本发明涉及织物领域,特别地涉及一种高生物相容性水刺无纺布。
背景技术
随着时代的发展,人们越来越重视对个人肤质的保养,面膜已成为一种常见的护肤品。面膜的基本功能是将皮肤与外界隔绝,使皮肤温度升高,毛孔大量出汗,皮肤的分泌活动旺盛,在剥离面膜时,将皮肤分泌物、皮屑、污物等除掉,使毛孔清洁的同时将面膜中的营养物质有效渗入皮肤里,起到增进皮肤机能的作用。成型类面膜是由面膜基材经折叠入袋后加入精华液制成的。
理想的面膜基材应具备以下性能:良好的持水性;优异的贴面度;良好的生物相容性;良好的力学性能;可降解、无污染。细菌纤维素(Bacterial cellulose,简称BC)是由微生物发酵合成的多孔性网状纳米级生物高分子聚合物,因其由细菌合成而命名为细菌纤维素。它由独特的丝状纤维组成,纤维直径在0.01~0.10μm之间,每一丝状纤维由一定数量的超微纤维组成网状结构,作为一种新型纳米材料,细菌纤维素已应用于纺织、医用材料、食品等各个领域,现已成为国际的研究热点。
日前,细菌纤维素大规模产业化应用还存在一些问题,例如成本高、产量低及机械稳定性差等,本发明提供一种高生物相容性水刺无纺布,其以改性细菌纤维素为主要原材料,成本低廉、机械稳定性强、吸水能力强,生物相容性高,是优秀的面膜基材。
发明内容
为了解决上述技术问题,本发明提供一种高生物相容性水刺无纺布。
本发明是以如下技术方案实现的:
一种高生物相容性水刺无纺布,所述水刺无纺布的主要成分为细菌纤维素及苎麻纤维。
进一步地,所述水刺无纺布的制作步骤如下:
步骤一、获得准备好的细菌纤维素及苎麻纤维,所述细菌纤维素与苎麻纤维质量比为3:1,将上述细菌纤维素及苎麻纤维浸泡于市售软化整理剂中,室温下放置24h,之后分别进行开松、除杂,将已开松的纤维喂入纤维仓,将细菌纤维素与苎麻纤维制成均匀的纤网,进入梳理工序。
步骤二、梳理工序采用两梳一铺生产线,由一台梳理机输出的纤网首先喂给交叉铺网机进行铺网,紧接着由牵引机对铺叠后的纤网进行牵伸,再与另一台梳理机输出的纤网叠加成为双层纤网后送至水刺机。
步骤三、由步骤二获得的双层纤网经过预湿后进行正反水刺,制备不同组分水刺无纺布过程中,水刺液不同,水刺液中加入透明质酸,预湿水压为1bar,水刺压力为35bar,控制喷射的时间为1.5-3min,生产线速度为25米/分,之后55℃烘干获得所述高生物相容性水刺无纺布。
进一步地,所述细菌纤维素获得自大量培养后的转基因细菌。
进一步地,所述细菌为醋醅类芽孢杆菌。
进一步地,所述转基因细菌包括一种纤维素表达增强相关基因,所述纤维素表达增强相关基因的核苷酸序列如SEQ ID NO.1所示。
本发明的有益效果在于:高生物相容性水刺无纺布耐撕扯性能显著优于市售无纺布,吸水倍数达122-135倍,透气性高达702-714CFM,不会闷气,舒适度高,可以有效抑制细菌、真菌生长;纤维损伤率低于0.2‰,有效解决纤维掉毛问题,触感柔软,接近纯棉布,并且耐撕扯,可机洗,表明本发明提供的水刺无纺布具有高生物相容性,对于皮肤无刺激,对于敏感肌肤无致敏现象。针对现今细菌纤维素价格较高、不利于工业生产应用的缺陷,本发明提供一种通过基因改造以获得高产细菌纤维素的菌种及途径,以弥补现有技术的缺失。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明作进一步地详细描述。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的设备、原料、试剂等,如无特殊说明,均为可从常规商业途径购买得到的设备、原料、试剂。
实施例1
汉氏葡糖酸醋杆菌(Gluconacetobacter hansenii)菌株购自中国普通微生物菌种保藏管理中心,保藏号CGMCC1.1811;醋醅类芽孢杆菌(Paenibacillus aceti)菌株购自中国普通微生物菌种保藏管理中心,保藏号CGMCC1.15420;木糖葡糖酸醋杆菌(Gluconacetobacter xylinus)菌株购自中国普通微生物菌种保藏管理中心,保藏号CGMCC1.2706。为深度挖掘上述细菌纤维素表达增强相关基因,探索其纤维素表达增强的分子机制,本发明提取其基因组DNA进行全基因组测序,基因组测序委托南京金斯瑞公司通过SOLEXA测序平台完成,具体方法为:分别利用超声随机打断基因组DNA至250bp、500kb、1.0kb、1.5kb的片段,将DNA片段与接头连接,之后250bp和500bp文库进行PCR扩增,上机测序,1.0kb和1.5kb大片段文库采用Cre-Lox Recombination建库技术构建,在DNA大片段两端连接LoxP接头后再进行环化、测序;按照基因组构建步骤分别构建插入片段为250bp,500bp,1.0kb,1.5kb的片段插入文库。
将上述插入外源基因的大肠杆菌接种至测试培养基,测试培养基配方:果汁加工副产物(水果渣,包括但不限于苹果渣、橘渣、梨渣、蜜桃渣等),将上述水果渣与水混合打浆,添加适量果胶酶,于45℃保温4小时,1000目滤布过滤后获得水果糖化液,所得滤液作为培养基碳源,具体配方为酵母膏0.2%,蛋白胨0.3%,氯化钠0.1%,基础液为水果糖化液,36℃摇床培养一周,观察其生长情况,选择纤维素层生长旺盛的三角瓶进行纯培养,划线培养若干次直至获得单克隆,挑取50个长势旺盛的克隆进行测序,用通用引物F-T7和R-pYES2检测插入片段长度及具体序列,具体由上海生工完成测序,将所得到的序列去除载体后,通过序列比对,获得纤维素表达增强相关基因并命名为Fbr-1、Fbr-2、Fbr-3、Fbr-4、Fbr-5、Fbr-6、Fbr-7、Fbr-8。
实施例2
所述FBR-1、FBR-2、FBR-3、FBR-4、FBR-5、FBR-6、FBR-7、FBR-8的核苷酸序列由南京金斯瑞生物科技有限公司合成,上述合成的序列5’端还连接有NcoI酶切位点,3’端还连接有BstZI酶切位点。将合成的FBR-1、FBR-2、FBR-3、FBR-4、FBR-5、FBR-6、FBR-7、FBR-8核苷酸序列分别连入克隆载体pGEM-T(Promega,Madison,USA,CAT:A3600)上,操作步骤按Promega公司产品pGEM-T载体说明书进行,得到重组克隆载体p-FBR01、p-FBR02、p-FBR03、p-FBR04、p-FBR05、p-FBR06、p-FBR07、p-FBR08,载体结构包括:Amp表示氨苄青霉素抗性基因;f1表示噬菌体f1的复制起点;LacZ为LacZ起始密码子;SP6为SP6RNA聚合酶启动子;T7为T7RNA聚合酶启动子;FBR-X为FBR-1-8核苷酸序列;MCS为多克隆位点)。
分别制备汉氏葡糖酸醋杆菌、醋醅类芽孢杆菌、木糖葡糖酸醋杆菌的感受态细胞,制备过程如下:取过夜培养的汉氏葡糖酸醋杆菌、醋醅类芽孢杆菌、木糖葡糖酸醋杆菌,稀释20倍接种于生长培养基(每500mL含蛋白胨10g,酵母粉5g,葡萄糖5,氯化钠2.5,0.5mol/L山梨醇)中,35℃震荡培养至OD600=0.1,收集菌体后进行10min冰浴,放入提前预冷的4℃离心机中,5500转速离心3分钟,弃上清,留沉淀;电转液冰浴后洗涤沉淀3次,用菌体体积1/50的电转液保存菌体备用。
将重组克隆载体p-FBR01、p-FBR02、p-FBR03、p-FBR04、p-FBR05、p-FBR06、p-FBR07、p-FBR08用热激方法分别转化汉氏葡糖酸醋杆菌、醋醅类芽孢杆菌、木糖葡糖酸醋杆菌感受态细胞,其热激条件为:40μl菌种(汉氏葡糖酸醋杆菌,表1中简称S1;醋醅类芽孢杆菌,表1中简称S2;木糖葡糖酸醋杆菌,表1中简称S3)、10μl质粒DNA(分别为重组克隆载体p-FBR01、p-FBR02、p-FBR03、p-FBR04、p-FBR05、p-FBR06、p-FBR07、p-FBR08),43℃水浴35秒;30℃振荡培养1小时(100rpm转速下摇床摇动),在表面涂有IPTG(异丙基硫代-β-D-半乳糖苷)和X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)的氨苄青霉素(100mg/L)的LB平板(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、琼脂15g/L,用NaOH调pH至7.5)上生长过夜。挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、氨苄青霉素100mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。碱法提取其质粒:将菌液在12000rpm转速下离心1min,去上清液,沉淀菌体用100μl冰预冷的溶液I(25mM Tris-HCl、10mM EDTA(乙二胺四乙酸)、50mM葡萄糖,pH8.0)悬浮;加入150μl新配制的溶液II(0.2MNaOH、1%SDS(十二烷基硫酸钠)),将管子颠倒4次,混合,置冰上3-5min;加入150μl冰冷的溶液III(4M醋酸钾、2M醋酸),立即充分混匀,冰上放置5-10min;于温度4℃、转速12000rpm条件下离心5min,在上清液中加入2倍体积无水乙醇,混匀后室温放置10min;于温度4℃、转速12000rpm条件下离心5min,弃上清液,沉淀用浓度(V/V)为70%的乙醇洗涤后晾干;加入30μl含RNase(20μg/ml)的TE(10mM Tris-HCl,1mM EDTA,pH 8.0)溶解沉淀;于温度37℃下水浴30min,消化RNA;于温度-20℃保存备用。提取的质粒经NcoI和BstZI酶切鉴定后,对阳性克隆进行测序验证,结果表明重组克隆载体p-FBR01、p-FBR02、p-FBR03、p-FBR04、p-FBR05、p-FBR06、p-FBR07、p-FBR08中分别对应的插入的所述FBR-1、FBR-2、FBR-3、FBR-4、FBR-5、FBR-6、FBR-7、FBR-8的核苷酸序列。
将上述插入外源基因的汉氏葡糖酸醋杆菌、醋醅类芽孢杆菌、木糖葡糖酸醋杆菌分别接种至100mL实施例1中所述测试培养基(液体培养基),以未加入外源基因的汉氏葡糖酸醋杆菌(CK1)、醋醅类芽孢杆菌(CK2)、木糖葡糖酸醋杆菌作为对照(CK3),摇床培养一周,之后测定培养基表面纤维厚度,测定结果如表1所示:
表1液体培养基表面纤维层厚度
结果表明,转入FBR-8核苷酸序列的醋醅类芽孢杆菌具有明显的纤维素层增厚,相较于CK2增厚了19.2mm,其次为转入FBR-2的木糖葡糖酸醋杆菌,其相较于CK3增厚了13.9mm,本发明中,所述细菌纤维素表达增强相关基因为FBR-8基因,其核苷酸序列如SEQID NO.1所示。
实施例3
高生物相容性水刺无纺布的制作步骤如下:
步骤一、制备纤维层
获得准备好的细菌纤维素(获得自转入FBR-8基因的醋醅类芽孢杆菌发酵液)及苎麻纤维,所述细菌纤维素与苎麻纤维质量比为3:1,将上述细菌纤维素及苎麻纤维浸泡于市售软化整理剂中,室温下放置24h,之后分别进行开松、除杂,将已开松的纤维喂入纤维仓,将细菌纤维素与苎麻纤维制成均匀的纤网,进入梳理工序。
步骤二、梳理工序采用两梳一铺生产线,由一台梳理机输出的纤网首先喂给交叉铺网机进行铺网,紧接着由牵引机对铺叠后的纤网进行牵伸,再与另一台梳理机输出的纤网叠加成为双层纤网后送至水刺机。
步骤三、由步骤二获得的双层纤网经过预湿后进行正反水刺,制备不同组分水刺无纺布过程中,水刺液不同,水刺液中加入透明质酸,预湿水压为1bar,水刺压力为35bar,控制喷射的时间为1.5-3min,生产线速度为25米/分,之后55℃烘干获得所述高生物相容性水刺无纺布(R1)。
实施例4:
对高生物相容性水刺无纺布(R1)及三种市售无纺布(ET1、ET2、ET3)进行性能检测,按FZ/T 60005-91规定进行检测纵向断裂强度、横向断裂强度、纵向断裂伸长率、横向断裂伸长率,按GB/T 9995-1997规定进行检测回潮率,结果如表1所示。
表2、高生物相容性水刺无纺布及市售无纺布性能检测
由表2结果可知,高生物相容性水刺无纺布耐撕扯性能显著优于市售无纺布,经测定,所述水刺无纺布吸水倍数达122-135倍,透气性高达702-714CFM,不会闷气,舒适度高,可以有效抑制细菌、真菌生长;纤维损伤率低于0.2‰,有效解决纤维掉毛问题,触感柔软,接近纯棉布,并且耐撕扯,可机洗。根据ISO10993-10对高生物相容性水刺无纺布进行皮肤刺激试验;根据ISO10993-10进行致敏试验(最大剂量法),检测结果表明本发明提供的水刺无纺布具有高生物相容性,对于皮肤无刺激,对于敏感肌肤无致敏现象。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
序列表
<110> 金华天晟合纤科技有限公司
<120> 一种高生物相容性水刺无纺布
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 384
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> unsure
<223> 纤维素表达增强相关基因
<400> 1
cacttacagc attggtcaga ccggcgcaca caacatgtac gctaacgacc gatatccctc 60
tcctctgtta aaaaaggcag acagttaggc aactcatggt acatagtagt tcgccagttg 120
tttcgcctgt gacgagccac gtggtaatcg tgaaagcacc ggcggattat aactttgtcc 180
gttgaatttc agtatacatc cgcccaagtt gatctgtagt atagagccat ttcgtgaccc 240
tggctgcaac ttacgtatgc tcgatcatat gagctgcgcc ctctctcgtg tatctgtata 300
aagacgcccg aacgaaactg gataaagctc atacgggtag tatcgcttct aatttgcttg 360
cgagcttcat acaacgaact attg 384