CN109465456B - 一种改进型人造金刚石烧结体制备工艺 - Google Patents

一种改进型人造金刚石烧结体制备工艺 Download PDF

Info

Publication number
CN109465456B
CN109465456B CN201811283349.5A CN201811283349A CN109465456B CN 109465456 B CN109465456 B CN 109465456B CN 201811283349 A CN201811283349 A CN 201811283349A CN 109465456 B CN109465456 B CN 109465456B
Authority
CN
China
Prior art keywords
diamond
powder
sintering
sintered body
micro powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811283349.5A
Other languages
English (en)
Other versions
CN109465456A (zh
Inventor
侯大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Yazhu Diamond Corp Co ltd
Original Assignee
Anhui Yazhu Diamond Corp Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Yazhu Diamond Corp Co ltd filed Critical Anhui Yazhu Diamond Corp Co ltd
Priority to CN201811283349.5A priority Critical patent/CN109465456B/zh
Publication of CN109465456A publication Critical patent/CN109465456A/zh
Application granted granted Critical
Publication of CN109465456B publication Critical patent/CN109465456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种改进型人造金刚石烧结体制备工艺,包括金刚石微粉筛选配比净化、硼硅氧化物膜沉积、粘结剂配比、电离等离子烧结等步骤。有效降低现有制备技术中的高温高压要求,缩短制备时长,提高了人工金刚石烧结体的制备效率,降低制备能耗,大幅提高烧结产物的硬度和磨耗比,提高产物质量。

Description

一种改进型人造金刚石烧结体制备工艺
技术领域
本发明涉及金刚石烧结体的制备,尤其涉及一种改进型人造金刚石烧结体制备工艺。
背景技术
人造金刚石烧结体(简称PCD)是继人造金刚石研制成功并取得应用之后,又一项重要成果。由于人造金刚石烧结体不仅具备金刚石所固有的高热传导性、高硬度、高耐磨性的特点,而且还具备各向同性、高韧性、高抗氧化性等金刚石单晶所不具备的特性,因而很快在刀具、钻探、拉丝、修整工具、耐磨器件方面得到了应用。依用途不同,有三角形、圆柱形、片状、圆锥、拉锥等形状。
在一般PCD的生长机理上,大致可分为三种:生长型、烧结型、生长-烧结型。PCD的制备以烧结型最为常用,在静态高压状态下,由金刚石微粉和Ti-Si-B系结合剂反应烧结生成。PCD制备工艺中的关键点为:
(1)金刚石微粉的粒度及合理配比;
(2)真空热处理工艺;
(3)合成腔体内部压力;
(4)原料微粉品质的选取;
(5)金刚石微粉的前处理工艺;
金刚石的晶体结构中,每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体金刚石中的碳-碳共价键很强,从而决定了金刚石具有高熔点,低的扩散系数。金刚石的低扩散系数和高温下的石墨化相变,使得纯相金刚石的制备通常需要高温(1500摄氏度以上),超高压条件(10GPa以上)。高温,超高压的制备条件,不但大幅限制了大尺寸聚晶金刚石的合成,并且其高昂的成本更限制了其在相关领域的广泛应用。
国内外为解决聚晶金刚石的烧结问题,主要采用添加烧结助剂和液相烧结的方法,常用的烧结助剂有Co,Ni,B,Si,Ti等,可以适度降低烧结压力,但现有的制备技术中,金刚石的烧结制备仍然需要5GPa以上的超高压力。金刚石的超高压制备条件需要进一步的改进0.5GPa以下的金刚石合成制备工艺,是科学界和工业界的研究热点。
放电等离子烧结(Spark Plasma Sintering,简称SPS)是一项制备材料的新技术,它具有升温速度快、烧结温度低,烧结时间短、抑制烧结体晶粒长大、节能环保等鲜明特点。为了降低金刚石制备工艺中的烧结压力,采用表面修饰完整包覆的保护涂层的方法,防止金刚石颗粒间的接触,添加合适的烧结助剂,并采用放电等离子烧结快速制备金刚石复合材料是一种可行的研究方向。
中国专利CN108314036A,公开了一种人造金刚石烧结体的制备工艺,该制备工艺包括如下步骤:先将石墨垫棒分别装入并固定在石墨套的多个石墨孔中,向石墨孔中装入底部烧结粉;用定位棒将聚晶模芯压入到底部烧结粉中,再向石墨孔中装入面部烧结粉,所述底部烧结粉、聚晶模芯和面部烧结粉共同构成待烧结体;向石墨孔中放入石墨压棒,使石墨压棒压盖在面部烧结粉的上部;将石墨套、石墨垫棒和石墨压棒三者构成的组合体放在石墨烧结机上烧结;将石墨孔中的成品烧结体脱出石墨套,即可得到人造聚晶金刚石烧结体。本制备工艺不但可以实现批量烧结涂漆模具的目的,而且使得每一个烧结体的烧结温度都一致、均匀,同一批次烧结体的硬度、强度均得到保证。
上述专利并未对烧结粘结剂,催化剂作出优化说明,没有降低制备过程中的高温高压条件,能耗大,且没有对金刚石微粉进行预处理和净化,容易导致金刚石在烧结过程中发生石墨化,导致烧结体强度不能得到保证。
中国专利CN105753476A,涉及一种金刚石复合材料的制备方法。采用放电等离子烧结制备超高硬度金刚石复合材料的方法,其特征是它包括如下步骤:(1)粉体表面修饰;在金刚石粉体表面沉积包覆0.1~50纳米厚度的碳化硅薄膜;(2)干燥;(3)加入烧结助剂:与非晶态二氧化硅粉体混合,研磨,得到复合粉体;(4)放电等离子烧结:在30~100MPa烧结压力下,温度1400~1700℃下,放电等离子烧结10~30分钟,得到复合材料;(5)脱模抛光,获得超高硬度金刚石复合材料。获得超高硬度金刚石复合材料,最佳硬度可达36GPa。该方法烧结压力低,100MPa烧结压力为常规金刚石制备压力(5GPa以上)的2%,该方法制备的金刚石复合材料致密度高、硬度高。
上述专利烧结时间过短,烧结体的硬度有所损失,没有添加催化剂,使烧结温度较高,前处理中碳化硅薄膜厚度较大,导致烧结体内金刚石组分含量降低,降低了烧结体的整体硬度和磨耗比;烧结助剂的配比没有进行优化,组分单一,对烧结体的致密度也有所影响。
发明内容
为克服现有技术中存在的问题,本发明的目的在于提供一种改进型人造金刚石烧结体制备工艺,有效降低现有制备技术中的高温高压要求,缩短制备时长,提高烧结产物的硬度和磨耗比。
为解决上述技术问题,本发明提供以下的技术方案:
一种改进型人造金刚石烧结体制备工艺,该方法包括以下步骤:
1)、将金刚石微粉筛分为15μm、25μm、35μm三种规格,按2:2:1重量比例混合后,将金刚石微粉净化处理,将金刚石微粉顺次置于NaOH、HCl溶液中分别煮沸25~40min,蒸馏水洗涤至中性,烘干备用;
2)、在人造金刚石微粉的表面进行化学气相沉积形成B2O3·SiO2硼硅氧化物膜,沉积反应温度350~450℃,沉积时间35~55min,沉积背景气压8Pa,沉积气压400~800Pa,制备获得金刚石包被微粉;
3)、按如下重量份配比烧结原料:金刚石包被微粉35~110份,钛粉10~15份,硼砂5~8份,钴粉9~15份,Al-Cu催化剂合金粉末1~3份;
4)、将金刚石包被微粉、钛粉、钴粉和硼砂和Al-Cu催化剂合金粉末,按照设定配比进行称量后置于研钵内,添加无水乙醇后进行充分研磨至均匀混合后烘干;
5)、将干燥并且混合均匀的混合物料装入圆柱形石墨模具中,将组装好的模具置于放电等离子烧结炉腔内,真空度低于10Pa后充入氮气,压力为200~500Mpa,烧结温度1600℃时恒温1~2h;
6)、烧结初始阶段时,升温速率为150℃/min,烧结温度达到1100~1300℃阶段时,升温速率为100℃/min,烧结温度达到1300~1600℃阶段时,升温速率为50℃/min以烧结温度为;恒温结束后的降温速率为150℃/min。
7)、脱模抛光后获得人造金刚石烧结体。
优选地,所述钛粉、钴粉、硼砂和Al-Cu催化剂合金粉末粒度均为5~8μm。
优选地,所述化学气相沉积采用的原料为气态甲烷硅、乙硼烷及氧气,纯度均为99.0~99.99%。
优选地,所述甲烷硅、乙硼烷和氧气的摩尔比为2:1:10。
优选地,所述步骤(4)中烘干条件为55~70℃烘干4~8h。
优选地,所述石墨模具的的尺寸为直径4~8mm,内壁垫有石墨纸。
优选地,所述金刚石包被微粉上的硼硅氧化物膜的厚度为5~20纳米,硼硅氧化物的质量分数为0.5~4mass%。
本发明获得的有益效果:
(1)本发明中采用Al-Cu催化剂,使人造金刚石烧结制备压力在200~500Mpa,大幅降低了常规金刚石制备压力(5GPa以上),低碳环保,同时缩短了制备时长,将制备时间缩短至1~2h,提高制备效率;
(2)所制备的金刚石烧结体,致密度高,硬度高,硬度最高可达48GPa;
(3)通过化学气相沉积在金刚石微粉表面形成硼硅氧化物膜,有效地阻隔金刚石粉体在烧结过程中的接触,同时,石墨模具中加垫石墨纸,从而阻止金刚石在高温下的石墨相变,同时进一步提高了金刚石烧结体的硬度,方便脱模;
(4)放电等离子烧结中,钛粉、钴粉和硼砂合理配比后作为烧结剂,有效地促进了金刚石的烧结致密化,大大降低了金刚石的烧结合成压力。
(5)合理配比不同粒度的金刚石微粉作为原料,可以提高堆积密度,选取15μm、25μm、35μm三种不同粒度混合料配比,可以显著提高烧结体的磨耗比。
(6)临近烧结恒定温度时降低升温速率及恒温烧结后的匀速降温均可有效避免温度过冲,防止烧结体的复裂解及增加烧结体的致密度。
附图说明
图1人造金刚石烧结体制备工艺流程图
图2放电等离子烧结系统示意图
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
以下实施例中使用的试剂如无特殊说明均可购买获得。
实施例1:按照如下方法制备金刚石烧结体:
(1)将金刚石微粉筛分为15μm、25μm、35μm三种规格,按2:2:1重量比例混合后,将金刚石微粉净化处理,将金刚石微粉顺次置于NaOH、HCl溶液中分别煮沸25min,蒸馏水洗涤至中性,烘干备用;
(2)将纯度均为99.0%气态甲烷硅、乙硼烷和氧气按摩尔比为2:1:10常温下充入真空度为8Pa的化学气相沉积设备中,使沉积气压400Pa,沉积反应温度350℃,沉积时间35min,在人造金刚石微粉的表面进行化学气相沉积形成厚度为5~10纳米的B2O3·SiO2硼硅氧化物膜,金刚石包被微粉中锗硅合金的质量分数为0.5~2mass%。
(3)按如下重量份配比烧结原料:金刚石包被微粉35份,钛粉10份,硼砂5份,钴粉9份,Al-Cu催化剂合金粉末1份;钛粉、钴粉、硼砂和Al-Cu催化剂合金粉末粒度均为5μm。
(4)将金刚石包被微粉、钛粉、钴粉和硼砂和Al-Cu催化剂合金粉末,按照设定配比进行称量后置于研钵内,添加无水乙醇后进行充分研磨至均匀混合后55℃烘干4h;
(5)将干燥并且混合均匀的混合物料装入圆柱形石墨模具中,石墨模具的的尺寸为直径4mm,内壁垫有石墨纸。将组装好的模具置于放电等离子烧结炉腔内,真空度低于10Pa后充入氮气,压力为200Mpa,烧结温度1600℃时恒温1h;
(6)烧结初始阶段时,升温速率为150℃/min,烧结温度达到1100~1300℃阶段时,升温速率为100℃/min,烧结温度达到1300~1600℃阶段时,升温速率为50℃/min以烧结温度为;恒温结束后的降温速率为150℃/min。
(7)脱模抛光去除石墨纸后获得人造金刚石烧结体。
实施例2:按照如下方法制备金刚石烧结体:
(1)将金刚石微粉筛分为15μm、25μm、35μm三种规格,按2:2:1重量比例混合后,将金刚石微粉净化处理,将金刚石微粉顺次置于4M的NaOH、1M的HCl溶液中分别煮沸40min,蒸馏水洗涤至中性,烘干备用;
(2)将纯度均为99.99%气态甲烷硅、乙硼烷和氧气按摩尔比为2:1:10常温下充入真空度为8Pa的化学气相沉积设备中,使沉积气压800Pa,沉积反应温度450℃,沉积时间55min,在人造金刚石微粉的表面进行化学气相沉积形成厚度为10~20纳米的B2O3·SiO2硼硅氧化物膜,金刚石包被微粉中锗硅合金的质量分数为2~4mass%。
(3)按如下重量份配比烧结原料:金刚石包被微粉110份,钛粉15份,硼砂8份,钴粉15份,Al-Cu催化剂合金粉末3份;钛粉、钴粉、硼砂和Al-Cu催化剂合金粉末粒度均为8μm。
(4)将金刚石包被微粉、钛粉、钴粉和硼砂和Al-Cu催化剂合金粉末,按照设定配比进行称量后置于研钵内,添加无水乙醇后进行充分研磨至均匀混合后70℃烘干8h;
(5)将干燥并且混合均匀的混合物料装入圆柱形石墨模具中,石墨模具的的尺寸为直径8mm,内壁垫有石墨纸。将组装好的模具置于放电等离子烧结炉腔内,真空度低于10Pa后充入氮气,压力为500Mpa,烧结温度1600℃时恒温2h;
(6)烧结初始阶段时,升温速率为150℃/min,烧结温度达到1100~1300℃阶段时,升温速率为100℃/min,烧结温度达到1300~1600℃阶段时,升温速率为50℃/min以烧结温度为;恒温结束后的降温速率为150℃/min。
(7)脱模抛光去除石墨纸后获得人造金刚石烧结体。
实施例3:按照如下方法制备金刚石烧结体:
(1)将金刚石微粉筛分为15μm、25μm、35μm三种规格,按2:2:1重量比例混合后,将金刚石微粉净化处理,将金刚石微粉顺次置于NaOH、HCl溶液中分别煮沸30min,蒸馏水洗涤至中性,烘干备用;
(2)将纯度均为99.5%气态甲烷硅、乙硼烷和氧气按摩尔比为2:1:10常温下充入真空度为8Pa的化学气相沉积设备中,使沉积气压600Pa,沉积反应温度400℃,沉积时间45min,在人造金刚石微粉的表面进行化学气相沉积形成厚度为8~15纳米的B2O3·SiO2硼硅氧化物膜,金刚石包被微粉中锗硅合金的质量分数为1.5~3mass%。
(3)按如下重量份配比烧结原料:金刚石包被微粉89份,钛粉12份,硼砂6份,钴粉10份,Al-Cu催化剂合金粉末2份;钛粉、钴粉、硼砂和Al-Cu催化剂合金粉末粒度均为7μm。
(4)将金刚石包被微粉、钛粉、钴粉和硼砂和Al-Cu催化剂合金粉末,按照设定配比进行称量后置于研钵内,添加无水乙醇后进行充分研磨至均匀混合后60℃烘干6h;
(5)将干燥并且混合均匀的混合物料装入圆柱形石墨模具中,石墨模具的的尺寸为直径6mm,内壁垫有石墨纸。将组装好的模具置于放电等离子烧结炉腔内,真空度低于10Pa后充入氮气,压力为350Mpa,烧结温度1600℃时恒温1h;
(6)烧结初始阶段时,升温速率为150℃/min,烧结温度达到1100~1300℃阶段时,升温速率为100℃/min,烧结温度达到1300~1600℃阶段时,升温速率为50℃/min以烧结温度为;恒温结束后的降温速率为150℃/min。
(7)脱模抛光去除石墨纸后获得人造金刚石烧结体。
实施例4:按照如下方法制备金刚石烧结体:
(1)将金刚石微粉筛分为15μm、25μm、35μm三种规格,按2:2:1重量比例混合后,将金刚石微粉净化处理,将金刚石微粉顺次置于NaOH、HCl溶液中分别煮沸30min,蒸馏水洗涤至中性,烘干备用;
(2)将纯度均为99.99%气态甲烷硅、乙硼烷和氧气按摩尔比为2:1:10常温下充入真空度为8Pa的化学气相沉积设备中,使沉积气压700Pa,沉积反应温度380℃,沉积时间50min,在人造金刚石微粉的表面进行化学气相沉积形成厚度为10~15纳米的B2O3·SiO2硼硅氧化物膜,金刚石包被微粉中锗硅合金的质量分数为2.5~3.5mass%。
(3)按如下重量份配比烧结原料:金刚石包被微粉100份,钛粉13份,硼砂7份,钴粉13份,Al-Cu催化剂合金粉末2.5份;钛粉、钴粉、硼砂和Al-Cu催化剂合金粉末粒度均为6μm。
(4)将金刚石包被微粉、钛粉、钴粉和硼砂和Al-Cu催化剂合金粉末,按照设定配比进行称量后置于研钵内,添加无水乙醇后进行充分研磨至均匀混合后70℃烘干8h;
(5)将干燥并且混合均匀的混合物料装入圆柱形石墨模具中,石墨模具的的尺寸为直径7mm,内壁垫有石墨纸。将组装好的模具置于放电等离子烧结炉腔内,真空度低于10Pa后充入氮气,压力为400Mpa,烧结温度1600℃时恒温1.5h;
(6)烧结初始阶段时,升温速率为150℃/min,烧结温度达到1100~1300℃阶段时,升温速率为100℃/min,烧结温度达到1300~1600℃阶段时,升温速率为50℃/min以烧结温度为;恒温结束后的降温速率为150℃/min。
(7)脱模抛光去除石墨纸后获得人造金刚石烧结体。
测定实施例1-4中制备的人工金刚石烧结体的致密度、硬度、磨耗比以及观察是否发生石墨化,结果如下:
表1人工金刚石烧结体各项指标检测结果
实施例 致密度 硬度(GPa) 磨耗比(×10<sup>4</sup>) 是否发生石墨化
1 90% 29.8 11.8
2 97% 42.0 13.3
3 94% 36.8 14.4
4 98% 48.0 15.4
对照组 84% 13.9 9.9
综上所述,本发明中采用Al-Cu催化剂,使人造金刚石烧结制备压力在200~500MPa,大幅降低了常规金刚石制备压力(5GPa以上),低碳环保,同时缩短了制备时长,将制备时间缩短至1~2h,提高制备效率;所制备的金刚石烧结体,致密度高,硬度高,硬度最高可达48GPa;通过化学气相沉积在金刚石微粉表面形成硼硅氧化物膜,有效地阻隔金刚石粉体在烧结过程中的接触,同时,石墨模具中加垫石墨纸,从而阻止金刚石在高温下的石墨相变,同时进一步提高了金刚石烧结体的硬度,方便脱模;放电等离子烧结中,钛粉、钴粉和硼砂合理配比后作为烧结剂,有效地促进了金刚石的烧结致密化,大大降低了金刚石的烧结合成压力。合理配比不同粒度的金刚石微粉作为原料,可以提高堆积密度,选取15μm、25μm、35μm三种不同粒度混合料配比,可以显著提高烧结体的磨耗比。临近烧结恒定温度时降低升温速率及恒温烧结后的匀速降温均可有效避免温度过冲,防止烧结体的复裂解及增加烧结体的致密度。
上面对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (7)

1.一种改进型人造金刚石烧结体制备工艺,其特征在于,该工艺包括以下步骤:
1) 、将金刚石微粉筛分为15μm、25μm、35μm三种规格,按2:2:1重量比例混合后,将金刚石微粉净化处理,将金刚石微粉顺次置于NaOH、HCl溶液中分别煮沸25~40min,蒸馏水洗涤至中性,烘干备用;
2)、在人造金刚石微粉的表面进行化学气相沉积形成B2O3·SiO2硼硅氧化物膜,沉积反应温度350~450℃,沉积时间35~55min,沉积背景气压8Pa,沉积气压400~800Pa,制备获得金刚石包被微粉;
3)、按如下重量份配比烧结原料:金刚石包被微粉35~110份,钛粉10~15份,硼砂5~8份,钴粉9~15份,Al-Cu催化剂合金粉末1~3份;
4)、将金刚石包被微粉、钛粉、钴粉和硼砂和Al-Cu催化剂合金粉末,按照设定配比进行称量后置于研钵内,添加无水乙醇后进行充分研磨至均匀混合后烘干;
5)、将干燥并且混合均匀的混合物料装入圆柱形石墨模具中,将组装好的模具置于放电等离子烧结炉腔内,真空度低于10Pa后充入氮气,压力为200~500Mpa,烧结温度1600℃时恒温1~2h;
6)、烧结初始阶段时,升温速率为150℃/min,烧结温度达到1100~1300℃阶段时,升温速率为100℃/min,烧结温度达到1300~1600℃阶段时,升温速率为50℃/min;恒温结束后的降温速率为150℃/min;
7)、脱模抛光后获得人造金刚石烧结体。
2.根据权利要求1所述的一种改进型人造金刚石烧结体制备工艺,其特征在于:所述钛粉、钴粉、硼砂和Al-Cu催化剂合金粉末粒度均为5~8μm。
3.根据权利要求1所述的一种改进型人造金刚石烧结体制备工艺,其特征在于:所述化学气相沉积采用的原料为气态甲烷硅、乙硼烷及氧气,纯度均为99.0~99.99%。
4.根据权利要求3所述的一种改进型人造金刚石烧结体制备工艺,其特征在于:所述甲烷硅、乙硼烷和氧气的摩尔比为2:1:10。
5.根据权利要求1所述的一种改进型人造金刚石烧结体制备工艺,其特征在于:所述步骤4中烘干条件为55~70℃烘干4~8h。
6.根据权利要求1所述的一种改进型人造金刚石烧结体制备工艺,其特征在于:所述石墨模具的尺寸为直径4~8mm,内壁垫有石墨纸。
7.根据权利要求1所述的一种改进型人造金刚石烧结体制备工艺,其特征在于:所述金刚石包被微粉上的硼硅氧化物膜的厚度为5~20纳米,硼硅氧化物的质量分数为0.5~4mass%。
CN201811283349.5A 2018-10-31 2018-10-31 一种改进型人造金刚石烧结体制备工艺 Active CN109465456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811283349.5A CN109465456B (zh) 2018-10-31 2018-10-31 一种改进型人造金刚石烧结体制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811283349.5A CN109465456B (zh) 2018-10-31 2018-10-31 一种改进型人造金刚石烧结体制备工艺

Publications (2)

Publication Number Publication Date
CN109465456A CN109465456A (zh) 2019-03-15
CN109465456B true CN109465456B (zh) 2021-01-05

Family

ID=65672738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811283349.5A Active CN109465456B (zh) 2018-10-31 2018-10-31 一种改进型人造金刚石烧结体制备工艺

Country Status (1)

Country Link
CN (1) CN109465456B (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999025B1 (en) * 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8662209B2 (en) * 2009-03-27 2014-03-04 Varel International, Ind., L.P. Backfilled polycrystalline diamond cutter with high thermal conductivity
US20120325565A1 (en) * 2011-06-23 2012-12-27 Fang Zhigang Z Thermally stable polycrystalline diamond
GB201205673D0 (en) * 2012-03-30 2012-05-16 Element Six Abrasives Sa Polycrystalline superhard material and method of making same
CN103623747B (zh) * 2013-12-03 2016-03-02 深圳市海明润超硬材料股份有限公司 一种具有高导热性能的金刚石复合片及其制备方法
WO2017023312A1 (en) * 2015-08-05 2017-02-09 Halliburton Energy Services, Inc. Spark plasma sintered polycrystalline diamond
CN105463375A (zh) * 2015-12-12 2016-04-06 中原工学院 一种氧化硅镀覆金刚石的方法
CN105753476B (zh) * 2016-02-16 2018-01-12 武汉理工大学 采用放电等离子烧结制备超高硬度金刚石复合材料的方法
CN108043408B (zh) * 2017-10-31 2020-08-11 江苏西玉钻石科技有限公司 一种宝石级人造金刚石单晶用催化剂的制备方法及催化剂
CN108147407A (zh) * 2018-01-05 2018-06-12 李伟 一种优化金刚石复合片及其原料优化方法

Also Published As

Publication number Publication date
CN109465456A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
AU759804B2 (en) Method of manufacturing a diamond composite and a composite produced by same
CN107794430B (zh) 一种超细晶粒金属陶瓷及其制备方法
CN100457683C (zh) 一种电阻率可控的导电碳化硅泡沫陶瓷材料及其制备方法
CN101892411A (zh) 一种新型wc基硬质合金材料及其制备方法
CN101544851A (zh) 一种金属结合剂空心球形超硬复合材料及其制造方法
CN113149686B (zh) 一种具有复合陶瓷层的炭/炭复合材料坩埚及其制备方法
CN109251049A (zh) 一种限制复合材料基体内部裂纹扩展的方法
CN110372408A (zh) 一种陶瓷纤维增韧cvd碳化硅复合材料及其制备方法和应用
CN105198437A (zh) 一种多孔碳化硅陶瓷的制备方法
CN114455982A (zh) 一种含有氧化铝涂层和碳化硅涂层的炭/炭复合材料坩埚
CN112500178A (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN115745643A (zh) 一种碳纳米管改性的复合材料及其制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN109317662B (zh) 一种人造金刚石烧结体制备工艺
CN109465456B (zh) 一种改进型人造金刚石烧结体制备工艺
CN111892056B (zh) 具有碳化硅/硅涂层的炭/陶反应器内衬层及其制备方法
CN114455963B (zh) 一种含有α-Al2O3涂层的炭/炭-碳化硅复合材料坩埚
CN115056148B (zh) 一种陶瓷复合砂轮及其制造方法
CN114368975B (zh) 一种含有α-Al2O3涂层的低密度C/C-SiC复合材料坩埚
CN114455969B (zh) 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚
CN113979765B (zh) 一种碳化硅多孔陶瓷及其制备方法
CN114455965B (zh) 一种含有α-Al2O3涂层的C/SiC复合材料坩埚
CN113754431A (zh) 一种超高压/高温相变法制备纳米多晶复合相氧化锆的方法
CN114455971B (zh) 一种含有α-Al2O3涂层的高密度C/C-SiC复合材料坩埚

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation process of an improved synthetic diamond sintered body

Effective date of registration: 20220915

Granted publication date: 20210105

Pledgee: Agricultural Bank of China Limited by Share Ltd. Bozhou Qiaocheng sub branch

Pledgor: ANHUI YAZHU DIAMOND CORPORATION Co.,Ltd.

Registration number: Y2022980015451

PE01 Entry into force of the registration of the contract for pledge of patent right