CN109437910B - 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用 - Google Patents

一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用 Download PDF

Info

Publication number
CN109437910B
CN109437910B CN201811371797.0A CN201811371797A CN109437910B CN 109437910 B CN109437910 B CN 109437910B CN 201811371797 A CN201811371797 A CN 201811371797A CN 109437910 B CN109437910 B CN 109437910B
Authority
CN
China
Prior art keywords
sic
nano
ceramic
connection
transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811371797.0A
Other languages
English (en)
Other versions
CN109437910A (zh
Inventor
郭伟明
吴利翔
朱林林
牛文彬
卫紫君
林锐霖
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811371797.0A priority Critical patent/CN109437910B/zh
Publication of CN109437910A publication Critical patent/CN109437910A/zh
Application granted granted Critical
Publication of CN109437910B publication Critical patent/CN109437910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于陶瓷连接技术领域,公开了一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法。该方法是将SiC粉体和Al2O3‑MxOy的混合粉体A作为连接材料,所述MxOy=Ho2O3或CeO2,将混合粉体A加入溶剂和球磨介质混合干燥后将所得混合粉体B进行造粒的粉体铺展在两块抛光后的SiC中间形成三明治结构;再进行冷等静压处理,在真空或气氛保护下,加压0.01~0.1MPa,先升温至600~1000℃保温Ⅰ,再升温至1450~1600℃保温Ⅱ,保温压力为200~500MPa,进行连接制得纳米浸渍瞬态共晶相连接的SiC陶瓷。本发明实现SiC陶瓷的低温低压连接,连接处的漏率达到0~1×10‑8Pa·L/s。

Description

一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶 瓷和应用
技术领域
本发明属于非氧化物陶瓷材料技术领域,更具体地,涉及一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用。
背景技术
SiC陶瓷一般都具有耐高温、高硬度、抗磨损、耐腐蚀、高温强度高等优良特性,是汽车、机械、冶金和宇航等部门开发新技术的关键材料。此外,纯SiC因其具有高热导率、抗中子辐照以及低中子吸收截面,可应用于核反应堆中的事故容错燃料。
然而,由于陶瓷材料的脆性和冲击韧度低,耐热冲击能力弱,因而其加工性能差,制造尺寸大而形状复杂的零件较为困难,因此需要通过陶瓷之间的连接技术来制取形状复杂的零部件。目前,在SiC陶瓷连接方法中,纳米浸渍瞬态共晶相连接的剪切强度最高,并且具有良好的抗腐蚀和抗中子辐照,然而,一般采用纳米浸渍瞬态共晶相时都需要高温高压,这对于事故容错燃料(是核反应堆中用来包裹核燃料的第一层保护材料,这种材料直接承受核反应堆中全部的中子辐照,也是最关键的一道防护罩)中包壳管和端塞连接来说是致命的缺陷。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明提供了一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法,该方法可在低温低压下就可以实现SiC连接的方法。
本发明另一目的在于提供了上述方法制备的纳米浸渍瞬态共晶相连接SiC陶瓷。
本发明再一目的在于提供了上述纳米浸渍瞬态共晶相连接SiC陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种纳米浸渍瞬态共晶相连接SiC陶瓷的制备方法,包括以下具体步骤:
S1.将SiC粉体和Al2O3-MxOy的混合粉体A作为连接材料,所述MxOy=Ho2O3或CeO2,将混合粉体A加入溶剂和球磨介质混合,干燥后得到混合粉体B;
S2.将混合粉体B进行造粒,将造粒后粉体铺展在两块抛光后的SiC中间形成三明治结构;
S3.将上述三明治结构样品进行冷等静压处理,在真空或保护气氛下,冷等静压的压力为200~500MPa,先升温至600~1000℃保温Ⅰ,再升温至1200~1600℃保温Ⅱ,加压0.01~0.1MPa进行连接,制得纳米浸渍瞬态共晶相连接的SiC陶瓷。
优选地,步骤S1中所述SiC粉的纯度为95~99.999%,所述SiC粉的粒径为10~100nm;所述Al2O3的纯度为95~99.999%,所述Al2O3的粒径为0.01~10μm。
优选地,步骤S1中所述MxOy的纯度为95~99.999%,所述MxOy的粒径为0.01~10μm。
优选地,步骤S1中所述SiC:Al2O3:MxOy的质量比为(80~99.8):(0.1~10):(0.1~10)。
优选地,步骤S1中所述溶剂为无水乙醇或/和丙酮。
优选地,步骤S1中所述球磨的时间为2~24h。
优选地,步骤S3中所述升温到600~1000℃时的速率为5~20℃/min,所述升温到1200~1600℃时的速率为5~10℃/min,所述保温Ⅰ和Ⅱ的时间均为0.5~2h。
优选地,步骤S3中所述保护气氛为氩气或氮气。
所述方法制备的共晶相连接的SiC陶瓷,所述共晶相连接的SiC陶瓷中共晶相为SiC-Al2O3-MxOy,所述共晶相连接的SiC陶瓷在常温下的连接强度为100~200MPa,在1600℃下的连接强度为80~180MPa;所述纳米浸渍瞬态共晶相连接的SiC的漏率达到0~1×10- 8Pa·L/s。
所述的纳米浸渍瞬态共晶相连接的SiC陶瓷在核反应堆中包壳管或端塞连接领域中的应用。
本发明通结合冷等静压技术,在低温低压下实现SiC纳米浸渍瞬态共晶相连接,连接后工件在常温下的连接强度为100~200MPa,在1600℃高温下的连接强度为80~180MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀20~50天,腐蚀速率与基体保持一致;连接后母材与连接层热膨胀系数一致,共晶相是指中间的连接层,工件是指中间连接层加上两端母材,无热膨胀系数差异引起热应力集中,连接层致密无缺陷,连接处的漏率达到0~1×10-8Pa·L/s,在进行10~20MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区之外。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用纳米浸渍瞬态共晶相连接首次在低温低压下实现了SiC陶瓷的连接;连接的SiC陶瓷连接层致密,无空洞缺陷。
2.本发明提供一种在低温低压下就可以实现SiC连接的方法,由于连接层是以SiC为主相,再结合非常少的添加剂促进致密化,因此,烧结助剂对主相SiC陶瓷的影响非常小,可忽略不计,因此共晶相连接层与母材SiC陶瓷具有一致的热膨胀系数,不存在热膨胀系数差异产生的热应力,极大地推动SiC陶瓷在核领域内的应用。
3.本发明的纳米浸渍瞬态共晶相连接SiC陶瓷在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀20~50天,腐蚀速率与基体保持一致;连接后母材与连接层热膨胀系数一致,无热膨胀系数差异引起热应力集中,连接层致密无缺陷。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.制备:以纳米SiC粉体、Al2O3以及Ho2O3作为连接材料,其中SiC粉纯度为99%,粒径为10nm;Al2O3的纯度为99%,粒径为0.1μm;Ho2O3纯度为99%,粒径为0.1μm;SiC:Al2O3:Ho2O3的质量百分比为93wt%:2wt%:5wt%,连接材料粉体按照以上比例在行星球磨机上进行8h混合,溶剂为无水乙醇,干燥后得到的混合粉体铺展在两块抛光后的SiC中间形成三明治结构,并进行500MPa冷等静压处理,然后在热处理炉中进行连接。连接的具体工艺参数为:以20℃/min升温到800℃,再以10℃/min升温到1400℃,保温1h,加压0.1MPa,连接环境为真空。
2.性能测试:本实施例连接后工件在常温下的连接强度为150MPa,在1600℃高温下的连接强度为120MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀30天,腐蚀速率与基体保持一致;连接后母材与连接层无热应力集中,连接处的漏率达到1×10-9Pa·L/s,在进行15MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区(焊缝区是指中间连接材料共晶相以及与母材SiC交界处)之外。
实施例2
1.制备:以纳米SiC粉体、Al2O3以及CeO2作为连接材料,其中SiC粒径为100nm;Al2O3的粒径为5μm;Ho2O3粒径为5μm;SiC:Al2O3:CeO2的质量百分比为90wt%:5wt%:5wt%,按照实施例1方法进行连接,其中冷等静压压力为200MPa,烧结工艺是:以20℃/min升温到800℃,再以10℃/min升温到1500℃,保温1h,加压0.01MPa,连接环境为真空。
2.性能测试:本实施例连接后工件在常温下的连接强度为180MPa,在1600℃高温下的连接强度为150MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀30天,腐蚀速率与基体保持一致;连接后母材与连接层无热应力集中,连接处的漏率达到1×10-8Pa·L/s,在进行10MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区之外。
实施例3
1.制备:以纳米SiC粉体、Al2O3以及Ho2O3作为连接材料,其中SiC粒径为50nm;Al2O3的粒径为10μm;Ho2O3粒径为10μm;SiC:Al2O3:Ho2O3质量百分比为90wt%:5wt%:5wt%,按照实施例1方法进行连接,其中冷等静压压力为300MPa,烧结工艺是:以20℃/min升温到800℃,再以10℃/min升温到1600℃,保温0.5h,加压0.01MPa,连接环境为真空。
2.性能测试:本实施例连接后工件在常温下的连接强度为200MPa,在1600℃高温下的连接强度为180MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀50天,腐蚀速率与基体保持一致;连接后母材与连接层无热应力集中,连接处的漏率达到1×10-9Pa·L/s,在进行15MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区之外。
实施例4
1.制备:以纳米SiC粉体、Al2O3以及Ho2O3作为连接材料,其中SiC粒径为100nm;Al2O3的粒径为5μm;Ho2O3粒径为5μm;SiC:Al2O3:Ho2O3的质量百分比为90wt%:5wt%:5wt%,按照实施例1方法进行连接,其中冷等静压压力为200MPa,烧结工艺是:以20℃/min升温到800℃,再以10℃/min升温到1500℃,保温1h,加压0.01MPa,连接环境为真空。
2.性能测试:本实施例连接后工件在常温下的连接强度为180MPa,在1600℃高温下的连接强度为150MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀30天,腐蚀速率与基体保持一致;连接后母材与连接层无热应力集中,连接处的漏率达到1×10-8Pa·L/s,在进行10MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区之外。
实施例5
1.制备:以纳米SiC粉体、Al2O3以及Ho2O3作为连接材料,其中SiC粒径为30nm;Al2O3的粒径为0.1μm;Ho2O3粒径为0.1μm;SiC:Al2O3:Ho2O3的质量百分比为80wt%:10wt%:10wt%,按照实施例1方法进行连接,其中冷等静压压力为300MPa,烧结工艺是:以20℃/min升温到800℃,再以10℃/min升温到1400℃,保温0.5h,加压0.01MPa,连接环境为Ar。
2.性能测试:本实施例连接后工件在常温下的连接强度为150MPa,在1600℃高温下的连接强度为120MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀30天,腐蚀速率与基体保持一致;连接后母材与连接层无热应力集中,连接处的漏率达到1×10-8Pa·L/s,在进行15MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区之外。
对比例1
1.制备:以纳米SiC粉体、SiO2、Al2O3以及Y2O3作为连接材料,其中SiC粉纯度为99%,粒径为30nm;SiO2的纯度为99%,粒径为0.1μm;Al2O3的纯度为99%,粒径为0.1μm;Y2O3纯度为99%,粒径为0.1μm;SiC:SiO2:Al2O3:Y2O3的质量比为94wt%:2wt%:1%:3wt%,连接材料粉体按照以上比例在行星球磨机上进行8h混合,溶剂为无水乙醇,干燥后得到的混合粉体铺展在两块抛光后的SiC中间形成三明治结构,连接的具体工艺参数为:以10℃/min升温到1900℃,保温1h,加压20MPa,连接环境为Ar。
2.性能测试:本实施例连接后工件在常温下的连接强度为120MPa,在1600℃高温下的连接强度为100MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀30天,腐蚀速率与基体保持一致;连接后母材SiC陶瓷与连接层(共晶相—SiC-Al2O3-Y2O3)无热应力集中,母材和连接层的连接处的漏率达到1×10-9Pa·L/s,在进行15MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区之外。
对比例2
1.制备:以纳米SiC粉体、SiO2、Al2O3以及Y2O3作为连接材料,其中SiC粉纯度为99%,粒径为30nm;SiO2的纯度为99%,粒径为0.1μm;Al2O3的纯度为99%,粒径为0.1μm;Y2O3纯度为99%,粒径为0.1μm;SiC:SiO2:Al2O3:Y2O3的质量比为94:2:1:3,连接材料粉体按照以上比例在行星球磨机上进行8h混合,溶剂为无水乙醇,干燥后得到的混合粉体铺展在两块抛光后的SiC中间形成三明治结构,连接的具体工艺参数为:以10℃/min升温到1500℃,保温1h,加压20MPa,连接环境为Ar。
2.性能测试:本实施例连接后工件在常温下的连接强度为40MPa,在1600℃高温下的连接强度为20MPa;在360℃/18.6MPa/纯水腐蚀条件的高压釜下腐蚀30天,腐蚀速率明显比基体快;连接后母材与连接层有孔洞,连接处的漏率达到1×10-2Pa·L/s,在进行15MPa/min加压速率进行内压爆破时,爆破的断裂处在焊缝区。
通过对比实施例1-5和对比例1-2可知,传统的纳米浸渍瞬态共晶相连接在高温高压下可实现强度和气密性较好的连接,但是在相同的加压条件下,进行低温连接的连接件强度和气密性极差。在对比例2中,在1500℃以及20MPa压力下连接件的室温和高温剪切强度分别只有40MPa和20MPa,连接处的漏率为1×10-2Pa·L/s;然而,实施例1中在1400℃以及0.1MPa压力条件下就可实现可靠连接,室温和高温剪切强度分别为150MPa和120MPa,连接处的漏率达到1×10-9Pa·L/s。经比较说明,本发明采用纳米浸渍瞬态共晶相低温连接的方法可实现高强且气密性良好的连接。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种纳米浸渍瞬态共晶相连接SiC陶瓷的制备方法,其特征在于,包括以下具体步骤:
S1. 将SiC粉体和Al2O3-MxOy的混合粉体A作为连接材料,所述MxOy=Ho2O3或CeO2,将混合粉体A加入溶剂和球磨介质混合,干燥后得到混合粉体B;所述SiC粉的纯度为95~99.999%,所述SiC粉的粒径为10~100nm;所述Al2O3的纯度为95~99.999%,所述Al2O3的粒径为0.01~10μm;所述MxOy的纯度为95~99.999%,所述MxOy的粒径为0.01~10μm;所述SiC:Al2O3:MxOy的质量比为(80~99.8):(0.1~10):(0.1~10);
S2. 将混合粉体B进行造粒,将造粒后粉体铺展在两块抛光后的SiC中间形成三明治结构;
S3. 将上述三明治结构样品进行冷等静压处理,在真空或保护气氛下,冷等静压的压力为200~500MPa,先升温至600~1000℃保温Ⅰ,再升温至1200~1600℃保温Ⅱ,加压0.01~0.1MPa进行连接,制得纳米浸渍瞬态共晶相连接的SiC陶瓷。
2.根据权利要求1所述的纳米浸渍瞬态共晶相连接SiC陶瓷的制备方法,其特征在于,步骤S1中所述溶剂为无水乙醇或/和丙酮。
3.根据权利要求1所述的纳米浸渍瞬态共晶相连接SiC陶瓷的制备方法,其特征在于,步骤S1中所述球磨的时间为2~24h。
4.根据权利要求1所述的纳米浸渍瞬态共晶相连接SiC陶瓷的制备方法,其特征在于,步骤S3中所述升温到600~1000℃时的速率为5~20℃/min,所述升温到1200~1600℃时的速率为5~10℃/min,所述保温Ⅰ和Ⅱ的时间均为0.5~2h。
5.根据权利要求1所述的纳米浸渍瞬态共晶相连接SiC陶瓷的制备方法,其特征在于,步骤S3中所述保护气氛为氩气或氮气。
6.根据权利要求1-5任一项所述方法制备的纳米浸渍瞬态共晶相连接的SiC陶瓷,其特征在于,所述纳米浸渍瞬态共晶相连接的SiC陶瓷中共晶相为SiC-Al2O3-MxOy,所述纳米浸渍瞬态共晶相连接的SiC陶瓷在常温下的连接强度为100~200MPa,在1600℃下的连接强度为80~180MPa;所述纳米浸渍瞬态共晶相连接的SiC陶瓷的漏率达到0~1×10-8 Pa·L/s。
7.根据权利要求6所述的纳米浸渍瞬态共晶相连接的SiC陶瓷在核反应堆中包壳管或端塞连接领域中的应用。
CN201811371797.0A 2018-11-15 2018-11-15 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用 Active CN109437910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811371797.0A CN109437910B (zh) 2018-11-15 2018-11-15 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811371797.0A CN109437910B (zh) 2018-11-15 2018-11-15 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用

Publications (2)

Publication Number Publication Date
CN109437910A CN109437910A (zh) 2019-03-08
CN109437910B true CN109437910B (zh) 2021-08-10

Family

ID=65553204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811371797.0A Active CN109437910B (zh) 2018-11-15 2018-11-15 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用

Country Status (1)

Country Link
CN (1) CN109437910B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062590A (zh) * 2020-08-26 2020-12-11 广东工业大学 一种陶瓷连接件及其制备方法和应用
CN114751760A (zh) * 2022-04-25 2022-07-15 浙江理工大学 一种纳米浸渍瞬态共晶制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN115490530B (zh) * 2022-08-12 2023-08-22 广东工业大学 一种液相挤出策略制备陶瓷连接件的方法及其应用
CN115724678A (zh) * 2022-11-16 2023-03-03 广东工业大学 一种纳米瞬态共晶液相结合表面氧化制备陶瓷连接件的方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096582A (ja) * 1983-10-26 1985-05-30 三井造船株式会社 多孔質セラミツクス部材の接合方法
CN101759435A (zh) * 2009-03-09 2010-06-30 宁波大学 一种基于新型纳米四组份烧结助剂的碳化硅陶瓷
CN102145978A (zh) * 2010-02-10 2011-08-10 中国科学院上海硅酸盐研究所 用于连接SiC陶瓷的玻璃焊料、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096582A (ja) * 1983-10-26 1985-05-30 三井造船株式会社 多孔質セラミツクス部材の接合方法
CN101759435A (zh) * 2009-03-09 2010-06-30 宁波大学 一种基于新型纳米四组份烧结助剂的碳化硅陶瓷
CN102145978A (zh) * 2010-02-10 2011-08-10 中国科学院上海硅酸盐研究所 用于连接SiC陶瓷的玻璃焊料、制备方法及应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Efforts on large scale production of NITE-SiC/SiC composites;Joon-Soo Park等;《Journal of Nuclear Materials》;20071231;全文 *
Microstructural evolution analysis of NITE SiC/SiC composite using TEM examination and dual-ion irradiation;H.Kishimoto等;《Journal of nuclear Materials》;20071231;全文 *
Microstructural optimization of high-temperature SiC/SiC composites by NITE process;K.Shimoda等;《Journal of nuclear Materials》;20091231;全文 *
The influence of sintering additives on the irradiation resistance of NITE SiC;TakaakiKoyanagi等;《Journal of Nuclear Materials》;20111231;第417卷;全文 *
基于核应用下碳化硅陶瓷及其复合材料的连接研究进展;韩绍华等;《硅酸盐通报》;20160531;第35卷(第5期);1520-1522 *
碳化硅陶瓷的活化烧结与烧结助剂;黄智恒等;《材料科学与工艺》;20040228;第12卷(第1期);全文 *

Also Published As

Publication number Publication date
CN109437910A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109437910B (zh) 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用
CN112608164B (zh) 连接钎料及其制备方法、碳化硅包壳连接方法
CN108147671B (zh) 一种用于连接氮化硅陶瓷的微晶玻璃钎料及其制备方法
CN109437957A (zh) 一种纳米浸渍瞬态共晶相结合化学气相渗透实现SiC陶瓷的连接方法及制备的陶瓷连接件
KR101960264B1 (ko) 잔류응력이 없는 탄화규소 접합체 및 그 제조방법
CN112570832B (zh) 碳化硅包壳及其钎焊连接方法
CN112851388A (zh) 一种碳化硅陶瓷连接件及其连接方法和应用
CN101890590A (zh) 一种用于钛合金与陶瓷或陶瓷基复合材料钎焊的复合钎料及用其进行钎焊的方法
CN109516828B (zh) 一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用
CN113600957A (zh) 一种复合中间层及其钎焊碳化硼复合陶瓷与钛合金的方法
CN105643038A (zh) 钎焊多孔Si3N4陶瓷与Invar合金的方法
CN114920575B (zh) 一种高性能陶瓷连接件及其制备方法和应用
CN104711457B (zh) 一种高温焊料及其应用
CN106588064B (zh) 碳/碳复合材料与镍基高温合金的焊料及连接方法
CN111454063B (zh) 一种具有致密连接层的陶瓷连接件及其连接方法和应用
CN115490530B (zh) 一种液相挤出策略制备陶瓷连接件的方法及其应用
CN109369208B (zh) 一种碳化硅连接用钎料及其制备方法和应用
CN112062590A (zh) 一种陶瓷连接件及其制备方法和应用
CN114195542A (zh) 一种利用原位生成钙长石的微晶玻璃焊料连接碳化硅陶瓷的方法
CN108085783B (zh) 高韧性碳化硅及其制备方法
CN116143539B (zh) 一种碳化硅复合材料/高温合金的连接件及其连接方法与应用
CN115849933B (zh) 一种碳化硅陶瓷连接件及其制备方法和应用
CN115974574B (zh) 一种碳化硅复合材料和高温合金的连接件及其连接方法与应用
CN117945779A (zh) 一种耐水热腐蚀的涂覆钇铝石榴石层的碳化硅陶瓷连接件及其制备方法和应用
CN115246740B (zh) 一种二硼化锆基陶瓷与金属的连接方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant