CN109516828B - 一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用 - Google Patents
一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用 Download PDFInfo
- Publication number
- CN109516828B CN109516828B CN201811196379.2A CN201811196379A CN109516828B CN 109516828 B CN109516828 B CN 109516828B CN 201811196379 A CN201811196379 A CN 201811196379A CN 109516828 B CN109516828 B CN 109516828B
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- ceramic
- sic
- carbide ceramic
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/005—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/008—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/06—Ceramics; Glasses; Refractories
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/08—Non-oxidic interlayers
- C04B2237/083—Carbide interlayers, e.g. silicon carbide interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于非氧化物陶瓷连接技术领域,公开了一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷,该方法将连接材料聚碳硅烷、硅粉和含碳有机物,加入溶剂和球磨介质经混料干燥后,将得到的混合粉体与溶剂混合,经超声分散制备得到浆料,将浆料涂于连接母材SiC陶瓷表面,在真空条件下,升温至1000~1300℃并保温Ⅰ,再在真空或者氩气条件下,升温至1400~1600℃保温Ⅱ,实现SiC陶瓷材料的致密连接,制得具有致密连接层的SiC陶瓷,该陶瓷的连接层厚度为1~20μm,室温下剪切强度为80~150MPa,在1200℃下的剪切强度为100~200MPa,连接层的漏率为0~1×10‑5Pa·L/s。
Description
技术领域
本发明属于非氧化物陶瓷连接技术领域,更具体地,涉及一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅(SiC)陶瓷和应用。
背景技术
Si3N4、SiC、AlN等非氧化物陶瓷一般都具有耐高温、高硬度、抗磨损、耐腐蚀、高温强度高等优良特性,是汽车、机械、冶金和宇航等部门开发新技术的关键材料。此外,一些非氧化物陶瓷因为具有极低的中子吸收截面,比如SiC,可作为核反应堆极佳的候选核材料。
然而,由于SiC作为一种非氧化物陶瓷材料,其脆性导致加工性能差,制造尺寸大而形状复杂的零件较为困难,因此需要通过陶瓷之间的连接技术来制取形状复杂的零部件。目前应用前景较好的连接方式有前驱体连接,因为,前驱体连接条件不需高温高压,但是,前驱体连接存在体积収缩,连接件易形成孔洞等缺陷,考虑到核用背景,不能降低SiC陶瓷的抗辐照和影响其中子吸收情况,因此,不能添加活性添加剂;目前主要解决办法是加入惰性填料来减少体积收缩。然而,惰性填料的加入不利于连接层的致密化。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种新型核用碳化硅陶瓷的连接方法。该方法通过往前驱体中加入硅粉和含碳有机物,整个过程在真空条件下,前驱体裂解以及含碳有机物的分解后,继续在真空环境下升温,实现掺杂硅粉和有机物中碳完全反应生成SiC,因此,整个连接层的成分与木材一致,不存在热膨胀系数不匹配产生的应力集中问题,并且具有极好的耐高温性能。
本发明的另一目的在于提供上述方法制备的碳化硅陶瓷。
本发明的再一目的在于提供上述碳化硅陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种新型核用碳化硅陶瓷的连接方法,包括如下具体步骤:
S1.将连接材料聚碳硅烷、硅粉和含碳有机物,加入溶剂和球磨介质经混料、干燥后,得到混合粉体;
S2.将混合粉体与溶剂混合,经超声分散制备得到浆料,将浆料均匀涂于连接母材SiC陶瓷表面,在真空条件下,升温至1000~1300℃并保温Ⅰ,再在真空或者氩气条件下,升温至1400~1600℃保温Ⅱ,实现SiC陶瓷材料的致密连接,制得具有致密连接层的SiC陶瓷。
优选地,步骤S1中所述硅粉的纯度为99.99~99.9999%,所述硅粉的粒径为10~100nm。
优选地,步骤S2中所述SiC陶瓷的纯度为99.999~99.9999%,所述SiC陶瓷的致密度为99.9~99.9999%。
优选地,步骤S1中所述溶剂无水乙醇或丙酮;所述球磨介质为Si3N4球或SiC球;步骤S2中所述溶剂为无水乙醇或丙酮。
优选地,步骤S1中所述混合的时间为4~18h;所述的超声的时间为10~30min。
优选地,步骤S1中所述聚碳硅烷:硅粉:含碳有机物的质量比为(10~18):(5~1):(5~1),所述含碳有机物为环氧树脂或酚醛树脂。
更为优选地,所述聚碳硅烷:硅粉:含碳有机物的质量比为3:1:1。
优选地,步骤S2中所述升温至1000~1300℃的速率为5~20℃/min,所述升温至1400~1600℃的速率为5~10℃/min,所述保温Ⅰ的时间为1~30min,所述保温Ⅱ的时间为1~4h。
所述方法制备得到具有致密连接层的SiC陶瓷,所述SiC陶瓷的连接层厚度为1~20μm,其在室温下剪切强度为80~150MPa,在1200℃高温下的剪切强度为100~200MPa,所述SiC陶瓷的连接层的漏率为0~1×10-5Pa·L/s。
所述的具有致密连接层的SiC陶瓷在核辐照防护领域中的应用。由于核燃料是用来辐射释放中子,碳化硅可以用来包裹核燃料,在核反应堆中对核辐照起到防护作用。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过往前驱体中加入硅粉和含碳有机物,整个过程在真空条件下,前驱体裂解以及含碳有机物的分解后,继续在真空环境下升温,实现掺杂硅粉和有机物中碳完全反应生成SiC,因此,整个连接层的成分与母材一致,不存在热膨胀系数不匹配产生的应力集中问题,并且具有极好的耐高温性能。
2.本发明用聚碳硅烷、硅粉和含碳有机物混合的连接材料对SiC母材连接,反应生成SiC的连接层与母材成分一致,接头不存在热膨胀系数不匹配引起的热应力;连接层与母材的成分均为SiC,接头具有极好的耐高温性能和抗辐照性能。
3.本发明连接过程无需加压就可实现SiC陶瓷的连接。
附图说明
图1为实施例1中具有致密连接层的SiC陶瓷的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以SiC陶瓷为连接母材,以聚碳硅烷(产率为65%)、硅粉(粒径50nm)和环氧树脂为连接材料,按聚碳硅烷、硅粉和环氧树脂的质量比为12:3:5混合,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合8h,干燥后,得到混合均匀的混合粉体;
2.将混合粉体与无水乙醇混合经超声分散10min后制备得到浆料,将浆料均匀涂于陶瓷SiC表面,将连接样品在真空下先以15℃/min升温到1200℃保温10min;继续在真空条件下,以5℃/min升温至1500℃保温2h,实现SiC陶瓷材料的致密连接,制得具有致密连接层的SiC陶瓷。
图1为本实施例具有致密连接层的SiC陶瓷的SEM照片,从图1中可知,得到SiC陶瓷的连接层厚度为10μm,连接层致密无孔洞缺陷,对连接好样品进行常温和1200℃高温剪切强度测试以及气密性检测。本实施例制备的SiC陶瓷的连接层致密,室温下剪切强度为150MPa,在1200℃高温下的剪切强度为180MPa,SiC陶瓷的连接层的漏率为1×10-7Pa·L/s。
实施例2
将聚碳硅烷、硅粉和环氧树脂按质量比为17:1:2进行配料,硅粉粒径为80nm,聚碳硅烷产率为80%,按照实施例1方法实现SiC陶瓷的连接,其中首先在真空下升温至1000℃保温30min;然后在氮气气氛下升温至1600℃保温4h,制得具有致密连接层的SiC陶瓷。
本实施例制备的SiC陶瓷的连接层致密,连接层厚度为20μm,室温下剪切强度为130MPa,在1200℃高温下的剪切强度为160MPa,SiC陶瓷的连接层的漏率为1×10-7Pa·L/s。
实施例3
将聚碳硅烷、硅粉和环氧树脂按质量比为2:1:1进行配料,硅粉粒径为20nm,聚碳硅烷产率为60%,按照实施例1方法实现SiC陶瓷的连接,其中首先在真空下升温至1200℃保温30min;然后在氮气气氛下升温至1600℃保温4h,制得具有致密连接层的SiC陶瓷。
本实施例制备的SiC陶瓷的连接层致密,连接层厚度为10μm,室温下剪切强度为90MPa,在1200℃高温下的剪切强度为120MPa,SiC陶瓷的连接层的漏率为1×10-6Pa·L/s。
实施例4
将聚碳硅烷、硅粉和环氧树脂按质量比为14:3:3进行配料,硅粉粒径为50nm,聚碳硅烷产率为70%,按照实施例1方法实现SiC陶瓷的连接,其中首先在真空下,升温至1000℃保温30min;然后在氮气气氛下,升温至1400℃保温4h,制得具有致密连接层的SiC陶瓷。
本实施例制备的SiC陶瓷的连接层致密,连接层厚度为20μm,室温下剪切强度为100MPa,在1200℃高温下的剪切强度为140MPa,SiC陶瓷的连接层的漏率为1×10-7Pa·L/s。
实施例5
将聚碳硅烷、硅粉和环氧树脂按质量比为17:1:2进行配料,硅粉粒径为100nm,聚碳硅烷产率为80%,按照实施例1方法实现SiC陶瓷的连接,其中首先在真空下升温至1300℃保温30min;然后在氮气气氛下升温至1500℃保温3h,制得具有致密连接层的SiC陶瓷。
本实施例制备的SiC陶瓷的连接层致密,连接层厚度为20μm,室温下剪切强度为140MPa,在1200℃高温下的剪切强度为150MPa,SiC陶瓷的连接层的漏率为1×10-7Pa·L/s。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (8)
1.一种核用碳化硅陶瓷的连接方法,其特征在于,包括如下具体步骤:
S1.将连接材料聚碳硅烷、硅粉和含碳有机物,加入溶剂和球磨介质经混料、干燥后,得到混合粉体;所述聚碳硅烷:硅粉:含碳有机物的质量比为(10~18):(5~1):(5~1),所述含碳有机物为环氧树脂或酚醛树脂;所述硅粉的纯度为99.99~99.9999%,所述硅粉的粒径为10~100nm;
S2.将混合粉体与溶剂混合,经超声分散制备得到浆料,将浆料均匀涂于连接母材SiC陶瓷表面,在真空条件下,升温至1000~1300℃并保温Ⅰ,再在真空或者氩气条件下,升温至1400~1600℃保温Ⅱ,实现SiC陶瓷材料的致密连接,制得具有致密连接层的SiC陶瓷。
2.根据权利要求1所述的核用碳化硅陶瓷的连接方法,其特征在于,步骤S2中所述SiC陶瓷的纯度为99.999~99.9999%,所述SiC陶瓷的致密度为99.9~99.9999%。
3.根据权利要求1所述的核用碳化硅陶瓷的连接方法,其特征在于,步骤S1和S2中所述溶剂为无水乙醇或丙酮;步骤S1中所述球磨介质为Si3N4球或SiC球。
4.根据权利要求1所述的核用碳化硅陶瓷的连接方法,其特征在于,步骤S1中所述混合的时间为4~18h;所述的超声的时间为10~30min。
5.根据权利要求1所述的核用碳化硅陶瓷的连接方法,其特征在于,所述聚碳硅烷:硅粉:含碳有机物的质量比为3:1:1。
6.根据权利要求1所述的核用碳化硅陶瓷的连接方法,其特征在于,步骤S2中所述升温至1000~1300℃的速率为5~20℃/min,所述升温至1400~1600℃的速率为5~10℃/min,所述保温Ⅰ的时间为1~30min,所述保温Ⅱ的时间为1~4h。
7.根据权利要求1-6任一项所述方法制备得到具有致密连接层的碳化硅陶瓷,其特征在于,所述碳化硅陶瓷的连接层厚度为1~20μm,其在室温下剪切强度为80~150MPa,在1200℃高温下的剪切强度为100~200MPa,所述碳化硅陶瓷的连接层的漏率为0~1×10- 5Pa·L/s。
8.权利要求7所述的具有致密连接层的碳化硅陶瓷在核辐照防护领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811196379.2A CN109516828B (zh) | 2018-10-15 | 2018-10-15 | 一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811196379.2A CN109516828B (zh) | 2018-10-15 | 2018-10-15 | 一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109516828A CN109516828A (zh) | 2019-03-26 |
CN109516828B true CN109516828B (zh) | 2021-03-30 |
Family
ID=65772574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811196379.2A Active CN109516828B (zh) | 2018-10-15 | 2018-10-15 | 一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109516828B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111454063B (zh) * | 2020-04-03 | 2022-09-09 | 广东工业大学 | 一种具有致密连接层的陶瓷连接件及其连接方法和应用 |
CN111647386B (zh) * | 2020-06-17 | 2022-02-18 | 中国民航大学 | 碳化硅纳米线原位生长增韧陶瓷前驱体型高温胶制备方法 |
CN111960844B (zh) * | 2020-07-31 | 2022-08-02 | 广东工业大学 | 一种陶瓷连接件及其制备方法和应用 |
CN113072389B (zh) * | 2021-04-09 | 2022-10-18 | 武汉工程大学 | 一种氧化物陶瓷的低温连接方法 |
CN114920575B (zh) * | 2022-04-21 | 2023-05-05 | 广东工业大学 | 一种高性能陶瓷连接件及其制备方法和应用 |
CN115849933B (zh) * | 2022-12-27 | 2024-04-26 | 广东工业大学 | 一种碳化硅陶瓷连接件及其制备方法和应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101224993A (zh) * | 2008-01-29 | 2008-07-23 | 中国人民解放军国防科学技术大学 | SiC基复合材料构件及其在线连接制备方法 |
CN102145978A (zh) * | 2010-02-10 | 2011-08-10 | 中国科学院上海硅酸盐研究所 | 用于连接SiC陶瓷的玻璃焊料、制备方法及应用 |
CN102219518A (zh) * | 2011-03-31 | 2011-10-19 | 浙江立泰复合材料有限公司 | 碳化硼碳化硅复相陶瓷及其制备方法 |
CN103011874A (zh) * | 2012-12-07 | 2013-04-03 | 西安鑫垚陶瓷复合材料有限公司 | 碳/碳化硅复合材料构件的连接方法 |
CN103922776A (zh) * | 2014-04-01 | 2014-07-16 | 中国人民解放军国防科学技术大学 | 碳化硅纤维增强碳化硅复合材料吸波陶瓷及其制备方法 |
CN104924412A (zh) * | 2015-05-26 | 2015-09-23 | 中国科学院长春光学精密机械与物理研究所 | 反应烧结碳化硅陶瓷素坯的连接方法 |
CN105085925A (zh) * | 2015-09-28 | 2015-11-25 | 中国人民解放军国防科学技术大学 | 一种可热固化交联的聚碳硅烷的合成方法 |
CN105130445A (zh) * | 2015-09-15 | 2015-12-09 | 哈尔滨工业大学 | 碳化硅基复合陶瓷生坯连接后共烧结的方法 |
CN107488046A (zh) * | 2016-06-12 | 2017-12-19 | 中国科学院宁波材料技术与工程研究所 | 用于连接碳化硅陶瓷的连接材料以及连接碳化硅陶瓷的方法 |
CN108213771A (zh) * | 2018-01-15 | 2018-06-29 | 合肥工业大学 | 一种用于真空中钎焊碳化硅陶瓷的复合钎料及其钎焊工艺 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2047636C1 (ru) * | 1992-07-14 | 1995-11-10 | Малое предприятие "Специальное конструкторское бюро N 7" | Способ соединения керамических и композиционных материалов |
JP3017372B2 (ja) * | 1993-03-03 | 2000-03-06 | 東芝セラミックス株式会社 | セラミック接合用コンパウンド |
US5407504A (en) * | 1993-11-18 | 1995-04-18 | The United States Of America As Represented By The Secretary Of The Army | Method for joining ceramic to ceramic or to carbon |
US10293424B2 (en) * | 2015-05-05 | 2019-05-21 | Rolls-Royce Corporation | Braze for ceramic and ceramic matrix composite components |
-
2018
- 2018-10-15 CN CN201811196379.2A patent/CN109516828B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101224993A (zh) * | 2008-01-29 | 2008-07-23 | 中国人民解放军国防科学技术大学 | SiC基复合材料构件及其在线连接制备方法 |
CN102145978A (zh) * | 2010-02-10 | 2011-08-10 | 中国科学院上海硅酸盐研究所 | 用于连接SiC陶瓷的玻璃焊料、制备方法及应用 |
CN102219518A (zh) * | 2011-03-31 | 2011-10-19 | 浙江立泰复合材料有限公司 | 碳化硼碳化硅复相陶瓷及其制备方法 |
CN103011874A (zh) * | 2012-12-07 | 2013-04-03 | 西安鑫垚陶瓷复合材料有限公司 | 碳/碳化硅复合材料构件的连接方法 |
CN103922776A (zh) * | 2014-04-01 | 2014-07-16 | 中国人民解放军国防科学技术大学 | 碳化硅纤维增强碳化硅复合材料吸波陶瓷及其制备方法 |
CN104924412A (zh) * | 2015-05-26 | 2015-09-23 | 中国科学院长春光学精密机械与物理研究所 | 反应烧结碳化硅陶瓷素坯的连接方法 |
CN105130445A (zh) * | 2015-09-15 | 2015-12-09 | 哈尔滨工业大学 | 碳化硅基复合陶瓷生坯连接后共烧结的方法 |
CN105085925A (zh) * | 2015-09-28 | 2015-11-25 | 中国人民解放军国防科学技术大学 | 一种可热固化交联的聚碳硅烷的合成方法 |
CN107488046A (zh) * | 2016-06-12 | 2017-12-19 | 中国科学院宁波材料技术与工程研究所 | 用于连接碳化硅陶瓷的连接材料以及连接碳化硅陶瓷的方法 |
CN108213771A (zh) * | 2018-01-15 | 2018-06-29 | 合肥工业大学 | 一种用于真空中钎焊碳化硅陶瓷的复合钎料及其钎焊工艺 |
Non-Patent Citations (4)
Title |
---|
Joining SiC-based ceramics and composites with preceramic polymers;Pallo Colombo等;《The Amercan Ceramic Society》;20021231;全文 * |
X-xay Tomography Study on Green State Joining of Silicon Carbide Using Polymer Precursors;JingZheng等;《J.Am.Ceram.Soc》;20010930;第84卷(第9期);全文 * |
不同陶瓷先驱体的裂解过程及粘接性能;刘洪丽;《材料科学与工程学报》;20081231;第26卷(第6期);全文 * |
基于核应用下碳化硅陶瓷及其复合材料的连接研究进展;韩绍华等;《硅酸盐通报》;20160531;第35卷(第5期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109516828A (zh) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109516828B (zh) | 一种新型核用碳化硅陶瓷的连接方法及其制备的碳化硅陶瓷和应用 | |
CN109400167B (zh) | 一种具有致密连接层的SiC陶瓷及其制备方法和应用 | |
CN109053206B (zh) | 一种短纤维增强取向max相陶瓷基复合材料及制备方法 | |
CN112851388A (zh) | 一种碳化硅陶瓷连接件及其连接方法和应用 | |
CN112608164B (zh) | 连接钎料及其制备方法、碳化硅包壳连接方法 | |
CN109437910B (zh) | 一种纳米浸渍瞬态共晶相连接SiC陶瓷的方法及其制备的陶瓷和应用 | |
CN109437957A (zh) | 一种纳米浸渍瞬态共晶相结合化学气相渗透实现SiC陶瓷的连接方法及制备的陶瓷连接件 | |
CN112759410A (zh) | 碳化硅陶瓷连接方法及碳化硅包壳 | |
CN112142477B (zh) | 一种纳米木质素-氮化硅基陶瓷及其制备方法 | |
CN115180960B (zh) | 一种氮化硅陶瓷烧结体及其制备方法 | |
CN105967691A (zh) | 热压烧结制备SiC/C陶瓷复合材料的方法 | |
CN111410548A (zh) | 一种SiB6改性的自愈合SiCf/SiC复合材料制备方法 | |
CN112374902A (zh) | 一种高致密化SiCf/SiC包壳复合管材的制备方法 | |
CN110256093A (zh) | 一种降低熔渗工艺制备SiCf/SiC复合材料中残余硅含量的方法 | |
CN107746282B (zh) | 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法 | |
CN115536403A (zh) | 一种高韧氮化硅陶瓷材料及其制备方法 | |
CN113860902B (zh) | 陶瓷连接方法及陶瓷连接件 | |
CN114920575A (zh) | 一种高性能陶瓷连接件及其制备方法和应用 | |
CN116751036A (zh) | 一种预应力氧化铝陶瓷复合材料及其制备方法 | |
CN102674874A (zh) | 一种ZrC-SiC-LaB6三元超高温陶瓷复合材料及其制备方法 | |
CN111825454A (zh) | 机械密封用层状结构陶瓷环的制备方法 | |
CN104844214B (zh) | 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法 | |
CN111454063B (zh) | 一种具有致密连接层的陶瓷连接件及其连接方法和应用 | |
CN108585907B (zh) | 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料的制备方法 | |
CN111747752A (zh) | 一种表面改性的反应烧结碳化硅陶瓷及制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |