CN109402580B - 一种超致密Cu(OH)2纳米线的制备方法及产品 - Google Patents

一种超致密Cu(OH)2纳米线的制备方法及产品 Download PDF

Info

Publication number
CN109402580B
CN109402580B CN201811208448.7A CN201811208448A CN109402580B CN 109402580 B CN109402580 B CN 109402580B CN 201811208448 A CN201811208448 A CN 201811208448A CN 109402580 B CN109402580 B CN 109402580B
Authority
CN
China
Prior art keywords
zno
seed layer
nanowire
catalytic
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811208448.7A
Other languages
English (en)
Other versions
CN109402580A (zh
Inventor
廖广兰
林建斌
谭先华
方涵
史铁林
汤自荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201811208448.7A priority Critical patent/CN109402580B/zh
Publication of CN109402580A publication Critical patent/CN109402580A/zh
Application granted granted Critical
Publication of CN109402580B publication Critical patent/CN109402580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明属于微纳制造技术领域,并公开了一种超致密Cu(OH)2纳米线的制备方法及产品。该方法包括,S1、ZnO种子层制备:在基底上沉积一层ZnO薄膜;S2、ZnO催化纳米棒的制备:在所述沉积有ZnO的基底置于Zn(NO3)2·6(H2O)和C6H12N4混合生长液中;S3、Cu种子层制备:在所述ZnO催化纳米棒表面沉积一层Cu种子层;S4、生长纳米线:将沉积有Cu种子层的基底置于NaOH和(NH4)2S2O8的混合溶液中,以生长超致密Cu(OH)2纳米线。本发明还公开以一种超致密Cu(OH)2纳米线。本发明制备形成的Cu(OH)2纳米线的形貌具有质量更高、更加致密、比表面积大的特性。

Description

一种超致密Cu(OH)2纳米线的制备方法及产品
技术领域
本发明属于湿度传感器技术领域,更具体地,涉及一种超致密Cu(OH)2纳米线的制备方法及产品。
背景技术
微纳米技术是一项当今世界迅猛发展起来的高新技术之一,也是当代科学发展的一个重要标志,它与通信技术、计算机技术一起构成信息产业的三大支柱。微电子机械系统技术是建立在微米/纳米基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。
近年来,以铜为核心的纳米材料(Cu(OH)2,CuO,Cu等),因其特殊的物理和化学性质而在光电设备、催化剂和超导材料等方面广泛应用。其中, Cu(OH)2是一种重要的层状材料,广泛应用于能量储存、传感器、催化等方面。由于纳米Cu(OH)2的表面效应和小尺寸效应使其具有更高的表面活性和触杀性。此外,Cu(OH)2还是制备铜氧化物纳米材料的一种重要前驱物,对于传感器而言,纳米结构对其性能影响显著,更大的比表面积的微纳复合结构可以增加与目标气体分子的接触位点,从而制备出超灵敏度的传感器。而超致密的纳米线能够提供更多的接触位点,进行高性能的气体传感。因此,制备超致密纳米线是提高传感性能的重要途径之一。
目前制备的Cu(OH)2纳米线普遍较为稀疏。对于传感器而言,纳米结构的稀疏性对其性能影响显著,教稀疏的微纳复合结构与目标气体分子的接触位点较低,所制备的传感器反应不够迅速。另一方面,现有技术制备 Cu(OH)2纳米线时,对其的生长速度和质量难以把控,以至于其生长时间长,所获得的纳米线质量不高。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种超致密 Cu(OH)2纳米线的制备方法,其通过利用ZnO作为纳米线生长过程中的纳米线催化层以及该纳米线催化层为后续Cu种子层生长Cu(OH)2纳米线提供更多的接触位点的作用机理,创造性的将ZnO种子层转化成ZnO催化纳米棒从而获得超亲水的流道结构,一方面在ZnO催化纳米棒的催化作用下,纳米线生长液中的Cu2+和-OH有更多的接触位点以加速Cu种子层生长 Cu(OH)2纳米的速度,另一方面ZnO催化纳米棒的流道结构进一步增大了 Cu2+和-OH接触位点,从而使得所获得的Cu(OH)2纳米线的形貌具有质量更高、更加致密、比表面积大的特性。
为实现上述目的,本发明提供了一种超致密Cu(OH)2纳米线的制备方法,包括如下步骤:
S1、ZnO种子层制备:在基底上沉积一层ZnO薄膜,用于后续生长ZnO 催化纳米棒;
S2、ZnO催化纳米棒的制备:在所述沉积有ZnO的基底置于 Zn(NO3)2·6(H2O)和C6H12N4混合液中,以在所述ZnO种子层上生长ZnO 催化纳米棒,其中,Zn(NO3)2·6(H2O)和C6H12N4溶液的摩尔质量浓度配比为1:5~5:1;
S3、Cu种子层制备:在所述ZnO催化纳米棒表面沉积一层Cu种子层;
S4、生长纳米线:将所述S3中沉积有Cu种子层的基底置于摩尔质量浓度配比为50:1~5:1的NaOH和(NH4)2S2O8混合溶液中,以在ZnO催化纳米棒的催化作用下,Cu2+和-OH有更多的接触位点以加速Cu种子层生长 Cu(OH)2纳米的速度从而获得质量更好的超致密Cu(OH)2纳米线。
进一步的,所述ZnO种子层的沉积厚度为1μm~30μm,优选的,所述 ZnO种子层的沉积厚度为15μm。
进一步的,步骤S2中所述Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比为1:1。
进一步的,所述ZnO催化纳米棒的生长时间为10min~60min。
进一步的,所述Cu种子层的沉积厚度为0.025μm~1μm,优选的,所述Cu种子层的沉积厚度为0.2μm。
进一步的,所述步骤S4中NaOH和(NH4)2S2O8的摩尔质量浓度配比为 25:1。
进一步的,所述超致密Cu(OH)2纳米线的生长时间为0.5min~60min。
进一步的,步骤S1和S3中采用磁控溅射的方式进行沉积ZnO种子层和Cu种子层。
按照本发明的另一个方面,提供一种超致密Cu(OH)2纳米线,上述的制备方法制得。
按照本发明的另一个方面,还提供一种超致密Cu(OH)2纳米线在制作湿度传感器的用途。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明的制备方法,其通过利用ZnO作为纳米线生长过程中的纳米线催化层以及该纳米线催化层为后续Cu种子层生长Cu(OH)2纳米线提供更多的接触位点的作用机理,创造性的将ZnO种子层转化成ZnO催化纳米棒从而获得超亲水的流道结构,一方面在ZnO催化纳米棒的催化作用下,纳米线生长液中的Cu2+和-OH有更多的接触位点以加速Cu种子层生长 Cu(OH)2纳米的速度,另一方面ZnO催化纳米棒的流道结构进一步增大了 Cu2+和-OH接触位点,从而使得所获得的Cu(OH)2纳米线的形貌具有质量更高、更加致密、比表面积大的特性。
(2)本发明的制备方法,采用磁控溅射的方式对基底进行所述ZnO种子层的制备,并精确控制ZnO种子层的厚度为1μm~30μm,以使得ZnO种子层能够均匀填充整个基底的表面,从而能够通过控制ZnO催化纳米棒的生长形貌老控制Cu(OH)2纳米线的形貌,生成的Cu(OH)2纳米线结构具有超致密性和超亲水性,此空间网状结构的纳米线具有丰富的毛细管道,可充分吸附选择性气体,实现传感。
(3)本发明的制备方法,采用磁控溅射的方式对基底进行Cu种子层的沉积,从而实现精确控制Cu种子层的沉积厚度,其中,Cu种子层的沉积厚度小于纳米线催化层的厚度,以使得Cu种子层能够充分反应且能填充整个基底的表面又不腐蚀基底,从而生成的Cu(OH)2纳米线结构具有超致密性和超亲水性,此空间网状结构的纳米线具有丰富的毛细管道,可充分吸附选择性气体,实现传感。
附图说明
图1(a)-(d)为本发明实施例Cu(OH)2纳米线制备流程图;
图2为本发明实施例ZnO纳米棒结构的扫描电子显微镜(SEM)表征图;
图3为本发明实施例Cu(OH)2纳米线结构的扫描电子显微镜(SEM) 表征图;
图4为本发明实施例ZnO纳米棒结构的扫描电子显微镜(SEM)表征图;
图5为本发明实施例Cu(OH)2纳米线结构的扫描电子显微镜(SEM) 表征图;
图6为本发明实施例ZnO纳米棒结构的扫描电子显微镜(SEM)表征图;
图7为本发明实施例Cu(OH)2纳米线结构的扫描电子显微镜(SEM) 表征图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明基于超致密Cu(OH)2纳米线的制备方法,其基本步骤是:在基底溅射一层ZnO种子层,溶液法生长ZnO纳米棒,再在ZnO纳米棒上沉积一层Cu种子层,然后将沉积有Cu种子层的基底水平放置在NaOH和 (NH4)2S2O8的混合溶液中,以在Cu种子层上生长超致密超亲水Cu(OH)2纳米线。
如1所示,本发明的实施例提供一种超致密Cu(OH)2纳米线包括基底1、设于所述基底上面种子层2、纳米棒3和种子层4以及所述种子层生长的纳米线5。本发明的一种超致密Cu(OH)2纳米线,具有制作工艺简单、材料用量少、成本低。
本发明的实施例提供一种超致密Cu(OH)2纳米线的制备方法,包括以下步骤:
(1)催化层的制备:在基底采用磁控溅射的方式沉积一层厚度为ZnO 种子层,然后将沉积有ZnO种子层的基底置于Zn(NO3)2·6(H2O)和C6H12N4的混合液中用以生长ZnO纳米棒催化层,其中,Zn(NO3)2·6(H2O)和 C6H12N4的摩尔质量浓度配比为1:5~5:1,生长时间为10~60min,样品倾斜倒置在溶液中,溶液温度为室温;
(2种子层的制备:在基底采用磁控溅射的方式沉积一层厚度为 0.025μm~1μm的Cu种子层,用于后续生长超亲水纳米线。其中,种子层 ZnO只能采用射频模式进行溅射,Cu种子层制备采用直流模式或射频模式,功率为50W~500W,溅射真空度为0.1Pa~3Pa。
(3)纳米线的制备:采用溶液法生长Cu(OH)2纳米线,,将沉积有Cu 种子层的基底水平放置在NaOH和(NH4)2S2O8的混合溶液中,以在Cu种子层上进行超亲水Cu(OH)2纳米线,其中,NaOH和(NH4)2S2O8的摩尔质量浓度配比为50:1~5:1,生长时间为0.5min~60min,样品水平放置在溶液中,溶液温度为室温,从而获得超致密超亲水纳米线。
本发明的一种超致密Cu(OH)2纳米线的制备方法,其通过利用ZnO作为纳米线生长过程中的纳米线催化层以及该纳米线催化层为后续Cu种子层生长Cu(OH)2纳米线提供更多的接触位点的作用机理,创造性的将ZnO 种子层转化成ZnO催化纳米棒从而获得超亲水的流道结构,一方面在ZnO 催化纳米棒的催化作用下,纳米线生长液中的Cu2+和-OH有更多的接触位点以加速Cu种子层生长Cu(OH)2纳米的速度,另一方面ZnO催化纳米棒的流道结构进一步增大了Cu2+和-OH接触位点,从而使得所获得的Cu(OH)2纳米线的形貌具有质量更高、更加致密、比表面积大的特性。
其中本发明采用磁控溅射的方式对基底进行所述ZnO种子层的制备,并精确控制ZnO种子层的厚度为1μm~30μm,以使得ZnO种子层能够均匀填充整个基底的表面,从而能够通过控制ZnO催化纳米棒的生长形貌老控制Cu(OH)2纳米线的形貌,生成的Cu(OH)2纳米线结构具有超致密性和超亲水性,此空间网状结构的纳米线具有丰富的毛细管道,可充分吸附选择性气体,实现传感。更进一步的,本发明通过采用磁控溅射的方式对基底进行Cu种子层的沉积,从而实现精确控制Cu种子层的沉积厚度,其中, Cu种子层的沉积厚度小于纳米线催化层的厚度,以使得Cu种子层能够充分反应且能填充整个基底的表面又不腐蚀基底,从而生成的Cu(OH)2纳米线结构具有超致密性和超亲水性,此空间网状结构的纳米线具有丰富的毛细管道,可充分吸附选择性气体,实现传感。
实施例1
本实施例的一种超致密Cu(OH)2纳米线的制备方法,该方法的具体步骤如下:
(1)ZnO种子层制备
在基底1采用溅射的方式沉积一层ZnO种子层,采用功率为50W,真空度为0.1Pa的射频磁控溅射的方式在基底上表面沉积一层厚度为1μm的 ZnO种子层2。
(2)ZnO纳米棒的制备
再在Zn(NO3)2·6(H2O)和C6H12N4混合生长液中生长ZnO纳米棒, Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比为5:1,以在ZnO种子层上生长ZnO纳米棒。
如图2所示,所获得超致密超亲水ZnO纳米棒的扫描电子显微镜(SEM) 表征图。
(3)Cu种子层的制备
继续采用溅射的方式沉积一层Cu种子层,用于后续生长湿敏层超亲水纳米线。采用功率为50W,真空度为0.1Pa的直流磁控溅射的方式在基底上表面沉积一层厚度为0.025μm的Cu种子层3。
(4)Cu(OH)2纳米线的制备
在常温下,将沉积有Cu种子层的基底水平放置在NaOH和(NH4)2S2O8的混合溶液中,NaOH和(NH4)2S2O8的摩尔质量浓度配比为50:1,以在Cu 种子层上生长超致密超亲水Cu(OH)2纳米线。
如图3所示,所获得超致密超亲水Cu(OH)2纳米线的扫描电子显微镜 (SEM)表征图。
实施例2
本实施例的一种超致密Cu(OH)2纳米线的制备方法,该方法的具体步骤如下:
(1)ZnO种子层制备
在基底1采用溅射的方式沉积一层ZnO种子层,采用功率为200W,真空度为0.1Pa的射频磁控溅射的方式在基底上表面沉积一层厚度为15μm 的ZnO种子层2。
(2)ZnO纳米棒的制备
再在Zn(NO3)2·6(H2O)和C6H12N4混合生长液中生长ZnO纳米棒, Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比为1:1,以在ZnO种子层上生长ZnO纳米棒。
如图4所示,所获得超致密超亲水ZnO纳米棒的扫描电子显微镜(SEM) 表征图。
(3)Cu种子层的制备
继续采用溅射的方式沉积一层Cu种子层,用于后续生长湿敏层超亲水纳米线。采用功率为200W,真空度为0.5Pa的直流磁控溅射的方式在基底上表面沉积一层厚度为0.25μm的Cu种子层3。
(4)Cu(OH)2纳米线的制备
在常温下,将沉积有Cu种子层的基底水平放置在NaOH和(NH4)2S2O8的混合溶液中,NaOH和(NH4)2S2O8的摩尔质量浓度配比为25:1,以在Cu 种子层上生长超致密超亲水Cu(OH)2纳米线。
如图5所示,所获得超致密超亲水Cu(OH)2纳米线的扫描电子显微镜 (SEM)表征图。
实施例3
本实施例的一种超致密Cu(OH)2纳米线的制备方法,该方法的具体步骤如下:
(1)ZnO种子层制备
在基底1采用溅射的方式沉积一层ZnO种子层,采用功率为500W,真空度为1Pa的射频磁控溅射的方式在基底上表面沉积一层厚度为5μm的 ZnO种子层2。
(2)ZnO纳米棒的制备
再在Zn(NO3)2·6(H2O)和C6H12N4混合生长液中生长ZnO纳米棒,Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比为1:5,以在ZnO种子层上生长ZnO纳米棒。
如图6所示,所获得超致密超亲水ZnO纳米棒的扫描电子显微镜(SEM) 表征图。
(3)Cu种子层的制备
继续采用溅射的方式沉积一层Cu种子层,用于后续生长湿敏层超亲水纳米线。采用功率为500W,真空度为1Pa的直流磁控溅射的方式在基底上表面沉积一层厚度为1μm的Cu种子层3。
(4)Cu(OH)2纳米线的制备
在常温下,将沉积有Cu种子层的基底水平放置在NaOH和(NH4)2S2O8的混合溶液中,NaOH和(NH4)2S2O8的摩尔质量浓度配比为5:1,以在Cu 种子层上生长超致密超亲水Cu(OH)2纳米线。
如图7所示,所获得超致密超亲水Cu(OH)2纳米线的扫描电子显微镜 (SEM)表征图。
本发明实施例中给出的ZnO种子层的沉积厚度为1μm、15μm和30μm, Cu种子层的沉积厚度为0.025μm、0.5μm和1μm,但本发明中并不限于上述实施例中的值,优选的ZnO种子层的沉积厚度为0.2μm,Cu种子层的沉积厚度不够使。Cu种子层的沉积厚度为0.2μm,Cu种子层的沉积厚度不够使,制备的Cu(OH)2纳米线无法填充整个基底的表面。
本发明实施例中,本发明实施例中给出的Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比5:1、1:1和1:5,但本发明中并不限于上述实施例中的值,一般可以为5:1~1:5,优选的,Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比为1:1,Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比过低, ZnO纳米棒生长速度慢,Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比过高,ZnO纳米棒则会发生团聚现象。
本发明实施例中NaOH和(NH4)2S2O8的摩尔质量浓度配比为50:1、25:1 和5:1,和50:1~5:1,优选的,NaOH和(NH4)2S2O8的摩尔质量浓度配比为 25:1。NaOH和(NH4)2S2O8的摩尔质量浓度配比过低,Cu(OH)2纳米线生长速度慢,NaOH和(NH4)2S2O8的摩尔质量浓度配比过高,所制备的Cu(OH)2纳米线将会发生团簇从而使得比表面积下降。
本发明实施例中给出的溅射功率为50W、200W和500W,但本发明中并不限于上述实施例中的值,一般可以为50W~500W,优选的为100W。
本发明实施例中给出的溅射真空度为0.1Pa、0.2Pa和1Pa,但本发明中并不限于上述实施例中的值,一般可以为0.1Pa~3Pa,优选的为0.2Pa。
本发明实施例中给出的ZnO纳米棒的生长时间为10min、30min和60min,但本发明中并不限于上述实施例中的值,一般可以为0.5min ~60min,具体ZnO纳米棒的生长时间根据实际的情况确定。
本发明实施例中给出的Cu(OH)2纳米线的生长时间1min、30min和 40min,但本发明中并不限于上述实施例中的值,一般可以为0.5min~60min,具体Cu(OH)2纳米线的生长时间根据实际的情况确定。
本发明所制备的一种超致密Cu(OH)2纳米线可用作湿度传感器的制备。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种超致密Cu(OH)2纳米线的制备方法,其特征在于,包括如下步骤:
S1、ZnO种子层制备:采用磁控溅射的方式在基底上沉积一层ZnO薄膜,用于后续生长ZnO催化纳米棒,其中,所述ZnO种子层的沉积厚度为1μm~30μm;
S2、ZnO催化纳米棒的制备:在所述沉积有ZnO的基底置于Zn(NO3)2·6(H2O)和C6H12N4混合液中,以在所述ZnO种子层上生长ZnO催化纳米棒,其中,Zn(NO3)2·6(H2O)和C6H12N4溶液的摩尔质量浓度配比为1:5~5:1,所述混合液的温度为室温;
S3、Cu种子层制备:在所述ZnO催化纳米棒表面沉积一层Cu种子层,所述Cu种子层的沉积厚度为0.2μm;
S4、生长纳米线:将所述S3中沉积有Cu种子层的基底置于摩尔质量浓度配比为50:1~5:1的NaOH和(NH4)2S2O8混合溶液中,以在ZnO催化纳米棒的催化作用下,Cu2+和-OH有更多的接触位点以加速Cu种子层生长Cu(OH)2纳米的速度从而获得质量更好的超致密Cu(OH)2纳米线,通过控制ZnO催化纳米棒的生长形貌控制Cu(OH)2纳米线的形貌。
2.根据权利要求1所述的制备方法,其特征在于,所述ZnO种子层的沉积厚度为15μm。
3.根据权利要求1所述的制备方法,其特征在于,步骤S2中所述Zn(NO3)2·6(H2O)和C6H12N4的摩尔质量浓度配比为1:1。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,所述ZnO催化纳米棒的生长时间为10min~60min。
5.根据权利要求1-3任一项所述的制备方法,其特征在于,所述步骤S4中NaOH和(NH4)2S2O8的摩尔质量浓度配比为25:1。
6.根据权利要求1-3任一项所述的制备方法,其特征在于,所述超致密Cu(OH)2纳米线的生长时间为0.5min~60min。
7.根据权利要求1所述的制备方法,其特征在于,步骤S1和S3中采用磁控溅射的方式进行沉积ZnO种子层和Cu种子层。
8.一种超致密Cu(OH)2纳米线,其特征在于,采用如权利要求1-7任一项所述的制备方法制得。
9.如权利要求8所述的超致密Cu(OH)2纳米线在制作湿度传感器的用途。
CN201811208448.7A 2018-10-17 2018-10-17 一种超致密Cu(OH)2纳米线的制备方法及产品 Active CN109402580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811208448.7A CN109402580B (zh) 2018-10-17 2018-10-17 一种超致密Cu(OH)2纳米线的制备方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811208448.7A CN109402580B (zh) 2018-10-17 2018-10-17 一种超致密Cu(OH)2纳米线的制备方法及产品

Publications (2)

Publication Number Publication Date
CN109402580A CN109402580A (zh) 2019-03-01
CN109402580B true CN109402580B (zh) 2020-02-21

Family

ID=65468323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811208448.7A Active CN109402580B (zh) 2018-10-17 2018-10-17 一种超致密Cu(OH)2纳米线的制备方法及产品

Country Status (1)

Country Link
CN (1) CN109402580B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422818B (zh) * 2019-07-26 2022-06-14 华中科技大学 基于超亲水层的复合微纳结构传感器的制备方法及产品
CN110656328A (zh) * 2019-08-29 2020-01-07 湖北大学 具有不对称润湿性及高效雾气收集能力的Janus泡沫铜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319372A (zh) * 2008-06-03 2008-12-10 中山大学 一种低温可控制备氧化锌纳米线的方法及其应用
CN106756898A (zh) * 2016-11-23 2017-05-31 湖北大学 抗菌疏水性ZnO纳米棒的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417201B (zh) * 2011-08-31 2014-06-11 北京大学 一种以ZnO纳米棒阵列为模板制备一维自组装材料的方法
CN108085652B (zh) * 2017-12-18 2019-06-18 华中科技大学 基于柔性基底的高耐用性超亲水集水流道结构的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319372A (zh) * 2008-06-03 2008-12-10 中山大学 一种低温可控制备氧化锌纳米线的方法及其应用
CN106756898A (zh) * 2016-11-23 2017-05-31 湖北大学 抗菌疏水性ZnO纳米棒的制备方法

Also Published As

Publication number Publication date
CN109402580A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Zhang et al. Recent progress on vanadium dioxide nanostructures and devices: Fabrication, properties, applications and perspectives
Li et al. Design of core–shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine
Deng et al. Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas
CN108982277B (zh) 一种石英晶体微天平湿度传感器的制备方法及产品
Peng et al. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching
CN109402580B (zh) 一种超致密Cu(OH)2纳米线的制备方法及产品
CN108459004B (zh) 一种银和金纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
KR101331521B1 (ko) 그래핀 박막의 제조 방법
Cho et al. Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures
CN108217591A (zh) 一种异质交替叠层台阶引导生长三维坡面纳米线阵列的方法
Bielinski et al. Hierarchical ZnO nanowire growth with tunable orientations on versatile substrates using atomic layer deposition seeding
CN102097208B (zh) 磁性多层膜纳米碗单层阵列的制备方法
He et al. Recent development in liquid metal materials
CN100457958C (zh) 一种金属氧化物纳米反阵列薄膜的制备方法
CN105601266B (zh) 气液界面法制备磷酸银二维有序纳米网薄膜及其方法
Masuda et al. Morphology control of zinc oxide particles at low temperature
CN101497428A (zh) 一种利用静电纺丝排列纳米线阵列的方法
Bulemo et al. Review on porosity control in nanostructured semiconducting metal oxides and its influence on chemiresistive gas sensing
ai Hu et al. Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction
CN100548871C (zh) 三维半导体纳米结构阵列及其制备方法
CN108046829B (zh) 一种非金属矿物多孔基板及其制备方法和应用
CN104818463A (zh) 一种纳米铂包覆金颗粒膜复合材料的制备方法
KR101671627B1 (ko) 그래핀을 촉매로 한 실리콘의 화학적 식각 방법
CN103864460A (zh) 一种有序氧化钨纳米线阵列结构的制备方法
CN109962010B (zh) 圆晶级大面积半导体纳米片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant