CN109378362A - 一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法 - Google Patents

一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法 Download PDF

Info

Publication number
CN109378362A
CN109378362A CN201811170363.4A CN201811170363A CN109378362A CN 109378362 A CN109378362 A CN 109378362A CN 201811170363 A CN201811170363 A CN 201811170363A CN 109378362 A CN109378362 A CN 109378362A
Authority
CN
China
Prior art keywords
cztsse
cao
solar cell
transition zone
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811170363.4A
Other languages
English (en)
Other versions
CN109378362B (zh
Inventor
姚斌
宋燕平
李永峰
刘瑞健
丁战辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201811170363.4A priority Critical patent/CN109378362B/zh
Publication of CN109378362A publication Critical patent/CN109378362A/zh
Application granted granted Critical
Publication of CN109378362B publication Critical patent/CN109378362B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法,属于光电子半导体和太阳电池领域。本发明的目的在于通过在传统结构(SLG/Mo/CZTSSe/CdS/i‑ZnO/ITO/Al)的CZTSSe太阳电池背电极Mo和CZTSSe吸收层之间增加一层CuAlO2(CAO)非晶薄膜,如图1所示,阻碍硒化时Se蒸汽和CZTSSe中的Se与Mo的反应,减小Mo(S,Se)2层的厚度,抑制二次相的生成,提高CZTSSe的晶体质量,从而提高光电转换效率。本发明利用射频磁控溅射制备CAO薄膜,溶液法制备CZTSSe薄膜。当CAO层厚度为10.6nm时,可使太阳电池转换效率提高24%。

Description

一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法
技术领域
本发明涉及一种应用CuAlO2非晶薄膜修饰背电极界面提高铜锌锡硫硒太阳电池光电转换效率的方法,属于光电子半导体和太阳电池领域。
背景技术
具有kesterite结构的铜锌硒硫硒(Copper Zinc Tin Sulfide Selenide,CZTSSe)是一种直接带隙的半导体材料,由于其带隙在1.0-1.5eV连续可调,吸收系数高(α>104cm-1),组成元素地球储藏丰富,制备成本低和对环境友好等特点,被认为是替代CuInGaSe2(CIGS)制备薄膜太阳电池的理想吸收层材料,近年来受到了人们广泛深入的研究[1-3]。截至目前,以CZTSSe为吸收层、结构为SLG/Mo/CZTSSe/CdS/i-ZnO/indium tinoxide(ITO)/Al grid薄膜太阳电池的光电转换效率(Power Conversion Efficiency,PCE)最高已达12.6%[4]。但这一PCE远低于其理论预期的31%[5]和CIGS电池的22%[6]。许多实验和理论研究表明导致CZTSSe太阳电池PCE低的主要原因之一是在硒化过程中背电极界面的CZTSSe中的Se与Mo易发生如下反应:
导致在CZTSSe/Mo背电极界面形成Mo(S,Se)2(MSSe)层及Cu2(S,Se),Zn(S,Se)和Sn(S,Se)二次相。其中,MSSe具有双重作用,[7,8]一方面,它的功函数高,与CZTSSe可形成准欧姆接触,当其厚度较薄时,可增强CZTSSe与背电极间的紧密接触,这些优点有利于光生载流子的传输和收集,提高电池PCE;另一方面,如果MSSe层的厚度过大,将使太阳电池串联电阻(RS)显著增加,CZTSSe与Mo不能紧密接触,造成电池PCE下降。二次相的生成从两个方面影响太阳电池的PCE。一是会在背电极界面形成旁路电流,降低光生载流子的收集效率,表现为并联电阻(RSh)减小,二是Sn(S,Se)易挥发,极易从背界面逃离,导致界面孔洞的形成,造成界面复合率增加,表现为反向饱和电流密度(J0)增加。这两方面的作用将导致太阳电池短路电流密度(JSC),开路电压(VOC)和填充因子(FF)减小,降低PCE。因此,寻找抑制二次相的形成、减小MSSe层厚度的方法和技术成为提高CZTSSe太阳电池PCE的关键问题之一。
为了解决上述问题,近年来人们开展了广泛的研究。Zhang等人[9]利用预合金化方法降低硒化过程中硒的扩散速率,控制MSSe层的厚度,提高了CZTSSe太阳电池的PCE。但这种方法工艺比较复杂,同时也难抑制二次相的生成。为此,一些科研人员采用在CZTSSe吸收层与背电极Mo之间增加过渡层的方法来控制MSSe的厚度,抑制二次相的生成。Liu等人[10]以TiB2为过渡层开展了其对CZTSSe太阳电池性能的研究,发现虽然TiB2的增加能降低RS(从22.0降至10.3Ω·cm2),但VOC却减小了,导致太阳电池性能变差。Scragg等人[11]利用增加TiN过渡层来抑制二次相形成,其结果表明它能一定程度钝化Mo/CZTS界面,同时阻止Mo与S的反应,但是增加了电池RS。Cui等人[12]以Ag作为过渡层应用于CZTS电池中,发现界面孔隙和MoS2层厚度得到了有效减少,然而考虑到Ag的高成本,不利于大规模推广。诚然,采用这些过渡层材料可在一定程度上抑制二次相的形成,减小MSSe层厚度。但是,它们仍然会导致一些副作用。因此,寻找合适的过渡层材料成为提高CZTSSe太阳电池PCE的关键。
实际上,在利用在背电极界面生长过渡层抑制二次相形成、控制MSSe生长的方法中,过渡层材料的选取及其厚度的控制至关重要。首先,这种材料要有较好的化学稳定性,保证高温硒化过程中不与CZTSSe和Mo发生化学反应;其次,与CZTSSe和Mo有很好的粘接性能;最后,具有与CZTSSe和Mo匹配的能带结构和电学性能。
CuAlO2(CAO)晶体具有三方结构,晶格常数为是间接带隙p型半导体,其间接带隙Egi=1.8eV,直接带隙Egd=3.5eV[13,14]。但CAO晶体是高温相,通常需要在1000℃条件下形成。常温下生长的CAO通常是非晶体。CAO非晶具有与其晶体相似的能带结构,很好的化学稳定性和热稳定性,及平整的表面,这些都有利于成为过渡层材料。但是,由于非晶CAO电阻率很高(基本绝缘),所以,用它做过渡层材料时,厚度的控制是十分重要的。本发明将采用CAO为过渡层材料,抑制二次相的生成,控制MSSe层生长,改善背电极界面结构和质量,提高CZTSSe太阳电池的PCE。
发明内容
本发明的目的在于通过在CZTSSe和Mo之间生长适当厚度的非晶CAO过渡层,抑制硒化过程中二次相的形成,调控MSSe的厚度,从而提高CZTSSe太阳电池PCE。其特征在于以块体CAO晶体为靶材,利用磁控溅射技术在镀Mo钠钙玻璃衬底上生长一层非晶CAO薄膜;以二甲基亚砜(DMSO)为溶剂,醋酸铜为铜源,氯化锌为锌源,氯化亚锡为锡源,硫脲为硫源制备CZTS前驱体溶液;结合旋涂加烘烤的方法在覆有CAO薄膜的镀Mo钠钙玻璃(SLG/Mo/CAO)上制备CZTS前驱体薄膜,然后硒化制得CZTSSe薄膜;最后,利用传统制备工艺制备CZTSSe基太阳电池,器件结构示意图如图1所示。
本发明实施过程如下:
以CuO(99.99%,200目)粉末和Al2O3(99.999%,5μm)粉末为原料,按Cu:Al:O=1:1:2的原子配比制备CuO和Al2O3混合粉末,经充分研磨后在52MPa的压力下压制成高3mm直径70mm的靶材胚体,然后放入高温箱式炉中在1200℃下煅烧10h,最后先以5℃/min的速率降温到600℃,再自然降至室温,制成CAO靶材。
利用磁控溅射技术,以所制备的CAO为靶材,高纯Ar(99.999%)作为溅射气体,在工作压强为0.6-1.2Pa,溅射功率为40-80W,衬底温度为室温的条件下,在SLG/Mo衬底上生长CAO非晶薄膜,通过控制溅射时间,工作压强和溅射功率,调控CAO薄膜厚度。
以DMSO为溶剂,以醋酸铜为铜源,氯化锌为锌源,氯化亚锡为锡源,硫脲为硫源,摩尔比例为铜:(锌+锡)=0.74,锌:锡=1.17;以氯化亚锡→DMSO→醋酸铜→硫脲→氯化锌的溶解顺序,在55℃加热条件下磁力搅拌2h制备CZTS前驱体溶液;结合旋涂加烘烤的方法在SLG/Mo/CAO衬底上制备CZTS前驱体薄膜,在500-550℃条件下硒化10-15min制得CZTSSe薄膜;利用化学水浴法在CZTSSe薄膜上生长CdS,之后利用磁控溅射在CdS上面生长i-ZnO和ITO,利用热蒸发法蒸镀一层Al作为顶电极,制备出结构为SLG/Mo/CAO/CZTSSe/CdS/i-ZnO/ITO/Al结构的太阳电池,结构如图1所示。
本发明的主要反应方程式如下:
Cu2O+Al2O3→2CuAlO2
2Cu2++Sn2+→2Cu++Sn4+
2Cu++Zn2++Sn4++4CS(NH2)2+8H2O→Cu2ZnSnS4+4CO2+8NH4 +
本发明的创新点是:
(1)通过在CZTSSe和Mo背电极之间插入CAO非晶薄膜过渡层,抑制二次相形成,控制MSSe的生长;
(2)通过优化CAO薄膜的厚度,提高了CZTSSe的晶体质量,改善了背电极界面结构和质量,使CZTSSe太阳电池的RS和J0降低,RSh升高,从而PCE提高。
本发明提供的利用CAO非晶薄膜提高CZTSSe太阳电池PCE的方法具有如下优点:
(1)CAO非晶薄膜具有优异的热稳定性和化学稳定性,在硒化过程中,可抑制Mo与Se蒸汽以及CZTSSe中的Se反应形成二次相,提高RSh
(2)CAO非晶薄膜具有很好的表面平整度,可提高CZTSSe的晶体质量;
(3)通过控制CAO层的厚度,可调控Se与Mo的反应速率,优化MSSe层的厚度,提高CZTSSe的晶体质量,降低RS和J0
(4)CAO非晶薄膜制备工艺简单,可重复性好,成本低;
(5)与采用相同工艺制备的未加CAO层的CZTSSe太阳电池相比,加入CAO层后的CZTSSe太阳电池的PCE提升显著。
附图说明
图1是本发明所采用的太阳电池结构示意图;
图2是本发明太阳电池制备工艺流程图;
图3是本发明实例1中分别在(a)SLG/Mo和(b)SLG/Mo/CAO衬底上用相同工艺制得的CZTSSe薄膜的SEM表面形貌图;
图4是本发明实例1中分别以(a)SLG/Mo和(b)SLG/Mo/CAO为衬底用传统工艺制得的CZTSSe太阳电池的SEM截面图;
图5是本发明实例1中分别以SLG/Mo(蓝色)和SLG/Mo/CAO(红色)为衬底用相同传统工艺制得的CZTSSe太阳电池在AM1.5光照条件下和暗态下的J-V曲线;
具体实施方式
实施例1
本发明以CuO(99.99%,200目)粉末和Al2O3(99.999%,5μm)粉末为原料,按Cu:Al:O=1:1:2原子配比制备CuO和Al2O3混合粉末,经充分研磨后在52MPa的压力下压制成高3mm直径70mm的靶材胚体,然后放入高温箱式炉中在1200℃下煅烧10h,最后先以5℃/min的速率降温到600℃,再自然降至室温,制成CAO靶材。以所制备的CAO靶材,高纯Ar(99.999%)作为溅射气体,在工作压强为1.0Pa,溅射功率为40W,衬底温度为室温的条件下,在SLG/Mo衬底上生长CAO非晶薄膜,通过控制生长时间,调控CAO薄膜厚度。
分别以SLG/Mo和SLG/Mo/CAO为衬底制备CZTSSe太阳电池,其中SLG尺寸为20*20*1mm,CAO层厚度约为10.6nm,Mo层厚度约为1μm。称取0.8462g的SnCl2·2H2O置于20ml透明玻璃瓶中,之后加入10ml DMSO,磁力搅拌10min;称取1.1979g Cu(CH3COO)2·H2O加入同一瓶中,55℃加热搅拌2h后,接着称取2.2836g硫脲倒入瓶中并继续搅拌0.5h,之后称取0.5993g的ZnCl2并搅拌1h,最后在溶液中加入0.1ml乙醇胺并搅拌20min以增加CZTS前驱体溶液的粘稠度。然后,在手套箱氮气气氛下,将CZTS前驱体溶液在低速旋转5s(800r/min),高速旋转30s(3000r/min)的条件下分别旋涂在SLG/Mo和SLG/Mo/CAO衬底上,接着在300℃的烤焦台上烘烤3min,旋涂烘烤过程重复10次,在SLG/Mo和SLG/Mo/CAO衬底上分别生长厚度约为1.2μm的CZTS前驱体薄膜;将CZTS前驱体薄膜在550℃硒蒸汽气氛下退火15min,制备CZTSSe薄膜。图3是分别在(a)SLG/Mo和(b)SLG/Mo/CAO衬底上制得的CZTSSe薄膜的SEM形貌图,可见加入CAO的CZTSSe具有更大的晶粒尺寸和更加平整的表面。
将制得的CZTSSe薄膜放入PH约为11的氨水,CdSO4,NH4Cl,CS(NH2)2的混合溶液中,在75℃下搅拌反应13min,生长一层CdS于CZTSSe薄膜表面,其厚度约为50nm;之后再利用射频磁控溅射在CdS上依次沉积一层ZnO和ITO,厚度分别约为50,260nm;最后再利用热蒸发法在ITO表面蒸镀一层Al电极,通过机械划刻法制得9个CZTSSe太阳电池。图4是用传统电池制备工艺分别在(a)SLG/Mo和(b)SLG/Mo/CAO衬底上制备的CZTSSe太阳电池截面的SEM照片。可见在SLG/Mo/CAO衬底上生长的CZTSSe晶粒尺寸更大,致密度更好,MSSe更薄,说明CAO的插入可以提高CZTSSe的晶体质量,控制MSSe的厚度。这有利于提高CZTSSe电池的PCE。
表一、SLG/Mo和SLG/Mo/CAO衬底上制备的CZTSSe太阳电池的光电转换效率,性能参数和电学参数。
利用Keithley 2400和太阳模拟器(Abet Sun 2000)在AM1.5G(100mW/cm2)模拟太阳光照射下,对所制备的两种CZTSSe太阳电池进行J-V测试,如图5所示。利用J-V计算其PCE、性能参数和电学参数,如表一所示。可见背电极界面加入了CAO层的CZTSSe太阳电池PCE为5.10%,同相同工艺制得的未加CAO层的CZTSSe太阳电池PCE(4.12%)相比,PCE提高了24%。这主要归因于加入CAO层后,CZTSSe晶体质量的提高,MSSe层厚度的减小以及二次相的减少,使RS和J0减小,RSh增大,从而提高JSC和FF,导致PCE增大。
参考文献
[1]Mitzi D.B.,et al.The path towards a high performance solution-processed kesterite solar cell[J].Solar Energy Materials and Solar Cells,2011,95(6):1421–1436.
[2]Mitzi D.B.,et al.Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology[J].Philosophical Transactions of the RoyalSociety A,2013,371(1996):20110432.
[3]Teinhagen C.S.,et al.Synthesis of Cu2ZnSnS4nanocrystals for use inlow-cost photovoltaics[J].Journal of the American Chemical Society,2009,131(35):12554-12555.
[4]Wang W.,et al.Device characteristics of CZTSSe thin-film solarcells with 12.6%efficiency[J].Advanced Energy Materials,2014,4(7):1301465.
[5]Shockley W.,et al.Detailed balance limit of efficiency of p‐njunction solar cells[J].Journal of applied physics,1961,32(3):510-519.
[6]Jackson P.,et al.Effects of heavy alkali elements in Cu(In,Ga)Se2solar cells with efficiencies up to 22.6%[J].physica status solidi(RRL)–Rapid Research Letters,2016,10(8):583-586.
[7]Liu F.Y.,et al.Beyond 8%ultrathin kesterite Cu2ZnSnS4solar cellsby interface reaction route controlling and self-organized nanopattern at theback contact[J].NPG Asia Materials,2017,9(7):e401.
[8]Zhu X.L.,et al.Determining factor of MoSe2formation in Cu(In,Ga)Se2solar Cells[J].Solar Energy Materials and Solar Cells,2012,101:57-61.
[9]Li J.J.,et al.10%Efficiency Cu2ZnSn(S,Se)4thin film solar cellsfabricated by magnetron sputtering with enlarged depletion region width[J].Solar Energy Materials and Solar Cells,2016,149:242-249.
[10]Liu F.Y.,et al.Enhancing the Cu2ZnSnS4solar cell efficiency byback contact modification:Inserting a thin TiB2intermediate layer atCu2ZnSnS4/Mo interface[J].Applied Physics Letters,2014,104(5):051105.
[11]Scragg J.J.,et al.Effects of back contact instability on Cu2ZnSnS4devices and processes[J].Chemistry of Materials,2013,25(15):3162-3171.
[12]Cui H.T.,et al.Boosting Cu2ZnSnS4 solar cells efficiency by a thinAg intermediate layer between absorber and back contact[J].Applied PhysicsLetters,2014,104(4):041115.
[13]Liu R.J.,et al.Experimental and first-principles study ofphotoluminescent and optical properties of Na-doped CuAlO2:the role of theNaAl-2Nai complex[J].Journal of Physics D:Applied Physics,2015,48(33):335102.
[14]Liu R.J.,et al.Shallow Acceptor State in Mg-Doped CuAlO2 and ItsEffect on Electrical and Optical Properties:An Experimental and First-Principles Study[J].ACS applied materials&interfaces,2017,9(14):12608-12616.

Claims (4)

1.一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法,其特征在于在传统结构(SLG/Mo/CZTSSe/CdS/i-ZnO/ITO/Al)的CZTSSe太阳电池背电极Mo和CZTSSe吸收层之间增加一层CuAlO2(CAO)过渡层。
2.根据权利要求1所述的一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法,其特征在于CAO是利用磁控溅射,以CAO靶材,高纯Ar(99.999%)作为溅射气体,在工作压强0.6-1.2Pa,溅射功率40-80W,衬底温度为室温的条件下制备的非晶薄膜,CAO厚度控制在7-18nm。
3.根据权利要求1所述的一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法,其特征在于CAO的增加可以阻碍硒化时Se蒸汽以及CZTSSe中的Se与Mo的反应,减小Mo(S,Se)2层的厚度,抑制二次相的生成,当CAO厚度为10nm左右时,可大大提高CZTSSe的晶体质量。
4.根据权利要求1所述的一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法,其特征在于CAO的增加可提高CZTSSe太阳电池的光电转换效率,当CAO为10.6nm时,转换效率提高最大,提升幅度达24%。
CN201811170363.4A 2018-10-09 2018-10-09 一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法 Expired - Fee Related CN109378362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811170363.4A CN109378362B (zh) 2018-10-09 2018-10-09 一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811170363.4A CN109378362B (zh) 2018-10-09 2018-10-09 一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法

Publications (2)

Publication Number Publication Date
CN109378362A true CN109378362A (zh) 2019-02-22
CN109378362B CN109378362B (zh) 2020-04-24

Family

ID=65403802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811170363.4A Expired - Fee Related CN109378362B (zh) 2018-10-09 2018-10-09 一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法

Country Status (1)

Country Link
CN (1) CN109378362B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005903A (zh) * 2021-11-01 2022-02-01 中国科学院物理研究所 具有背界面电场的铜锌锡硫硒太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136413A2 (en) * 2008-06-19 2009-12-23 Samsung Electronics Co., Ltd. Photovoltaic device
WO2010071893A2 (en) * 2008-12-19 2010-06-24 Applied Materials, Inc. Copper delafossite transparent p-type semiconductor: methods of manufacture and applications
CN101779290A (zh) * 2007-09-25 2010-07-14 第一太阳能有限公司 包括界面层的光伏器件
CN104659123A (zh) * 2013-11-25 2015-05-27 华中科技大学 化合物薄膜太阳能电池及其制备方法
US20160293342A1 (en) * 2013-10-04 2016-10-06 Asahi Kasei Kabushiki Kaisha Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779290A (zh) * 2007-09-25 2010-07-14 第一太阳能有限公司 包括界面层的光伏器件
US20100282320A1 (en) * 2007-09-25 2010-11-11 First Solar, Inc. Photovoltaic Devices Including an Interfacial Layer
EP2136413A2 (en) * 2008-06-19 2009-12-23 Samsung Electronics Co., Ltd. Photovoltaic device
WO2010071893A2 (en) * 2008-12-19 2010-06-24 Applied Materials, Inc. Copper delafossite transparent p-type semiconductor: methods of manufacture and applications
US20160293342A1 (en) * 2013-10-04 2016-10-06 Asahi Kasei Kabushiki Kaisha Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor
CN104659123A (zh) * 2013-11-25 2015-05-27 华中科技大学 化合物薄膜太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石琨等: "WO3界面层对Cu2ZnSn(S,Se)4基太阳电池背电极的修饰及其影响", 《第四届新型太阳能电池学术研讨会论文集;会议名称:第四届新型太阳能电池学术研讨会》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005903A (zh) * 2021-11-01 2022-02-01 中国科学院物理研究所 具有背界面电场的铜锌锡硫硒太阳能电池及其制备方法
CN114005903B (zh) * 2021-11-01 2023-11-17 中国科学院物理研究所 具有背界面电场的铜锌锡硫硒太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN109378362B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN106558650B (zh) 一种柔性铜铟镓硒/钙钛矿叠层太阳能电池的制备方法
CN101789469B (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
CN110429145A (zh) 一种硒化锑薄膜太阳电池及其制备方法
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
CN104272469B (zh) 太阳能电池装置及其制造方法
Mandati et al. Copper chalcopyrites for solar energy applications
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
CN104465810B (zh) 具有上转换层的铜锌锡硫硒类薄膜太阳能电池的制备方法
CN109671848B (zh) CuPbSbS3新型薄膜太阳能电池及其制备方法
TWI502762B (zh) 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN103620792B (zh) 太阳能电池及其制备方法
CN109378362A (zh) 一种用CuAlO2过渡层提高铜锌锡硫硒太阳电池效率的方法
CN112201709A (zh) 一种硒化锑薄膜太阳电池及其制备方法与应用
CN105118883B (zh) 一种低镉cigs基薄膜太阳能电池及其制备方法
CN103469170B (zh) 一种用于薄膜太阳能电池的溅射靶
CN113644146B (zh) 一种用于太阳能电池的薄膜、太阳能电池及其制备方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN109671803A (zh) 一种薄膜太阳能电池制备方法
CN103668361A (zh) 一种用于光伏发电系统的光伏电池的铜铟锌硒薄膜的制备方法
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
CN103474514B (zh) 铜铟镓硒太阳能电池的制备方法
Fu et al. A critical review of solution-process engineering for kesterite thin-film solar cells: current strategies and prospects
Il’chuk et al. Chemical surface deposition of CdS ultra thin films from aqueous solutions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200424

Termination date: 20211009