CN109355295B - 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用 - Google Patents

一种花生AhWRKY75基因及其在提高花生耐盐性中的应用 Download PDF

Info

Publication number
CN109355295B
CN109355295B CN201811062948.4A CN201811062948A CN109355295B CN 109355295 B CN109355295 B CN 109355295B CN 201811062948 A CN201811062948 A CN 201811062948A CN 109355295 B CN109355295 B CN 109355295B
Authority
CN
China
Prior art keywords
gene
peanut
ahwrky75
transgenic
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811062948.4A
Other languages
English (en)
Other versions
CN109355295A (zh
Inventor
乔利仙
郭悦
姜亚男
潘雷雷
姜平平
刘文平
朱虹
隋炯明
王晶珊
郭宝太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN201811062948.4A priority Critical patent/CN109355295B/zh
Publication of CN109355295A publication Critical patent/CN109355295A/zh
Application granted granted Critical
Publication of CN109355295B publication Critical patent/CN109355295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种花生AhWRKY75基因及其在提高花生耐盐性中的应用,该基因编码SEQ ID NO.2所示的氨基酸序列或编码由SEQ ID NO.2衍生的并且具有与SEQ ID NO.2所示的氨基酸序列相同的功能的氨基酸序列。将该基因连接到Super1300质粒上构建植物过表达载体Super1300‑AhWRKY75,并通过花粉管注射法转化花生。转基因植株中AhWRKY75基因的表达量是非转基因对照植株“花育23(HY23)”的14~21倍。转入的AhWRKY75基因的过量表达,提高了转基因花生植株的耐盐性。本发明将为花生基因工程耐盐育种提供新的基因源和耐盐新种质,具有重要的理论意义。

Description

一种花生AhWRKY75基因及其在提高花生耐盐性中的应用
技术领域
本发明属于生物技术领域,具体地说,涉及一种花生AhWRKY75基因及其在提高花生耐盐性中的应用。
背景技术
花生是我国重要的油料作物和经济作物,在农业乃至整个国民经济中均具有重要地位。我国土地盐碱化形势十分严峻,培育耐盐作物品种是利用盐渍土壤最为经济有效的途径。花生属中等耐盐植物,可在含盐率0.3%的土壤中生长发育,但是产量受到明显抑制。随着生物技术的发展,利用基因工程技术克隆相关耐盐基因导入花生,通过过量表达外源基因提高其耐盐性,是当今提高花生耐盐性及提高盐碱地利用效率的有效策略。
WRKY是高等植物所特有的一类转录因子,因其N-末端含有高度保守的WRKYGQK序列而得名。在植物受到外界胁迫时,WRKY表达水平会发生变化,并引发信号级联反应,以提高植物的胁迫耐受性。如在拟南芥中, AtWRKY25和AtWRKY33任一基因的过表达都会提高转基因植物的耐盐性。过表达菊花的DgWRKY1或DgWRKY3基因的转基因菊花及转基因烟草,耐盐性均有所提高。过表达OsWRKY45和OsWRKY72的转基因水稻对干旱和盐胁迫的耐受性也大大增加。
前期研究中从花生耐盐突变体中筛选获得盐胁迫条件下表达量显著升高的c26767-g2基因,通过在线http://peanutgr.fafu.edu.cn/序列比对获得花生栽培种相应基因序列AHA06G2420.1,并在https://www.ncbi.nlm.nih.gov/ 进行序列比对和进化树分析,该基因编码蛋白序列与拟南芥AtWRKY75基因编码蛋白序列同源性最高(64.14%),因此将该基因命名为AhWRKY75 (郭悦.花生AhWRKY75基因的克隆、遗传转化及功能分析(硕士论文).青岛农业大学,2018)。
发明内容
有鉴于此,本发明提供了一种花生AhWRKY75基因及其在提高花生耐盐性中的应用,本发明在花生中克隆AhWRKY75基因的全长cDNA序列,并构建过量表达载体转化花生,研究AhWRKY75基因在转基因花生中的表达模式,筛选出过量表达且耐盐性显著提高的转基因花生株系。
为了解决上述技术问题,本发明公开了一种花生AhWRKY75基因,其编码SEQ IDNO.2所示的氨基酸序列或编码由SEQ ID NO.2衍生的并且具有与SEQ ID NO.2所示的氨基酸序列相同的功能的氨基酸序列。
可选地,其选自下述核苷酸序列:
1)SEQ ID NO.1所示的核苷酸序列;或
2)与SEQ ID NO.1限定的核苷酸序列具有80%以上一致性,且编码与 SEQ IDNO.2所示的氨基酸序列具有相同功能的氨基酸序列的核苷酸序列。
本发明还公开了一种含有上述的花生AhWRKY75基因的重组表达载体。
本发明还公开了一种含有上述的花生AhWRKY75基因的宿主菌,所述宿主菌选自细菌或真菌。
可选地,所述宿主菌选自大肠杆菌、农杆菌或酵母菌。
本发明还公开了一种由上述的花生AhWRKY75基因编码的氨基酸序列。
可选地,其为SEQ ID NO.2。
本发明还公开了一种培育耐盐植物品种的方法,所述方法包括:将上述的花生AhWRKY75基因转化到植物株系中而得到耐盐植物品种,或者通过杂交方法,使杂交后代获得花生AhWRKY75基因而成为耐盐植物品种。
可选地,其中所述植物为花生。
本发明还公开了一种由上述的花生AhWRKY75基因提高花生耐盐性中的应用。
与现有技术相比,本发明可以获得包括以下技术效果:
1)利用转录组数据库筛选出在耐盐突变体中差异表达的基因 AhWRKY75;
2)设计并筛选到扩增效果好的特异性扩增引物WRKY75-F1、 WRKY75-R1;
3)通过构建表达载体及转化花生证实AhWRKY75基因的过表达可以提高转基因花生的耐盐性。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明花生AhWRKY75基因的RT-PCR扩增结果;a,b,c分别为引物对WRKY75-F1/R1,WRKY75-F2/R2以及WRKY75-F3/R3的扩增结果;M:DL2000;1-3/4/5:耐盐突变体cDNA模板;
图2是本发明不同物种的WRKY75蛋白进化分析;其中, P_013728203.1、P_002873597.2、NP_196812.1、AHA06G2420.1、 P_021658397.1、P_019259859.1、P_018509766.1分别为油菜、琴叶拟南芥、拟南芥、花生四倍体栽培种、巴西橡胶树、野生烟草、白菜WRKY75编码蛋白的登录号;
图3是本发明AhWRKY75蛋白与已知同源蛋白多重序列比对分析;其中,P_013728203.1、P_002873597.2、NP_196812.1、AHA06G2420.1、 P_021658397.1、P_019259859.1、P_018509766.1分别为油菜、琴叶拟南芥、拟南芥、花生四倍体栽培种、巴西橡胶树、野生烟草、白菜WRKY75编码蛋白的登录号;方框表示WRKYGQK保守结构域;箭头表示锌指结构中的半胱氨酸和组氨酸;
图4是本发明AhWRKY75重组质粒经Kpn I和Sac I双酶切;其中,A:pMD18T-AhWRKY75重组质粒经Kpn I和Sac I双酶切;M:DL15000;1-2: pMD18T-AhWRKY75重组质粒DNA;B:重组表达载体 Super1300-AhWRKY75经Kpn I和Sac I双酶切;M:DL15000;1:Super1300-AhWRKY75重组质粒DNA;
图5是本发明潮霉素(Hgy)基因引物对转化后收获的花生籽粒PCR检测结果;其中,M:DL2000;1:Super1300质粒;2:非转基因植株;3-14:转化Super1300-AhWRKY75质粒后收获的花生籽粒
图6是本发明AhWRKY75基因在转基因植株的相对表达量,其中,HY23 为非转基因对照植株,OE-1~OE-3为转基因植株;
图7是本发明250mM NaCl处理对照植株和转基因植株,其中,a:非转基因对照植株花育23;b~d:转AhWRKY75基因阳性植株;
图8是本发明250mM NaCl处理后非转基因植株和对照叶片气体交换参数值,其中,a:净光合速率;b:气孔导度;c:蒸腾速率;d:胞间CO2浓度; HY23为非转基因对照植株,OE-1~OE-3为转基因植株;
图9是本发明转基因植株中抗逆相关基因的表达量分析,其中, a:AhCSD1基因;b:AhCSD2基因;c:AhCAT基因;d:AhPOD基因;
图10是本发明盐胁迫下转基因植株与对照‘花育23’的生理变化,其中,a:SOD酶活性;b:POD酶活性;c:CAT酶活性d:O2 -含量;HY23为非转基因对照植株,OE-1~OE-3为转基因植株。
具体实施方式
以下将配合实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本发明所用到的实验材料:
1.质粒及菌种
植物表达载体P-super1300、PMD18-T质粒、大肠杆菌DH5α、根癌农杆菌菌株GV3101均购自大连宝生物(TaKaRa)公司。
2.花生品种
基因克隆材料为花生耐盐突变体,转基因受体材料为花生品种“花育23 号”,均由青岛农业大学花生研究室保存。(王亚,乔利仙,武秀玲,胡晓辉, 王晶珊,隋炯明.平阳霉素诱变与NaCl定向筛选对花生后代产量和品质性状的影响.华北农学报,2015,30(1):202-206;Mingxia Zhao,Haiyan Sun,Ruirui Ji,Xiaohui Hu,Jiongming Sui,Lixian Qiao,Jing Chen,Jingshan Wang.2013.In vitro mutagenesis and directed screening forsalt-tolerant mutants in peanut. Euphytica,189:161-172)。
实施例1花生AhWRKY75基因的克隆方法
1、花生幼叶RNA的提取及cDNA序列的获得
花生幼叶RNA的提取采用宝生物(TaKaRa)公司的RNA提取试剂盒 (TaKaRaMiniBEST Plant RNA Extraction Kit),按照说明书中的操作步骤进行。利用宝生物(TaKaRa)公司反转录试剂盒(prime scrip TMR Treagent bKit)对提取的RNA进行反转录,按照说明书中的操作步骤进行。
2、花生AhWRKY75基因的克隆
根据前期研究中从花生耐盐突变体中筛选到盐胁迫条件下表达量显著升高的c26767-g2基因序列,通过在线http://peanutgr.fafu.edu.cn/序列比对获得花生栽培种相应基因序列AHA06G2420.1。利用Primer 5.0软件对该序列设计3对特异性引物,在上游引物的5′端引入Kpn I酶切位点(下划线表示),下游引物的5′端引入Sac I酶切位点(下划线表示)。引物序列如下:
WRKY75-F1:5'-GGTACCTCTTCACTGAAATTGGATTCAATG-3'
WRKY75-R1:5'-GAGCTCAAACAAAAATAAAAAATCAAAAGGG-3'
WRKY75-F2:5'-GGTACCACAACATGGAATAATTATTATCCAT-3'
WRKY75-R2:5'-GAGCTCGATGCAAATATACACCCCCTTTTGA-3'
WRKY75-F3:5'-GGTACCATGGAATAATTATTATCCATCCGAT-3'
WRKY75-R3:5'-GAGCTCAAATATACACCCCCTTTTGACTAAG-3'
WRKY75-F1/R1引物对是从所设计合成的3对引物中筛选出的扩增效果最好的1对引物,具有较高的灵敏度,以及扩增条带单一且清晰的特点(图 1a)。WRKY75-F2/R2引物对存在扩增条带不单一(图1b);WRKY75-F3/R3 引物对则显示扩增条带不够清晰(图1c)。
克隆AhWRKY75基因的PCR扩增体系为:总体积25μL,其中cDNA模板(50ng·μL-1)2μL,上下游引物(10μM)各1μL,10×PCR buffer 4μL (2.4mM Mg2+),dNTP Mix(2.5mM each)2μL,ddH2O 14.5μL,TaqE(5 U·μL-1)0.5μL。
PCR扩增程序为:94℃预变性4min;94℃变性50s,60℃复性45s,72℃延伸1min,35个循环;72℃延伸l 0min。
以此引物对cDNA模板进行扩增,获得655bp的扩增产物(如图1a所示)。将扩增产物回收、纯化后克隆到pMD18-T载体上,得到T-AhWRKY75 重组质粒,送上海生工公司进行测序。测序结果如下SEQ ID No:1所示, cDNA序列共655bp,编码序列为606bp,编码产生201个氨基酸;编码产生的氨基酸序列如SEQ ID NO:2所示。
3、花生AhWRKY75基因编码蛋白的序列比对
利用NCBI网络资源和DNAMAN软件对克隆的AhWRKY75基因编码蛋白结构及理化性质进行分析预测。将预测的蛋白质序列(SEQ ID NO:2),用BLASTP(http://blast.ncbi.nlm.nih.gov/)搜索蛋白质数据库,进行同源性搜索和比对,构建蛋白质进化树。图2结果表明,AhWRKY75编码蛋白与花生栽培种WRKY75编码蛋白同源性最高(100%);与琴叶拟南芥、拟南芥WRKY75编码蛋白同源性为65%;与巴西橡胶树、野生烟草WRKY75 编码蛋白同源性为58%;与白菜WRKY75编码蛋白同源性最低(37%)。
对不同物种的WRKY75编码蛋白进行多重序列比对分析,同一位置相同的氨基酸用黑色阴影标记,保守结构域均为WRKYGQK(方框圈出),锌指结构中的半胱氨酸和组氨酸也是高度保守的(箭头标示)(图3)。
在上述的方法中,AhWRKY75基因成功克隆的关键在于特异性扩增引物WRKY75-F1、WRKY75-R1的灵敏性和特异性,以及经过优化筛选的PCR 扩增体系和扩增条件。采用WRKY75-F1、WRKY75-R1特异性引物,利用优化筛选建立的PCR扩增体系和扩增条件,获得扩增条带单一且清晰,保证了该基因的成功克隆。
本方法关键的参数是WRKY75-F1、WRKY75-R1特异引物序列;PCR 体系中的最适Mg2+浓度为2.4mM;以及PCR反应中合适的退火温度60℃。 2.4mM Mg2+浓度以及60℃退火温度都是针对WRKY75-F1、WRKY75-R1 特异引物筛选获得的,采用这些参数组合可以得到最好的扩增效果(图1a)。
实施例2植物表达载体的构建及转基因植株分子鉴定
1、植物表达载体的构建
用限制性内切酶Kpn I和Sac I分别双酶切pMD18-T-AhWRKY75重组质粒和Super1300载体,回收相应目的片段,加入T4DNA连接酶,65℃的金属浴中保温20~30min,之后再冰浴5~10min,将AhWRKY75片段连接到表达载体Super1300中35S启动子后面,得到重组质粒 Super1300-AhWRKY75。重组质粒经PCR扩增及Kpn I和Sac I双酶切,均得到655bp片段,如图4所示。
2、花生遗传转化研究
使用冻融法将过表达载体Super1300-AhWRKY75转化至农杆菌菌株GV3101中,挑取单菌落接种到YEB液体培养基中培养至OD600=1.0~1.2之间,保存菌液。在10mL的YEB液体培养基中加入500μL保存液,200rpm 摇菌10h,培养至OD600=0.6~0.8之间,用离心机6000rpm收集菌体,倒掉废液,用10mL侵染液等量悬浮菌体。在花生品种花育23号开花初期,每天下午人工摘除花蕾以防止下针坐果,摘花过程一直持续到花生盛花期来临。花生盛花期,每天早晨7:00~9:00进行菌液注射,用1mL的一次性无菌注射器刺入花生花萼管,缓缓注入含有Super1300-AhWRKY75重组质粒的农杆菌菌液,注射量以见到花朵的龙骨瓣里有气泡冒出为止。连续注射 10天后,再持续摘花一周,一周后对新生果针用尼龙绳进行捆绑标记。到9 月底自然成熟时收获带有尼龙绳标记的荚果。
3、转基因植株的分子鉴定
提取转化后收获的籽粒,切取小片子叶,利用SDS法提取基因组DNA。利用质粒上所含有的潮霉素(Hgy)基因引物进行PCR扩增检测。在所检测的68个籽粒中,有38个扩增出约734bp的目标片段(图5),转基因阳性率为55.88%。
Hgy基因检测引物:
Hgy-F:5′-GTGCTTTCAGCTTCGATG-3′
Hgy-R:5′-AACCAAGCTCTGATAGAG-3′。
在上述的方法中,AhWRKY75基因转化成功的关键在于通过花粉管注射法将重组质粒Super1300-AhWRKY75转化花生。采用花粉管注射法实现了外源基因的高效转化,转基因阳性率可达到55.88%。
本方法关键的参数在于注射转化所用菌液一定要保证新鲜,且菌液最适 OD600值在0.6~0.8之间侵染效果最好。一般需注射前一晚摇菌,第二天早上收集菌体后用等体积的侵染液重新悬浮,并于当日上午7:00~9:00进行菌液注射。参考这些参数可以达到最好的转化效率。
实施例3转基因植株RT-qPCR分析
对PCR扩增检测的阳性转基因植株进行总RNA的提取,并反转录为 cDNA,以花生Actin基因为内参,利用AhWRKY75基因引物进行RT-qPCR 扩增检测。AhWRKY75目的基因扩增片段长度为143bp,Actin内参基因扩增片段长度为191bp。图7显示其中3个转基因植株的相对表达量,分别是非转基因对照植株的21倍,14倍和17倍。说明转入的AhWRKY75基因得到过量表达。
AhWRKY75基因RT-qPCR扩增引物:
AhWRKY75-F:5'-ACGCGTTTCAAACCAGGAGCC-3',
AhWRKY75-R:5'-TGCTTCTTCACGTTGCACCCTTG-3'。
AhActin扩增引物:
AhActin-F:5'-GTGGCCGTACAACTGGTATTGT-3',
AhActin-R:5'-ATGGATGGCTGGAAGAGAACT-3'。
在上述的方法中,外源基因表达成功检测的关键在于AhWRKY75-F、 AhWRKY75-R引物的特异性和灵敏性,且扩增产物小于300bp,以及经过优化筛选的扩增条件。这些关键因素保证了基因表达量的准确检测。
本方法关键的参数是RNA反转录的起始量为20μL体系含100ng RNA, AhWRKY75-F、AhWRKY75-R扩增的适宜退火温度为58℃。采用这些参数可以达到很好的扩增效果(图7)。
实施例4转基因植物的耐盐性检测
1、转基因植株表型检测
对PCR鉴定为阳性且得到过量表达的转基因植株和非转基因对照植株 HY23进行盐胁迫处理。在植株生长到21天时灌浇250mM NaCl溶液,发现 72小时后对照植株HY23出现明显的叶片萎蔫现象,而转基因植株所表现出的叶片萎蔫现象要明显弱于对照植株(图7)。说明转基因植株的耐盐性有所提高。
2、转基因植株叶片气体交换参数
250mM NaCl溶液胁迫处理转基因植株及对照植株后72小时,用光合仪测定转基因及对照植株叶片的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci)。结果表明转入Super1300-AhWRKY75 质粒的植株的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)明显高于对照植株(图8a,8b,8c);胞间CO2浓度(Ci)的含量低于对照植株(图 8d)。初步说明在盐胁迫条件下,对照HY23的光合作用低于转基因植株的光合作用,转入的AhWRKY75基因增强了转基因植株的耐盐性。
3、转基因植株中耐盐相关基因的表达检测
从花生栽培种(http://peanutgr.fafu.edu.cn)和野生种 (https://www.peanutbase.org)数据库搜索花生抗逆相关基因,获得花生 Cu/Zn-SOD基因(AhCSD1),Cu/Zn-SOD基因(AhCSD2),以及花生CAT 基因(AhCAT)和花生POD基因(AhPOD)。利用Primer5.0软件针对这些基因的保守区域设计RT-qPCR引物(表1),以盐胁迫处理后72h的转基因植株和对照植株HY23的cDNA为模板,进行RT-qPCR表达分析。图 9结果表明:转基因植株中AhCSD1基因、AhCSD2基因、AhCAT和AhPOD 在盐胁迫处理后表达量均明显高于对照植株,且达到p<0.05显著差异。序列比对分析结果表明AhCSD1、AhCSD2、AhCAT和AhPOD基因的启动子中均含有5~8个W-box响应元件。推测转基因植株中AhWRKY75转录因子的过量表达,使得结合到其下游调控基因启动子区域相关顺式元件如W-box 的AhWRKY75蛋白量增加,调控了其下游抗逆相关基因的过量表达,增加了SOD、POD和CAT等保护酶的活性,进一步提高了转基因植物的耐盐性。
表1抗逆相关基因RT-qPCR分析用引物序列
Figure RE-GDA0001939928410000101
4、转基因植株中SOD、POD、CAT的酶活性及氧自由基含量的检测
对胁迫处理后的转基因植株及对照植株,使用冰浴研磨离心提取法提取叶片中的粗蛋白,分别利用NBT法、愈创木酚显色法、比色法以及羟胺氧化测定SOD、POD、CAT酶活性以及氧自由基含量。图10显示转基因植株的SOD酶活性(图10a)、POD酶活性(图10b)及CAT酶活性(图10c) 均显著高于对照植株(p<0.05)。转基因植株间各种酶活无明显的差异。转基因植株的氧自由基的含量显著低于对照植株中的含量(图10d)。以上结果表明,过量表达AhWRKY75基因可以增加转基因植株抗氧化酶的活性,降低了活性氧的含量积累,提高了转基因花生植株的耐盐能力。
上述说明示出并描述了发明的若干优选实施例,但如前所述,应当理解发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离发明的精神和范围,则都应在发明所附权利要求的保护范围内。
序列表
<110> 青岛农业大学
<120> 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用
<130> 2018
<160> 18
<170> SIPOSequenceListing 1.0
<210> 1
<211> 606
<212> DNA
<213> 花生(Arachis hypogaea Linn.)
<400> 1
atggataata attattccat gttgttccca tgtcctcctt cttcttcttc tacttcctcg 60
taccagattt caatttctaa caataataac gacaatagta atcagcagca tggtttcatt 120
actggtttga ataataataa taacggtcaa agctccaata atagtgcatt tctggatttg 180
aagtttcatg agcagcagct gaagagatca gaagaagatc aagaagaaga agaagagagg 240
attaatgtga gtgatcatca tcagttaggg ggtggttctt catcatcatc caacaagaag 300
aaaggagaaa agaaaattag aaaaccgaga tacgcgtttc aaaccaggag ccaagttgat 360
attcttgatg atggttatcg atggaggaaa tatggccaaa aggctgttaa aaacaacaaa 420
ttcccaagga gctactatag gtgcacacat caagggtgca acgtgaagaa gcaagtgcaa 480
cgtcttacaa aagatgaggg tgtagtggtg accacctatg aaggagtgca cactcaccca 540
attgagaaga caaccgacaa ctttgaacac attttgagtc agatgcaaat atacaccccc 600
ttttga 606
<210> 2
<211> 201
<212> PRT
<213> 花生(Arachis hypogaea Linn.)
<400> 2
Met Asp Asn Asn Tyr Ser Met Leu Phe Pro Cys Pro Pro Ser Ser Ser
1 5 10 15
Ser Thr Ser Ser Tyr Gln Ile Ser Ile Ser Asn Asn Asn Asn Asp Asn
20 25 30
Ser Asn Gln Gln His Gly Phe Ile Thr Gly Leu Asn Asn Asn Asn Asn
35 40 45
Gly Gln Ser Ser Asn Asn Ser Ala Phe Leu Asp Leu Lys Phe His Glu
50 55 60
Gln Gln Leu Lys Arg Ser Glu Glu Asp Gln Glu Glu Glu Glu Glu Arg
65 70 75 80
Ile Asn Val Ser Asp His His Gln Leu Gly Gly Gly Ser Ser Ser Ser
85 90 95
Ser Asn Lys Lys Lys Gly Glu Lys Lys Ile Arg Lys Pro Arg Tyr Ala
100 105 110
Phe Gln Thr Arg Ser Gln Val Asp Ile Leu Asp Asp Gly Tyr Arg Trp
115 120 125
Arg Lys Tyr Gly Gln Lys Ala Val Lys Asn Asn Lys Phe Pro Arg Ser
130 135 140
Tyr Tyr Arg Cys Thr His Gln Gly Cys Asn Val Lys Lys Gln Val Gln
145 150 155 160
Arg Leu Thr Lys Asp Glu Gly Ile Val Val Thr Thr Tyr Glu Gly Val
165 170 175
His Thr His Pro Ile Glu Lys Thr Thr Asp Asn Phe Glu His Ile Leu
180 185 190
Ser Gln Met Gln Ile Tyr Thr Pro Phe
195 200
<210> 3
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 3
ggtacctctt cactgaaatt ggattcaatg 30
<210> 4
<211> 31
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 4
gagctcaaac aaaaataaaa aatcaaaagg g 31
<210> 5
<211> 18
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 5
gtgctttcag cttcgatg 18
<210> 6
<211> 18
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 6
aaccaagctc tgatagag 18
<210> 7
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 7
acgcgtttca aaccaggagc c 21
<210> 8
<211> 23
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 8
tgcttcttca cgttgcaccc ttg 23
<210> 9
<211> 22
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 9
gtggccgtac aactggtatt gt 22
<210> 10
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 10
atggatggct ggaagagaac t 21
<210> 11
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 11
ggcagttctt agcagcagtg aggg 24
<210> 12
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 12
aggattgaaa tgcggtccag ttga 24
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 13
ctcacccagg atgacaacgg 20
<210> 14
<211> 22
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 14
aaccacgaat gctcttccaa ca 22
<210> 15
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 15
gtccccattc cttctgttat tctc 24
<210> 16
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 16
tttgaggggt tctttcttct tttt 24
<210> 17
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 17
tgattgtttt gtagagggat gtga 24
<210> 18
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 18
agcagccaga gcaattatgt cagc 24

Claims (2)

1.一种培育耐盐植物品种的方法,其特征在于,所述方法包括:将花生AhWRKY75基因转化到植物株系中而得到耐盐植物品种,或者通过杂交方法,使杂交后代获得花生AhWRKY75基因而成为耐盐植物品种;
所述植物为花生;
所述花生AhWRKY75基因的核苷酸序列如SEQ ID NO.1所示。
2.一种花生AhWRKY75基因提高花生耐盐性中的应用,其特征在于,所述花生AhWRKY75基因的核苷酸序列如SEQ ID NO.1所示。
CN201811062948.4A 2018-09-12 2018-09-12 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用 Active CN109355295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811062948.4A CN109355295B (zh) 2018-09-12 2018-09-12 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811062948.4A CN109355295B (zh) 2018-09-12 2018-09-12 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用

Publications (2)

Publication Number Publication Date
CN109355295A CN109355295A (zh) 2019-02-19
CN109355295B true CN109355295B (zh) 2020-07-07

Family

ID=65350996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811062948.4A Active CN109355295B (zh) 2018-09-12 2018-09-12 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用

Country Status (1)

Country Link
CN (1) CN109355295B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831504B (zh) * 2021-03-16 2023-03-24 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN114908107B (zh) * 2022-06-17 2023-04-28 青岛农业大学 花生AhABI5-like基因在提高植物含油量和/或耐盐性中的应用
CN115806988B (zh) * 2022-11-18 2024-04-12 青岛农业大学 花生fus3基因和启动子及其在提高花生含油量和耐盐性中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784343B2 (en) * 2000-04-04 2004-08-31 The Arizona Board Of Regents Proteins and DNA related to salt tolerance in plants
CN100344761C (zh) * 2005-12-06 2007-10-24 中国科学院植物研究所 一个旋蒴苣苔的抗旱、耐盐相关基因及其编码蛋白与应用
CN102604967B (zh) * 2012-03-27 2013-07-17 青岛农业大学 花生耐盐相关基因Rab7及其在提高耐盐性中的应用
CN106244594A (zh) * 2016-08-04 2016-12-21 南京农业大学 大豆磷饥饿转录因子GmWRKY75、编码蛋白及其应用
CN107056908B (zh) * 2017-04-24 2020-04-28 杭州师范大学 大豆耐盐基因GmCHS5及其应用

Also Published As

Publication number Publication date
CN109355295A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN109456982B (zh) 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用
CN110904071B (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CN109355295B (zh) 一种花生AhWRKY75基因及其在提高花生耐盐性中的应用
CN111018959B (zh) Bmdr蛋白及其编码基因在调控植物抗旱性中的应用
CN111574605B (zh) 水稻基因OsLAT5在调节敌草快的吸收积累中的应用
CN110862996B (zh) 一段分离的大豆基因在提高大豆孢囊线虫抗性中的应用
CN109207483B (zh) 西瓜抗病基因Cltlp3及其编码蛋白和应用
CN115612695A (zh) GhGPX5和GhGPX13基因在提高植物盐胁迫耐受性中的应用
CN114350684B (zh) 一种苹果MdERF-073基因、蛋白及应用
CN113088526B (zh) 热激相关基因ZmHsf11及其在调控植物耐热性中的应用
CN112553222B (zh) 一种辣椒耐热基因及其应用
CN111187779B (zh) 抗病基因OsRLR1、转录因子OsWRKY19以及在水稻抗白叶枯病育种中的应用
CN110714023B (zh) 番茄cti1基因在提高植物根结线虫抗性中的应用
CN110819634B (zh) 一种细叶百合基因LpNAC6的克隆及其应用
CN108707614B (zh) 一种花生抗逆性基因及其应用
CN114836436B (zh) 大豆基因GmRGS1与葡糖糖共同促进豆科植物根瘤产生中的应用
CN107973844B (zh) 小麦抽穗期相关蛋白Ta-Hd4A及其应用
CN113234731B (zh) 编码大豆ARF转录因子的GmARF16基因及应用
CN111454963A (zh) 火龙果耐盐基因HuERF1基因及其应用
CN111560055B (zh) 水稻基因OsLAT3在调节敌草快的吸收累积中的应用
CN111269920B (zh) 一种小麦抗赤霉病基因TaXAX1及其应用
CN112029746B (zh) 植物tmk1基因及其抗核盘菌的应用
CN111850012B (zh) 大豆类枯草杆菌蛋白酶基因GmSub及应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN107326030A (zh) 一种调控低钾耐受性的wrky转录因子及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant