CN109295418A - 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂 - Google Patents

具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂 Download PDF

Info

Publication number
CN109295418A
CN109295418A CN201811176444.5A CN201811176444A CN109295418A CN 109295418 A CN109295418 A CN 109295418A CN 201811176444 A CN201811176444 A CN 201811176444A CN 109295418 A CN109295418 A CN 109295418A
Authority
CN
China
Prior art keywords
cuo
thermite
array structure
array
nucleocapsid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811176444.5A
Other languages
English (en)
Other versions
CN109295418B (zh
Inventor
黎学明
杨海峰
陈金
罗晓玉
牟奕轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201811176444.5A priority Critical patent/CN109295418B/zh
Publication of CN109295418A publication Critical patent/CN109295418A/zh
Application granted granted Critical
Publication of CN109295418B publication Critical patent/CN109295418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Inert Electrodes (AREA)

Abstract

具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂。该铝热剂的制备方法包括:将制备好的泡沫铜片放入化学清洗液中清洗后得到除去有机物层和氧化层的、外观呈黄铜色的泡沫铜;然后将得到的泡沫铜迅速放在一定浓度的氢氧化钾溶液中阳极氧化获得氢氧化铜阵列。冲洗烘干后,在管式炉内程序升温得到氧化铜三维阵列结构;最后通过磁控溅射沉积方式在氧化铜三维阵列表面沉积Al以形成Al/CuO纳米3D核壳阵列结构铝热剂。与普通Al/CuO铝热剂相比,本发明的铝热剂具有氧化剂/燃料复合均匀、阵列负载密度更高、无裂纹、附着力强、放热性能优良等优点。

Description

具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂
技术领域
本发明涉及一种利用阳极氧化与低温脱水的方法,在泡沫铜基底上生长出高负载量的3D结构的CuO纳米线阵列,然后结合磁控溅射方法,制备出极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂的方法。
背景技术
纳米铝热剂由于存在的纳米级颗粒使各反应物之间的接触面积显著提高,氧化物与燃料间传质和传热距离明显缩短,使其具有更快的燃烧速率、更低的着火点、更高的能量释放率和更小的临界传播尺寸。与微米级铝热剂相比,纳米铝热剂可明显地提高氧化物的分解与产气,反应速度和能量释放最大可提高千倍以上。这些性能上优势使得纳米铝热剂成为过去20年来发展最为迅速的含能材料之一。
众多纳米铝热剂的复合体系中,Al/CuO由于具有最高的反应速度成为研究最为充分的一种,并在微含能器件(如微点火器、微火工品元件等)中具有重要的应用前景。
发明内容
本发明的目的之一在于提供一种具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂。
根据本发明的Al/CuO 3D核壳阵列结构铝热剂制备方法,包括:
提供泡沫铜;
将泡沫铜依次放置在6M盐酸、去离子水、无水乙醇、丙酮、去离子水中,各超声15min后用氮气吹干;
再以泡沫铜为阳极,铂网为阴极,采用2~4M的氢氧化钾溶液作为电解液,电解温度为25℃,电流密度为60mA/cm2的条件下(采用两电极工作体系)进行恒流阳极氧化,控制阳极氧化时间为20~60min后,获得外观为淡蓝色的Cu(OH)2NWs中间产品;
取出上述中间产品,分别用去离子水、无水乙醇反复冲洗干净,放置在60℃强制对流干燥箱中干燥4h;
将干燥后的中间产品放置在管式炉内,在氮气的气氛下0.5℃/min程序升温至150℃并保温3h,再升温至200℃,保温3h,再0.5℃/min缓慢退火(),得到黑色、致密的CuO NWs阵列结构;
通过磁控溅射沉积方式在上述CuO NWs阵列结构(CuO三维阵列)表面沉积Al以形成Al/CuO纳米3D核壳阵列结构铝热剂。
根据本发明的制备方法,可以通过改变溅射时间而沉积得到外观呈银灰色的不同比例的铝与氧化铜组成的Al/CuO 3D核壳阵列结构铝热剂,溅射时间优选为20~120min,更优选为40min。
根据本发明,阴极铂片的纯度优选不低于99.999%。
磁控溅射靶材所用高纯铝的纯度优选不低于99.999%。
根据本发明的磁控溅射的优选方案,其中基底与溅射Al靶之间的距离为40mm~60mm,溅射腔内真空度小于5×10-4Pa,采用氩气作为工作保护气,工作气压为2Pa,输入流量为50~250sccm。另外,磁控溅射优选在常温下进行,溅射功率为150W,溅射电流为0.4A,溅射沉积速率为0.10~0.15nm/s。
根据本发明的制备方法,在阳极氧化过程中,阳极和阴极优选垂直固定在溶液中。这种电极取向可以保证所形成的CuO NWs的分布均匀。
根据本发明的制备方法,优选氢氧化钾溶液溶液的浓度为2M,从而保证形成的CuONWs更加致密。
根据本发明的制备方法,可以通过改变阳极氧化时间来控制CuO NWs的负载量,优选阳极氧化时间为20min。
根据本发明的制备方法,为改善Al/CuO 3D核壳阵列结构铝热剂的放热性能,优选在使用前空喷铝靶10min~30min。
本发明利用阳极氧化—低温脱水与磁控溅射结合的方法,制备出的具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂具有以下优点:
本发明所使用的电化学沉积方法条件温和、反应可控、工艺灵活,可以定量制备CuO纳米阵列;
本发明中CuO纳米线阵列的形貌具有统一、致密,分布均匀,负载量高,当其与铝利用磁控溅射的方式结合的时候具有较短的距离,均匀地分布,使其具有很高的放热量;
本发明所制备的纳米含能材料减小了Al/CuO铝热剂中氧化剂和还原剂之间的距离,具有燃速快,燃烧剧烈,放热量高等优点。
根据本发明的极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂与普通Al/CuO铝热剂相比,具有氧化剂/燃料复合均匀、阵列负载密度更高、无裂纹、附着力强、放热性能优良等优点。且本发明工艺条件简单,反应条件温和,可以大规模生产,并可广泛用于微点火器、微火工品元件等众多领域。
附图说明
图1是根据本发明的CuO NWs阵列结构的全貌SEM照片;
图2是根据本发明的CuO NWs阵列结构的放大SEM照片;
图3是阳极氧化与低温脱水法与磁控溅射法结合制得的极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂的全貌SEM照片;
图4是阳极氧化与低温脱水法与磁控溅射法结合制得的极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂的放大SEM照片;
图5为根据本发明所制备极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂的放热性能图。
具体实施方式
下面通过实施例和比较例进一步说明本发明。本领域技术人员应该理解,以下实施例只是为了更好的理解和实现本发明,并不用于限制本发明。
将泡沫铜裁剪大小为10.0mm*10.0mm,并将其依次放置在6mol/L盐酸、去离子水、无水乙醇、丙酮、去离子水中,各超声15min后用氮气吹干,得到除去有机物层和氧化层的、外观呈黄铜色的泡沫铜。然后,将得到的泡沫铜迅速放在2mol/L的氢氧化钾溶液中,以其作为阳极,以纯度为99.999%的高纯铂片(4cm2)作为阴极,在电流密度为60mA/cm2的条件下进行恒流阳极氧化,阳极氧化20min后分别用去离子水、无水乙醇反复冲洗干净,放置在60℃强制对流干燥箱中干燥4h后,获得外观为淡蓝色的Cu(OH)2NWs。随后将其放置在管式炉内,在氮气的气氛下0.5℃/min程序升温至150℃并保温3h,再升温至200℃,保温3h,缓慢退火(0.5℃/min)得到黑色、致密的CuO NWs阵列结构。
通过磁控溅射沉积方式在CuO三维阵列表面沉积Al以形成Al/CuO纳米3D核壳阵列结构铝热剂。磁控溅射靶材选用纯度为99.999%的高纯铝,基底与溅射Al靶之间的距离为60mm。溅射腔内真空度为2×10-4Pa,采用氩气作为工作保护气,工作气压为2Pa,输入流量为50sccm。磁控溅射在常温下进行,溅射功率为150W,溅射电流为0.4A,溅射沉积速率为0.10~0.15nm/s。通过40min溅射沉积得到外观呈银灰色的纳米Al/CuO阵列放热量最大的Al/CuO纳米3D核壳阵列结构铝热剂。
图1与图2为阳极氧化并低温脱水后的CuO NWs的SEM照片;图3和图4为Al/CuO纳米线核壳结构的SEM照片;图5为极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂的DSC放热性能图。
在碱性溶液中阳极氧化20min后低温脱水获得CuO NWs,由图1-2可见,线形氧化铜均匀的生长在泡沫铜骨架上,即使在泡沫铜内部的大孔表面,也均匀地长满了致密的CuONWs。通过多个样品差重法计算得CuO的平均纳米线数约为1×1011~1×1013NWs/cm2。比热蒸发法制备的CuO NWs纳米线数高4个数量级,比化学沉积法高2个数量级。
这种高致密性的CuO NWs形成的Al/CuO纳米线核壳结构会使单位面积上的铝热剂分配密度大大增加。且有着相对固定位置的CuO纳米线使Al均匀的分散在CuO线的周围,形成了数根CuO纳米线被Al紧紧包裹成一束的结构,该结构有效的防止Al颗粒的团聚,扩大了Al与CuO接触面积,缩短了二者之间的距离,参见图3-4。
无论是采用热蒸发还是化学腐蚀在基底上获得线状CuO阵列结构,其所形成的阵列都具有形貌不统一、基底的附着力不强、且负载量不高等缺点。本发明通过电化学氧化获得分布均匀的CuO NWs,利用特定的磁控溅射工艺制备出了具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂,如图5所显示。

Claims (2)

1.一种Al/CuO 3D核壳阵列结构铝热剂制备方法,包括:
提供泡沫铜;
将泡沫铜依次放置在6M盐酸、去离子水、无水乙醇、丙酮、去离子水中,各超声15min后用氮气吹干;
再以泡沫铜为阳极,铂网为阴极,采用2~4M的氢氧化钾溶液作为电解液,电解温度为25℃,电流密度为60mA/cm2的条件下进行恒流阳极氧化,控制阳极氧化时间为20~60min后,获得外观为淡蓝色的Cu(OH)2NWs中间产品;
取出上述中间产品,分别用去离子水、无水乙醇反复冲洗干净,放置在60℃强制对流干燥箱中干燥4h;
将干燥后的中间产品放置在管式炉内,在氮气的气氛下0.5℃/min程序升温至150℃并保温3h,再升温至200℃,保温3h,再0.5℃/min缓慢退火,得到黑色、致密的CuO NWs阵列结构;
通过磁控溅射沉积方式在上述CuO NWs阵列结构表面沉积Al以形成Al/CuO纳米3D核壳阵列结构铝热剂。
2.根据权利要求1的制备方法,其中通过改变溅射时间而沉积得到外观呈银灰色的不同比例的铝与氧化铜组成的Al/CuO 3D核壳阵列结构铝热剂,溅射时间为20~120min。
CN201811176444.5A 2018-10-10 2018-10-10 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂 Active CN109295418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811176444.5A CN109295418B (zh) 2018-10-10 2018-10-10 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811176444.5A CN109295418B (zh) 2018-10-10 2018-10-10 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂

Publications (2)

Publication Number Publication Date
CN109295418A true CN109295418A (zh) 2019-02-01
CN109295418B CN109295418B (zh) 2020-09-25

Family

ID=65162070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811176444.5A Active CN109295418B (zh) 2018-10-10 2018-10-10 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂

Country Status (1)

Country Link
CN (1) CN109295418B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680309A (zh) * 2019-03-06 2019-04-26 重庆大学 超疏水多孔Al/CuO纳米铝热含能复合材料
CN109706508A (zh) * 2019-03-13 2019-05-03 重庆大学 空心Mg/MnO2超级含能材料的制备
CN112626635A (zh) * 2020-12-15 2021-04-09 西南科技大学 一种基于纳米铝热剂油墨制备高燃速微管道的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080307992A1 (en) * 2007-06-15 2008-12-18 Jonathan Mohler Charge system for destroying chips on a circuit board and method for destroying chips on a circuit board
CN104505457A (zh) * 2014-12-08 2015-04-08 陕西师范大学 基于Al/CuO薄膜的热电材料及其制备方法
CN105177517A (zh) * 2015-09-23 2015-12-23 南京理工大学 纳米铝热剂及其制备方法
CN105990044A (zh) * 2016-01-20 2016-10-05 安徽大学 一种柔性固态超级电容器Cu(OH)2@Ni2(OH)2CO3多级纳米阵列电极的制备方法
CN107119301A (zh) * 2017-04-28 2017-09-01 重庆大学 Al/CuO纳米管铝热剂及其制备方法
CN107245746A (zh) * 2017-04-28 2017-10-13 重庆大学 Al/CuO铝热剂及其制备方法
CN107299319A (zh) * 2017-06-21 2017-10-27 南京理工大学 一种核壳结构CuO/Al纳米含能薄膜材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080307992A1 (en) * 2007-06-15 2008-12-18 Jonathan Mohler Charge system for destroying chips on a circuit board and method for destroying chips on a circuit board
CN104505457A (zh) * 2014-12-08 2015-04-08 陕西师范大学 基于Al/CuO薄膜的热电材料及其制备方法
CN105177517A (zh) * 2015-09-23 2015-12-23 南京理工大学 纳米铝热剂及其制备方法
CN105990044A (zh) * 2016-01-20 2016-10-05 安徽大学 一种柔性固态超级电容器Cu(OH)2@Ni2(OH)2CO3多级纳米阵列电极的制备方法
CN107119301A (zh) * 2017-04-28 2017-09-01 重庆大学 Al/CuO纳米管铝热剂及其制备方法
CN107245746A (zh) * 2017-04-28 2017-10-13 重庆大学 Al/CuO铝热剂及其制备方法
CN107299319A (zh) * 2017-06-21 2017-10-27 南京理工大学 一种核壳结构CuO/Al纳米含能薄膜材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680309A (zh) * 2019-03-06 2019-04-26 重庆大学 超疏水多孔Al/CuO纳米铝热含能复合材料
CN109706508A (zh) * 2019-03-13 2019-05-03 重庆大学 空心Mg/MnO2超级含能材料的制备
CN112626635A (zh) * 2020-12-15 2021-04-09 西南科技大学 一种基于纳米铝热剂油墨制备高燃速微管道的方法
CN112626635B (zh) * 2020-12-15 2022-01-28 西南科技大学 一种基于纳米铝热剂油墨制备高燃速微管道的方法

Also Published As

Publication number Publication date
CN109295418B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN107946560B (zh) 碳限域金属或金属氧化物复合纳米结构材料及其制备方法和应用
CN106315695B (zh) 一种杨梅状钴酸镍纳米材料及其制备方法
CN109295418A (zh) 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂
CN105845918B (zh) 一种高容量的多孔硅材料及其制备方法和应用
CN109888237B (zh) 一种钠离子电池负极材料及其制备方法
CN108172782B (zh) 一种具有壳-核结构碳包裹多孔氧化亚钴纳米材料的制备方法及应用
CN110610816A (zh) 一种碳布基镍钴双金属硒化物纳米方片电极材料的制备方法
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN108615886A (zh) 一种薄壁型多孔碳球材料及其制备和作为钠离子电池负极材料的应用
CN111483999B (zh) 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用
CN106048650A (zh) 3d多孔电极的制备方法及其在电化学析氢反应中的应用
CN104201332B (zh) 一种衬底上生长有钴纳米线阵列的锂离子电池负极及其制备方法
CN109817921A (zh) 一种硫掺杂MXene负极材料及其制备方法和应用
CN103682369B (zh) 一种锂电池极板
CN110227549B (zh) 一种空心立方体结构阳极催化剂及其制备方法
CN104805428A (zh) 一种铜片表面生长氧化铜薄膜的方法
CN109055973A (zh) 铝掺杂三维纳米多孔金属硫化物析氢电极制备及使用方法
CN109065861A (zh) 沥青基多孔碳材料及其制备方法、硅碳负极材料及二次电池
CN103247792A (zh) 一类纳米多孔硅合金材料及其制备方法
CN110624605A (zh) 一种壳核结构的阳极催化剂及其制备方法
CN109368616A (zh) 一种三维石墨烯碳纳米管复合材料的可控制备方法
CN108987724A (zh) 一种锂离子电池中空Si/C复合负极材料及其制备方法
CN105990560A (zh) 氧化铁多孔纳米棒阵列电极材料及其制备方法
CN108598405A (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
CN109728282B (zh) 一种多孔过渡金属氧化物/碳复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant