CN109264785B - 一种氧空位wo3-x粉体材料的快速制备方法 - Google Patents

一种氧空位wo3-x粉体材料的快速制备方法 Download PDF

Info

Publication number
CN109264785B
CN109264785B CN201811338953.3A CN201811338953A CN109264785B CN 109264785 B CN109264785 B CN 109264785B CN 201811338953 A CN201811338953 A CN 201811338953A CN 109264785 B CN109264785 B CN 109264785B
Authority
CN
China
Prior art keywords
radio frequency
frequency power
powder
flow rate
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811338953.3A
Other languages
English (en)
Other versions
CN109264785A (zh
Inventor
杨志广
石晓明
武文
彭鹏
李可
王筠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoukou Normal University
Original Assignee
Zhoukou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhoukou Normal University filed Critical Zhoukou Normal University
Priority to CN201811338953.3A priority Critical patent/CN109264785B/zh
Publication of CN109264785A publication Critical patent/CN109264785A/zh
Application granted granted Critical
Publication of CN109264785B publication Critical patent/CN109264785B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种氧空位WO3‑X粉体材料的快速制备方法,包括如下步骤:将WO3粉体放置于等离子体化学气相沉积装置中;控制真空管式炉的真空度至10‑30mbar,通入工作气体至等离子发生区域,打开射频电源开始沉积,生长0.1‑1小时后,即可在石英舟底的表面得到WO3‑X。其中,所述工作气体选自氢气、氩气或氦气中的一种或多种,H2的流速为10‑60sccm,Ar或He的流速为10‑60sccm,所述射频功率为100‑500W。该方法低成本,经济环保、无污染、无需复杂的预处理工艺和高温过程,且处理工序更加简化和具有兼容性。

Description

一种氧空位WO3-X粉体材料的快速制备方法
技术领域
本发明涉及化学原料制备领域,具体涉及一种氧空位WO3-X粉体材料的快速制备方法。
背景技术
WO3-X材料优异的物理性能在高功率高能量密度的能源转化与存储器件、光催化等领域中的应用受到越来越多的关注,尤其是有关WO3-X的可控生长及其在超级电容器、锂离子电池、光催化等能源器件中的电极应用。原因在于将 WO3制备成氧空位的形式,能够形成WO3-X基复合材料,这样能够提供更多的多孔网格结构,其具有大的比表面积、低的质量密度、优异的导电性,从而提高 WO3-X复合材料的电化学性能。
目前,制备三维WO3-X的方法主要集中在液相化学合成法、化学气相沉积法。经过近几年的研究开发,液相化学合成方法已经能够得到很好的WO3-X结构,但制备过程中经常需要加入大量的添加剂和化学物质进行反应与反复清洗、干燥,一定程度上对原料和废液的后期处理带来了困难。化学气相沉积法在WO3-X的薄膜的生长技术已经趋于成熟,而其形成的过程中需要提供一定的高温先对WO3进行热裂解后形核;采用此方法制备WO3-X粉体的过程中,活性气体H2在WO3的生长高温下往往会使导致形貌结构的严重破坏和巨大能耗,对其后期的应用开发造成限制。因此,探索快速、无损合成WO3-X基复合电极的研究仍具有较强的意义。
发明内容
本发明的目的在于提供一种氧空位WO3-X粉体材料的快速制备方法,该方法低成本,经济环保、无污染、无需复杂的预处理工艺和高温过程,且处理工序更加简化和具有兼容性。
本发明通过以下技术方案实现:
一种氧空位WO3-X粉体材料的快速制备方法,包括如下步骤:
将WO3粉体放置于等离子体化学气相沉积装置中;
控制真空管式炉的真空度至10-30mbar,通入工作气体至等离子发生区域,打开射频电源开始沉积,生长0.1-1小时后,即可在石英舟底的表面得到 WO3-X。其中,所述工作气体选自氢气、氩气或氦气中的一种或多种,H2的流速为10-60sccm,Ar或He的流速为10-60sccm,所述射频功率为100-500W。
一种氧空位WO3-X粉体材料的快速制备方法,包括如下步骤:
将WO3粉体放置于等离子体化学气相沉积装置中;
在石英管式真空炉中间放置泡沫镍衬底,控制真空管式炉的真空度至 10-30mbar,通入工作气体至等离子发生区域,打开射频电源开始沉积,生长 0.1-1小时后,即可在石英舟底的表面得到WO3-X。其中,所述工作气体选自氢气、氩气或氦气中的一种或多种,H2的流速为10-60sccm,Ar或He的流速为 10-60sccm;所述射频功率为100-500W。
本发明具有以下有益效果:
本发明通过把WO3放置在等离子体反应的区域,且无需控制加热温度;把 H2引入到反应体系中,在氢等离子作用下断开W=O双键,同时得到W-O单键,适当增加H的含量,从而实现快速制备WO3-X的目的,此种方法可直接利用制备WO3-X,从而得到大比表面积的WO3-X粉体,该结构大大提高了WO3-X的表面负载。为实现真正意义上的WO3多孔粉体提供了一个简洁的方法。
附图说明
图1为WO3-X的扫描电镜的高倍和低倍图像
图2为WO3-X样品的XRD表征结果。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
利用射频等离子化学气相沉积方法,首先在石英管式真空炉中间放置WO3粉末,用机械泵将真空管式炉的真空度抽至10mbar,通入H2/Ar至射频等离子发生区域,H2的流速为50sccm,Ar的流速为50sccm,打开射频电源开始沉积,保持射频功率为500W,生长时间为0.5小时,在石英舟底的表面得到WO3-X
实施例2
利用等离子化学气相沉积方法,首先在石英管式真空炉中间放置泡沫镍衬底,用机械泵将真空管式炉的真空度抽至30mbar,通入H2/Ar至等离子发生区域,H2的流速为30sccm,Ar的流速为40sccm,打开射频电源开始沉积,保持射频功率为500W,生长时间为0.2小时,在石英舟底的表面得到WO3-X
实施例3
利用射频等离子化学气相沉积方法,首先在石英管式真空炉中间放置泡沫镍衬底,用机械泵将真空管式炉的真空度抽至30mbar,通入氦气至射频等离子发生区域,氦气的流速为50sccm,打开射频电源开始沉积,保持射频功率为500W,生长时间为1小时,在石英舟底的表面得到WO3-X
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (2)

1.一种氧空位WO3-X粉体材料的快速制备方法,其特征在于,包括如下步骤:
将WO3粉体放置于等离子体化学气相沉积装置中;
控制真空管式炉的真空度至10-30 mbar,通入工作气体至等离子发生区域,其中工作气体为氢气、氩气或氦气中的一种或多种,氢气的流速为10-60sccm,氩气或氦气的流速为10-60sccm;
然后打开射频电源开始沉积,射频功率为100-500 W,生长0.1-1小时后,即可在石英舟底的表面得到WO3-X
2.如权利要求1所述的一种氧空位WO3-X粉体材料的快速制备方法,其特征在于,包括如下步骤:
将WO3粉体放置于等离子体化学气相沉积装置中;
在石英管式真空炉中间放置泡沫镍衬底,控制真空管式炉的真空度至10-30mbar,通入工作气体至等离子发生区域,打开射频电源开始沉积,生长0.1-1小时后,即可在石英舟底的表面得到WO3-X
CN201811338953.3A 2018-11-12 2018-11-12 一种氧空位wo3-x粉体材料的快速制备方法 Expired - Fee Related CN109264785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811338953.3A CN109264785B (zh) 2018-11-12 2018-11-12 一种氧空位wo3-x粉体材料的快速制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811338953.3A CN109264785B (zh) 2018-11-12 2018-11-12 一种氧空位wo3-x粉体材料的快速制备方法

Publications (2)

Publication Number Publication Date
CN109264785A CN109264785A (zh) 2019-01-25
CN109264785B true CN109264785B (zh) 2020-11-24

Family

ID=65192989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811338953.3A Expired - Fee Related CN109264785B (zh) 2018-11-12 2018-11-12 一种氧空位wo3-x粉体材料的快速制备方法

Country Status (1)

Country Link
CN (1) CN109264785B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999782A (zh) * 2019-03-11 2019-07-12 江苏大学 一种光活性缺陷光催化剂及制备方法和用途
CN113716611B (zh) * 2021-09-13 2023-05-16 西南科技大学 一种氮掺杂wo2.9纳米棒的超快速制备方法
CN116443936A (zh) * 2023-05-04 2023-07-18 华南师大(清远)科技创新研究院有限公司 一种利用等离子体技术制备富缺陷氧化钨纳米片的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345338A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 水素ガス検知用塗膜顔料、水素ガス検知用塗膜、及び水素ガス検知テープ
CN107879376A (zh) * 2017-11-17 2018-04-06 郑州大学 一种亚化学计量氧化钨的制备方法
CN108046328A (zh) * 2017-11-20 2018-05-18 湖北大学 一种缺陷态氧化钨纳米颗粒光热转化材料及其制备方法和应用
CN108083341A (zh) * 2018-01-30 2018-05-29 陕西科技大学 一种带有氧空位的单斜相三氧化钨的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345338A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 水素ガス検知用塗膜顔料、水素ガス検知用塗膜、及び水素ガス検知テープ
CN107879376A (zh) * 2017-11-17 2018-04-06 郑州大学 一种亚化学计量氧化钨的制备方法
CN108046328A (zh) * 2017-11-20 2018-05-18 湖北大学 一种缺陷态氧化钨纳米颗粒光热转化材料及其制备方法和应用
CN108083341A (zh) * 2018-01-30 2018-05-29 陕西科技大学 一种带有氧空位的单斜相三氧化钨的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HF-PCVD法WOx纳米微晶的制备及光催化活性;王俊文 等;《稀有金属材料与工程》;20080430;第37卷(第4期);705-708 *
Vertically aligned tungsten oxide nanorod film with enhanced performance in photoluminescence humidity sensing;Junjun Zhang et al.;《Sensors and Actuators B: Chemical》;20140611;第202卷;708-713 *

Also Published As

Publication number Publication date
CN109264785A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN109264785B (zh) 一种氧空位wo3-x粉体材料的快速制备方法
Jia et al. Three‐dimensional hierarchical architectures derived from surface‐mounted metal–organic framework membranes for enhanced electrocatalysis
CN109746018A (zh) 一种金属磷化物修饰的磷掺杂的石墨相氮化碳光催化剂的制备方法
CN105523546A (zh) 一种三维石墨烯的制备方法
CN104103821B (zh) 硅碳负极材料的制备方法
CN105390300B (zh) 一种在泡沫镍上快速生长石墨烯花簇阵列的方法
CN105185599A (zh) 一种超级电容碳复合材料及其制备方法和应用
CN104577059B (zh) 泡沫镍基底上直接生长碳纳米管来制备电池电极的方法
CN109994719A (zh) 一种磷掺杂MXene材料及其制备方法
CN104178745A (zh) 一种多孔金刚石或多孔立方碳化硅自支撑膜的制备方法
CN109722650B (zh) 一种六方氮化硼材料及其制备方法和转移方法
CN106629720A (zh) 一种基于离子液体直接炭化法制备杂原子共掺杂多孔碳材料的方法
CN109167077B (zh) 一种磷掺杂多孔碳氧还原催化剂及其制备方法和应用
CN105439126A (zh) 一种毫米级单晶石墨烯的简便制备方法
CN109592666A (zh) 一种仙人掌状碳纳米管阵列的制备方法
CN101114719A (zh) 一种以多孔衬底材料为支撑的梯度结构薄膜的制备方法
Tian et al. Fabrication of iron carbide by plasma-enhanced atomic layer deposition
CN112897483B (zh) TiN(B)@TiO2核-壳颗粒粉末材料及制备方法
CN107674236B (zh) 一种超双亲聚氨酯泡沫材料及其制备方法
CN107342403B (zh) 含有氮化硅的纳米材料及其制备方法和用途
CN104733715A (zh) 一种碳/氧化铬纳米复合材料的制备方法
CN106025315B (zh) 一种改性lscm电极及其制备方法
CN105355839B (zh) 一种石墨烯‑金复合电极及其制备方法和应用
CN104393261A (zh) 一种Cox/(CoO)y/Cz复合锂离子电池电极材料的制备方法
CN109524245B (zh) 一种高性能镍-钴硒化物/三维石墨烯/泡沫镍无粘结剂电极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201124

Termination date: 20211112

CF01 Termination of patent right due to non-payment of annual fee