CN109251352A - 一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法 - Google Patents

一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法 Download PDF

Info

Publication number
CN109251352A
CN109251352A CN201810999559.8A CN201810999559A CN109251352A CN 109251352 A CN109251352 A CN 109251352A CN 201810999559 A CN201810999559 A CN 201810999559A CN 109251352 A CN109251352 A CN 109251352A
Authority
CN
China
Prior art keywords
polyvinyl alcohol
sodium alginate
hydroxyapatite
porous support
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810999559.8A
Other languages
English (en)
Inventor
黄棣
胡银春
徐梦洁
魏延
杜晶晶
连小洁
陈维毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201810999559.8A priority Critical patent/CN109251352A/zh
Publication of CN109251352A publication Critical patent/CN109251352A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • C08J2201/0524Inducing phase separation by thermal treatment, e.g. cooling a solution the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,属于组织工程技术领域,解决多孔支架孔径大小可控以及促进骨组织再生的技术问题,制备的步骤如下:(1)将聚乙烯醇纯溶液在一定温度下溶解在去离子水中制得聚乙烯醇稀溶液;(2)将聚乙烯醇稀溶液降温后加入海藻酸钠粉末并充分搅拌,制得PVA/SA混合溶液;(3)将羟基磷灰石浆料分散到PVA/SA混合溶液中,得到PVA/SA/羟基磷灰石混合溶液;(4)浸入交联剂中静置一段时间进行化学交联后,再通过多次循环冷冻‑解冻法制备出PVA/SA/羟基磷灰石水凝胶,通过冷冻干燥得到结构可控的PVA/SA/羟基磷灰石多孔支架。本发明工艺稳定,成本低廉,在骨修复、松质骨及骨与软骨的修复等领域具有广泛的应用价值。

Description

一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制 备方法
技术领域
本发明属于组织工程技术领域,特别涉及一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,可用于松质骨、骨与软骨再生等方面。
背景技术
松质骨一直广泛应用于同种异体骨移植,治疗充填性骨质缺损,如牙槽嵴裂、颌骨囊肿及牙周骨缺损等。人体松质骨内部是由许多针状或片状的骨小梁相互交错形成的海绵状结构,骨小梁排列出的多孔结构是骨能承受较大重量的重要因素。多孔支架作为骨修复材料,应该具有良好的生物相容性、降解性、合适的孔径大小和孔隙率以及力学性能。其中内部结构会影响细胞及组织的生长,从而影响材料的生物相容性和力学性能等。因此利用交联的方法制备结构可控的聚乙烯醇(PVA)/海藻酸钠(SA)/羟基磷灰石多孔支架将为松质骨或骨与软骨之间的缺损修复提供基础科学信息。
关于骨组织修复多孔支架的研究已有进展,但如何控制多孔支架孔径大小以及促进骨组织再生仍然是研究的热点。对于骨组织支架,部分学者采用动物松质骨进行煅烧来获得类似人体松质骨骨矿的三维互通网孔微结构及其较好的机械强度,但此法取材不便,且对于孔隙结构的尺寸不可控。还有部分研究人员采取有机物、无机物及金属等的复合制备多孔支架,但此法原料多,试剂复杂且部分具有一定毒性,不利于细胞生长。
发明内容
为了克服现有技术存在的不足,本发明的目的在于提供一种可在温和条件下,通过物理交联和化学交联的方法将PVA和SA交联,制备一种结构可控的PVA/SA/羟基磷灰石多孔支架。
本发明的设计构思如下:SA中G单元的-COO-和PVA中的羟基分别利用交联剂中的Ca2+和B(OH)4 形成交联结构,再通过循环冷冻-解冻使其内部利用氢键和结晶区进行物理交联,最后形成孔隙结构。将羟基磷灰石均匀分散在其中,起到支撑作用及骨诱导作用。最后利用冷冻干燥法原位去除水分,即制备出PVA/SA/羟基磷灰石多孔支架。本发明发明利用交联作用将PVA、SA和羟基磷灰石制备成结构可控的PVA/SA/羟基磷灰石多孔支架,这种方法在国内外公开的文献中鲜有报道。
本发明通过以下技术方案予以实现。
一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,制备的步骤如下:
S1、将聚乙烯醇纯溶液倒入去离子水中,然后将混合液加热至85~95℃并搅拌1.5~2h,使聚乙烯醇纯溶液完全溶解于去离子水中,制得浓度为5~10wt%的聚乙烯醇稀溶液;将聚乙烯醇稀溶液冷却至45~60℃后,向聚乙烯醇稀溶液中加入海藻酸钠粉末并搅拌1.5~2 h,得到PVA:SA质量比为(5~10):(5~0)的聚乙烯醇/海藻酸钠混合溶液;向聚乙烯醇/海藻酸钠混合溶液中加入羟基磷灰石浆料,将混合溶液加热至65~75℃并搅拌1.5~2 h,静置除泡,得到无机相羟基磷灰石的质量比为35~45%的聚乙烯醇/海藻酸钠/羟基磷灰石混合溶液;
S2、将步骤S1制得的聚乙烯醇/海藻酸钠/羟基磷灰石混合溶液倒入模具中,然后将模具浸入浓度为1~6wt%的交联剂中,静置20~24 h,使聚乙烯醇/海藻酸钠/羟基磷灰石混合溶液充分发生交联反应;
S3、将步骤S2中交联反应后制得的样品连同模具一起从交联剂中取出,然后将模具先放入-15 ~ -25℃的制冷装置中冷冻19~21h,再从制冷装置中取出置于室温中解冻3~5h,循环冷冻-解冻过程1~6次,得到聚乙烯醇/海藻酸钠/羟基磷灰石水凝胶;
S4、将水凝胶从模具中取出,用冷冻干燥机将步骤S3中制得的聚乙烯醇/海藻酸钠/羟基磷灰石水凝胶冷冻干燥,制得聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架。
进一步地,所述步骤S1中聚乙烯醇纯溶液优选的溶解温度为90℃。
进一步地,所述步骤S1中聚乙烯醇稀溶液优选的溶解温度为50℃。
进一步地,所述步骤S2中的交联剂为CaCl2,或者为硼酸,或者为CaCl2饱和硼酸溶液中。
进一步地,所述步骤S4中冷冻干燥时间为24~48 h。
进一步地,所述的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架内部具有均匀的孔隙结构,且孔隙具有取向性,孔隙大小可控。
与现有技术相比本发明的有益效果为:
本发明采用简单的原料,利用交联作用使得PVA和SA复合且形成均匀的孔隙结构,并在其中添加羟基磷灰石,使其具有均匀的类骨三维孔隙结构,最终获得结构可控、生物相容性好、孔隙率适中且具有一定力学性能的PVA/SA/羟基磷灰石多孔支架, 其内部孔隙结构可随着实验条件的改变而不同,实现内部结构可控,使这种多孔支架更具有实用价值,可以用于松质骨修复及骨与软骨修复等方面。
附图说明
图1 PVA/SA/羟基磷灰石多孔支架贯通形孔隙SEM图片;
图2 PVA/SA/羟基磷灰石多孔支架贯通形孔隙侧面SEM图片;
图3 PVA/SA/羟基磷灰石多孔支架圆形孔隙SEM图片;
图4 PVA/SA/羟基磷灰石多孔支架层叠形孔隙SEM图片;
图5 PVA/SA/羟基磷灰石多孔支架与细胞共培养图片;
图6 PVA/SA/羟基磷灰石多孔支架与细胞共培养的细胞粘附图片。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细描述。
实施例1
将8g PVA溶于100 mL去离子水中,90℃下搅拌2 h。再将2g SA加入PVA水溶液中,50℃下搅拌2h。将6.66g羟基磷灰石加入上述混合溶液中,70℃下搅拌2h。将混合溶液倒入模具中,浸泡在3wt% CaCl2溶液中进行化学交联,24h后取出。将样品置于~20℃冰箱冷冻21h,取出后在室温环境下解冻3h,如此循环3次。将循环冷冻-解冻3次的样品真空干燥48 h后取出,用SEM观察表面结构,可见其内部存在均匀的孔隙结构,多为贯通型孔隙,孔径大小5~10μm(如图1所示),侧面孔隙具有一定的取向性(如图2所示)。
实施例2
将7g PVA溶于100 mL去离子水中,90℃下搅拌2 h。再将3gSA加入PVA水溶液中,50℃下搅拌2h。将6.66g羟基磷灰石加入上述混合溶液中,70℃下搅拌2h。将混合溶液倒入模具中,浸泡在4wt%硼酸溶液中进行化学交联,24h后取出。将样品置于~20℃冰箱冷冻19 h,取出后在室温环境下解冻5h,如此循环3次。将循环冷冻-解冻3次的样品真空干燥48h后取出,用SEM观察表面结构,可见其内部存在均匀的孔隙结构,孔隙多呈圆形(如图3所示),孔径大小10~20μm。
实施例3
将6 g PVA溶于100 mL去离子水中,90℃下搅拌1.5 h。再将4 g SA加入PVA水溶液中,55℃下搅拌1.5 h。将8.18 g羟基磷灰石加入上述混合溶液中,70℃下搅拌2 h。将混合溶液倒入模具中,浸泡在3wt% CaCl2饱和硼酸溶液中进行化学交联,24 h后取出。将样品置于~20℃冰箱冷冻21 h,取出后在室温环境下解冻3 h,如此循环4次。将循环冷冻-解冻4次的样品真空干燥48 h后取出,用SEM观察表面结构,可见其内部存在均匀的孔隙结构,开始出现一些层叠状孔隙(如图4所示),孔径大小10~30 μm。
实施例4
将8 g PVA溶于100 mL去离子水中,90℃下搅拌2 h。再将2 g SA加入PVA水溶液中,50℃下搅拌2 h。将6.66 g羟基磷灰石加入上述混合溶液中,70℃下搅拌2 h。将混合溶液倒入模具中,浸泡在3wt% CaCl2饱和硼酸溶液中进行化学交联,24 h后取出。将样品置于~20℃冰箱冷冻21 h,取出后在室温环境下解冻3 h,如此循环3次。将循环冷冻-解冻3次的样品真空干燥48 h后取出。利用高温蒸汽灭菌锅将样品灭菌后与细胞共培养,6天后细胞生长增殖状态良好(如图5所示),9天后细胞在材料表面粘附状态良好(如图6所示)。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (6)

1.一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,其特征在于制备的步骤如下:
S1、将聚乙烯醇纯溶液倒入去离子水中,然后将混合液加热至85~95℃并搅拌1.5~2h,使聚乙烯醇纯溶液完全溶解于去离子水中,制得浓度为5~10wt%的聚乙烯醇稀溶液;将聚乙烯醇稀溶液冷却至45~60℃后,向聚乙烯醇稀溶液中加入海藻酸钠粉末并搅拌1.5~2 h,得到PVA:SA质量比为5~10:5~0的聚乙烯醇/海藻酸钠混合溶液;向聚乙烯醇/海藻酸钠混合溶液中加入羟基磷灰石浆料,将混合溶液加热至65~75℃并搅拌1.5~2 h,静置除泡,得到无机相羟基磷灰石的质量比为35~45%的聚乙烯醇/海藻酸钠/羟基磷灰石混合溶液;
S2、将步骤S1制得的聚乙烯醇/海藻酸钠/羟基磷灰石混合溶液倒入模具中,然后将模具浸入浓度为1~6wt%的交联剂中,静置20~24 h,使聚乙烯醇/海藻酸钠/羟基磷灰石混合溶液充分发生交联反应;
S3、将步骤S2中交联反应后制得的样品连同模具一起从交联剂中取出,然后将模具先放入-15 ~ -25℃的制冷装置中冷冻19~21h,再从制冷装置中取出置于室温中解冻3~5h,循环冷冻-解冻过程1~6次,得到聚乙烯醇/海藻酸钠/羟基磷灰石水凝胶;
S4、将水凝胶从模具中取出,用冷冻干燥机将步骤S3中制得的聚乙烯醇/海藻酸钠/羟基磷灰石水凝胶冷冻干燥,制得聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架。
2.根据权利要求1所述的一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,其特征在于:所述步骤S1中聚乙烯醇纯溶液优选的溶解温度为90℃。
3.根据权利要求1所述的一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,其特征在于:所述步骤S1中聚乙烯醇稀溶液优选的溶解温度为50℃。
4.根据权利要求1所述的一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,其特征在于:所述步骤S2中的交联剂为CaCl2,或者为硼酸,或者为CaCl2饱和硼酸溶液中。
5.根据权利要求1所述的一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,其特征在于:所述步骤S4中冷冻干燥时间为24~48 h。
6.根据权利要求1所述的一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法,其特征在于:所述的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架内部具有均匀的孔隙结构,且孔隙具有取向性,孔隙大小可控。
CN201810999559.8A 2018-08-30 2018-08-30 一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法 Pending CN109251352A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810999559.8A CN109251352A (zh) 2018-08-30 2018-08-30 一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810999559.8A CN109251352A (zh) 2018-08-30 2018-08-30 一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法

Publications (1)

Publication Number Publication Date
CN109251352A true CN109251352A (zh) 2019-01-22

Family

ID=65048907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810999559.8A Pending CN109251352A (zh) 2018-08-30 2018-08-30 一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法

Country Status (1)

Country Link
CN (1) CN109251352A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258836A (zh) * 2021-12-15 2022-04-01 中北大学 一种含氮磷生物降解聚合物双交联网络水凝胶无土栽培基质及其制备方法
CN115282335A (zh) * 2022-08-05 2022-11-04 河北医科大学口腔医院 骨修复支架的制备方法
CN115400265A (zh) * 2022-08-05 2022-11-29 河北医科大学口腔医院 仿生化梯度支架及其制备方法
CN115414527A (zh) * 2022-05-16 2022-12-02 浙江大学 仿生类骨复合支架、制备方法及骨缺损快速修复的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109254A (zh) * 2014-07-10 2014-10-22 四川大学 I型胶原-海藻酸钠-聚乙烯醇复合膜及其制备方法
CN107744604A (zh) * 2017-10-18 2018-03-02 崔旭 一种聚乙烯醇/羟基磷灰石复合支架
CN107982578A (zh) * 2017-12-15 2018-05-04 太原理工大学 纳米羟基磷灰石/环糊精基聚氨酯复合多孔骨组织工程支架材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109254A (zh) * 2014-07-10 2014-10-22 四川大学 I型胶原-海藻酸钠-聚乙烯醇复合膜及其制备方法
CN107744604A (zh) * 2017-10-18 2018-03-02 崔旭 一种聚乙烯醇/羟基磷灰石复合支架
CN107982578A (zh) * 2017-12-15 2018-05-04 太原理工大学 纳米羟基磷灰石/环糊精基聚氨酯复合多孔骨组织工程支架材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAO-BING LUO ET AL.: "Hydroxyapatite-poly(vinyl alcohol )-sodium Alginate Porous Hydrogels with Poly(vinyl alcohol ) Surface Layer Used for Articular Cartilage Repair", 《FUNCTIONAL MATERIALS RESEARCH》 *
徐梦洁等: "PVA/SA/n-HA复合水凝胶的制备及细胞响应", 《第十二届全国生物力学学术会议暨第十四届全国生物流变学学术会议会议论文摘要汇编》 *
王宏丽等: "纳米羟基磷灰石/海藻酸钠/聚乙烯醇多孔支架材料的制备与表征", 《西南大学学报(自然科学版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258836A (zh) * 2021-12-15 2022-04-01 中北大学 一种含氮磷生物降解聚合物双交联网络水凝胶无土栽培基质及其制备方法
CN115414527A (zh) * 2022-05-16 2022-12-02 浙江大学 仿生类骨复合支架、制备方法及骨缺损快速修复的应用
CN115282335A (zh) * 2022-08-05 2022-11-04 河北医科大学口腔医院 骨修复支架的制备方法
CN115400265A (zh) * 2022-08-05 2022-11-29 河北医科大学口腔医院 仿生化梯度支架及其制备方法
CN115282335B (zh) * 2022-08-05 2023-08-29 河北医科大学口腔医院 骨修复支架的制备方法

Similar Documents

Publication Publication Date Title
CN109251352A (zh) 一种结构可控的聚乙烯醇/海藻酸钠/羟基磷灰石多孔支架制备方法
CN101125223B (zh) 磷酸钙骨水泥/壳聚糖-明胶复合多孔支架的制备方法
CN106116687B (zh) 一种羟基磷灰石晶须多孔陶瓷支架材料的制备方法
CN101579539B (zh) 一种粘结型复合微球多孔支架的制备方法
Darus et al. Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: Effect on pores size, porosity and compressive strength
CN101642589A (zh) 一种生物活性玻璃/壳聚糖复合多孔支架材料的制备方法
KR101652582B1 (ko) 조직 및 뼈 재생을 위한 실크 피브로인 다공성 3차원 지지체 제작 방법
CN104689368A (zh) 一种可降解的三维多孔镁基生物材料及其制备方法
CN105920678B (zh) 一种具有三维梯度孔结构的海藻酸盐多孔材料的制备方法
CN103110979B (zh) 表面沉积类骨磷灰石的高分子多孔材料及其制备方法和应用
Petrauskaite et al. Control of the porous structure of cellulose-based tissue engineering scaffolds by means of lyophilization
CN102989043A (zh) 以碳酸盐或碳酸氢盐为固体发泡剂的骨水泥多孔支架的制备方法
CN101716369B (zh) 聚磷酸钙-磷酸三钙骨支架的制备方法
CN104922727B (zh) 一种生物活性多孔钛医用植入材料及其制备方法
CN103058707A (zh) β-硅酸二钙多孔生物陶瓷支架及其制备方法和应用
CN103705982B (zh) 一种壳聚糖/透明质酸/明胶交联复合多孔支架的制备方法
CN105963789A (zh) 一种骨组织工程支架材料的制备方法
CN110538347A (zh) 高孔隙率多孔纳米羟基磷灰石微球及其制备方法
CN103341213B (zh) FHA/β-TCP双相氟化羟基磷灰石3D多孔支架的制备方法
CN102580162A (zh) 羟基磷灰石/plga/壳聚糖三维多孔支架的制备方法
CN105343930B (zh) 利用天然含镁的方解石制备可降解的人工骨材料的方法
CN106421914A (zh) 一种丝素纤维复合支架及其制备方法
JP4365485B2 (ja) 多孔質リン酸カルシウムセラミックスの製造方法
CN106729969A (zh) 一种二氧化锆多孔生物骨修复支架的挂浆方法
CN103170011B (zh) 一种生物陶瓷原位包覆的镁人工骨及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190122