CN109244184B - 一种双面氧化铝结构的perc双面电池及其制备方法 - Google Patents

一种双面氧化铝结构的perc双面电池及其制备方法 Download PDF

Info

Publication number
CN109244184B
CN109244184B CN201811061490.0A CN201811061490A CN109244184B CN 109244184 B CN109244184 B CN 109244184B CN 201811061490 A CN201811061490 A CN 201811061490A CN 109244184 B CN109244184 B CN 109244184B
Authority
CN
China
Prior art keywords
aluminum oxide
silicon wafer
dioxide layer
silicon dioxide
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811061490.0A
Other languages
English (en)
Other versions
CN109244184A (zh
Inventor
刘斌
黄辉巍
薛伟
陆晓慧
黄柳柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shunfeng New Energy Technology Co ltd
Original Assignee
Jiangsu Shunfeng New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shunfeng New Energy Technology Co ltd filed Critical Jiangsu Shunfeng New Energy Technology Co ltd
Priority to CN201811061490.0A priority Critical patent/CN109244184B/zh
Publication of CN109244184A publication Critical patent/CN109244184A/zh
Application granted granted Critical
Publication of CN109244184B publication Critical patent/CN109244184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种双面氧化铝结构的PERC双面电池及其制备方法,包括硅片,硅片正面依次形成的二氧化硅层、正面氧化铝膜和减反膜;硅片背面依次形成有背面二氧化硅层、背面氧化铝膜、钝化膜和背电极。本发明的制备方法为:清洗、制绒;磷扩散制备pn结;背面抛光、刻蚀、去PSG;退火氧化;双面镀氧化铝膜;正面减反膜沉积;背面钝化膜沉积;激光开槽;丝网印刷、烧结。本发明克服了目前传统方法由于先沉积SiNx再镀氧化铝层所带来的绕镀问题,并能提高电池的转化效率。

Description

一种双面氧化铝结构的PERC双面电池及其制备方法
技术领域
本发明属于太阳能电池领域,特别是涉及一种双面氧化铝结构的PERC太阳能电池及其制备方法。
背景技术
PERC太阳能电池由于跟常规电池生产线切合度高、投入相对较少,效率增益高,目前各家电池生产线逐渐投入PERC取代常规电池,PERC电池氧化铝镀膜目前主要为两种方式:PECVD和ALD,而ALD由于沉积的氧化铝更致密钝化效果更好以及所用TMA耗量少,且设备国产化之后设备成本相对较低使得各家生产商使用ALD的越来越多。
ALD目前有两种方式:一种方法称之为“空间隔离原子层沉积”(Spatial ALD),其反应物TMA和水使用N2隔绝在一定区域内喷出,硅片在反应区域内来回高速移动,以此在硅片上沉积氧化铝;另一种方法称之为“时间隔离原子层沉积”(Temporal ALD),其固定硅片位置,在腔体里交替引入TMA和水。由于Spatial ALD维护周期相对于Temporal ALD短以及产出相对低,目前使用Temporal ALD的越来越多。
Temporal ALD方法的特点无法做单面镀膜,采用背靠背插片方式时会有绕镀产生影响外观,为了外观均匀性只能采用单插方式双面沉积氧化铝,对于P型硅片来说正面n结上沉积氧化铝会产生寄生漏电流导致电池转换效率偏低。现有技术有在沉积氧化铝之前先沉积正面SiNx来达到隔绝正面氧化铝对n+层的影响,但此处SiNx会在背面一圈有绕镀SiNx会造成背面氧化铝钝化变弱致使电池转换效率偏低。
发明内容
为了解决上述问题,本发明的目的在于提供一种双面氧化铝结构的PERC双面电池及其制备方法,其通过改变工艺流程,克服了目前传统方法由于先沉积SiNx再镀氧化铝层所带来的绕镀问题,并能提高电池的转化效率。
为了实现上述目的,本发明的技术方案为:
一种双面氧化铝结构的PERC双面电池,包括硅片和设于硅片正面的正电极,所述硅片正面依次设有正面二氧化硅层、正面氧化铝膜和减反膜;所述硅片的背面依次形成有背面二氧化硅层、背面氧化铝膜、钝化膜和背电极;所述正面二氧化硅层厚度大于3nm,而背面二氧化硅层厚度小于3nm。
所述双面氧化铝结构的PERC双面电池的制备方法,包括如下步骤:
1)清洗、制绒;
2)磷扩散制备pn结;
3)背面抛光、刻蚀,去PSG;
4)退火氧化,将硅片以背靠背方式插片送入炉管内,在500-750℃温度下进行退火氧化,控制退火氧化时间,使硅片正面生长的二氧化硅层厚度大于3nm,硅片背面生长的二氧化硅层厚度小于3nm;
5)双面镀氧化铝膜,采用Temporal ALD方式,将硅片单插方式在ALD腔室内,真空条件下周期性通入TMA、N2、H2O双面沉积氧化铝膜;
6)正面减反膜沉积;
7)背面钝化膜沉积;
8)激光开槽;
9)丝网印刷、烧结。
作为本发明的进一步改进:所述正面二氧化硅层厚度控制在大于3nm小于5nm,背面二氧化硅层厚度控制在1-2nm,这样可使最大程度上保证背面氧化铝的场效应,同时又能隔绝氧化铝在正面的场效应。
作为本发明的优选实施例,所述退火氧化时间控制在10-20min。
本发明充分利用氧化铝的场钝化效应在2-3nm范围以内有效这一限定原理,在n+层之上使用大于3nm的材料将氧化铝和n+层隔绝开则会降低氧化铝对n+层的影响;因此本发明经充分研究,改变了原有沉积SiNx来隔绝的思路,在背面抛光清洗后引进退火氧化工艺,并采用背靠背正面朝外插片方式,在硅片表面生长一层二氧化硅层将硅片表面悬挂键钝化,由于采用背靠背插片正面要比背面生长快,当正面二氧化硅层大于3nm既可以起到抗PID作用,并且又可以隔绝氧化铝在正面的场效应。而由于背面二氧化硅生长速率慢,故可控制背面二氧化硅厚度小于3nm,使其对背面氧化铝的场效应产生不明显的隔绝效果,从而不影响背面氧化铝钝化。
本发明只需要在原有工艺基础上将沉积正面SiNx工艺步骤改变成退火氧化即可进行生产,简单、方便。本发明克服了目前传统方法由于先沉积SiNx再镀氧化铝层所带来的绕镀问题,而且使双面氧化铝在双面PERC上的使用达到单面氧化铝同样的效果,并能提高电池的转化效率。
附图说明
图1为本发明的剖视结构图。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一:
本实施例涉及一种双面氧化铝结构的PERC双面电池,包括硅片1和设于硅片正面的正电极5,所述硅片正面依次设有正面二氧化硅层2、正面氧化铝膜3和减反膜4;所述硅片的背面依次形成有背面二氧化硅层6、背面氧化铝膜7、钝化膜8和背电极9;其中正面二氧化硅层厚度为4nm,而背面二氧化硅层厚度为1.5nm。
本实施例涉及的双面氧化铝结构的PERC双面电池制备方法步骤如下:
1)选择P型硅片,其电阻率1Ω·cm;
2)清洗、制绒;
3)磷扩散制备pn结;
4)去PSG清洗,酸或碱进行背面抛光;
5)退火氧化,将硅片以背靠背插片方式送入炉管内700℃进行退火并氧化13min,使在硅片正面生长的层厚度为4nm,背面SiO2层厚度为1.5nm;
6)双面镀氧化铝膜,采用Temporal ALD方式,将硅片单插方式在ALD腔室内,真空条件下周期性通入TMA、N2、H2O双面沉积厚度为4nm的氧化铝膜;
7)正面减反膜沉积,使用PECVD方式依次沉积SiOx、SiNx、SiON形成相互叠加的多层膜,总膜厚在80nm;
8)背面钝化膜沉积,使用PECVD方式沉积SiOx或SiNx形成多层结构,总膜厚为100nm;
9)激光开槽,同时用激光打出对位mark点;
10)丝网印刷、烧结,背面电极印刷、背面铝栅线印刷,正面电极以及栅线印刷,然后高温烧结。
经检测,本发明所生产太阳能电池与其它生产方式的太阳能电池座对比,其形成的电池电性能效果如下:
Figure 54897DEST_PATH_IMAGE002
由此可见,本发明所涉生产工艺能提高电池的转换效率。
本发明中清洗、制绒;磷扩散制备pn结;去PSG清洗,酸或碱进行背面抛光等工序步骤为一般PERC双面电池的生产工艺,本文中进行了省略。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种双面氧化铝结构的PERC双面电池的制备方法,所述PERC双面电池包括硅片和设于硅片正面的正电极,所述硅片正面依次设有正面二氧化硅层、正面氧化铝膜和减反膜;所述硅片的背面依次形成有背面二氧化硅层、背面氧化铝膜、钝化膜和背电极;其特征在于:其制备方法包括如下步骤:
1)清洗、制绒;
2)磷扩散制备pn结;
3)背面抛光、刻蚀,去PSG;
4)退火氧化,将硅片以背靠背方式插片送入炉管内,在500-750℃温度下进行退火氧化,控制退火氧化时间在10-20min,使硅片正面生长的二氧化硅层厚度大于3nm,硅片背面生长的二氧化硅层厚度小于3nm;
5)双面镀氧化铝膜,采用Temporal ALD方式,将硅片单插方式在ALD腔室内,真空条件下周期性通入TMA、N2、H2O双面沉积氧化铝膜;
6)正面减反膜沉积;
7)背面钝化膜沉积;
8)激光开槽;
9)丝网印刷、烧结。
2.根据权利要求1所述的制备方法,其特征在于:所述正面二氧化硅层厚度控制在大于3nm小于5nm,背面二氧化硅层厚度控制在1-2nm。
CN201811061490.0A 2018-09-12 2018-09-12 一种双面氧化铝结构的perc双面电池及其制备方法 Active CN109244184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811061490.0A CN109244184B (zh) 2018-09-12 2018-09-12 一种双面氧化铝结构的perc双面电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811061490.0A CN109244184B (zh) 2018-09-12 2018-09-12 一种双面氧化铝结构的perc双面电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109244184A CN109244184A (zh) 2019-01-18
CN109244184B true CN109244184B (zh) 2020-10-16

Family

ID=65067686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811061490.0A Active CN109244184B (zh) 2018-09-12 2018-09-12 一种双面氧化铝结构的perc双面电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109244184B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047950A (zh) * 2019-05-22 2019-07-23 通威太阳能(安徽)有限公司 一种具有钝化层结构的太阳电池及其制备方法
CN110137309A (zh) * 2019-05-23 2019-08-16 通威太阳能(成都)有限公司 一种提升双面电池背面抗pid性能的方法
CN110165010A (zh) * 2019-05-23 2019-08-23 江西展宇新能源股份有限公司 一种双面perc电池及其制备方法
CN110676347A (zh) * 2019-09-27 2020-01-10 江苏顺风新能源科技有限公司 提高黑组件良率的perc电池生产控制方法
CN110943146B (zh) * 2019-12-16 2021-12-17 通威太阳能(安徽)有限公司 一种perc太阳能电池的镀膜方法、制作方法及perc太阳能电池
CN111564530B (zh) * 2020-06-09 2022-07-29 山西潞安太阳能科技有限责任公司 一种新型晶硅perc电池前氧化层制备工艺
CN112652677B (zh) * 2020-12-09 2023-10-27 晋能光伏技术有限责任公司 一种perc电池背面钝化工艺
CN112687761A (zh) * 2020-12-28 2021-04-20 无锡松煜科技有限公司 太阳能电池表面多层钝化方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202601629U (zh) * 2012-05-25 2012-12-12 中节能太阳能科技有限公司 晶体硅太阳能电池
CN103985779A (zh) * 2013-02-08 2014-08-13 上海凯世通半导体有限公司 太阳能电池的制作方法及太阳能电池
CN104300032A (zh) * 2013-07-18 2015-01-21 北京中科信电子装备有限公司 一种单晶硅太阳能离子注入工艺
US20150129030A1 (en) * 2013-11-11 2015-05-14 Solexel, Inc. Dielectric-passivated metal insulator photovoltaic solar cells
CN105870249B (zh) * 2016-03-24 2017-10-03 江苏微导纳米装备科技有限公司 一种晶硅太阳能电池的制造工艺
CN106992229A (zh) * 2017-06-06 2017-07-28 通威太阳能(合肥)有限公司 一种perc电池背面钝化工艺
CN107887453B (zh) * 2017-10-10 2019-03-15 横店集团东磁股份有限公司 一种双面氧化铝p型perc太阳能电池及制作方法

Also Published As

Publication number Publication date
CN109244184A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN109244184B (zh) 一种双面氧化铝结构的perc双面电池及其制备方法
JP6821830B2 (ja) 管型perc片面太陽電池、その製造方法及びその専用装置
WO2018209729A1 (zh) 管式perc双面太阳能电池及其制备方法和专用设备
CN111192935B (zh) 一种管式perc太阳能电池背钝化结构及其制备方法
CN113851559B (zh) 一种TOPCon电池的制备方法
CN111640823B (zh) 一种n型钝化接触电池及其制备方法
WO2023124046A1 (zh) 一种隧穿氧化层、n型双面太阳能晶硅电池及制备方法
CN110660881A (zh) 一种无掩膜去除钝化接触电池多晶硅绕镀的方法
CN110854240A (zh) Perc电池及其制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
WO2023202079A1 (zh) 太阳电池的制备方法、太阳电池
CN113097342B (zh) 一种太阳能电池、其AlOx镀膜方法、电池背钝化结构及方法
WO2023202132A1 (zh) 太阳电池及其制备方法
CN112635591A (zh) 一种太阳能电池的制备方法以及太阳能电池
CN111883614A (zh) 一种钝化接触电池的边缘隔离方法及制备方法
CN114883443A (zh) poly-Si绕镀去除方法及在TopCon电池制备的应用
JP6652795B2 (ja) 結晶太陽電池の製造方法
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN112466960A (zh) 太阳能电池结构及其制备方法
CN117199186A (zh) 一种N-TOPCon电池的制作方法
CN112447863B (zh) 一种太阳能电池及其制备方法
CN110943146B (zh) 一种perc太阳能电池的镀膜方法、制作方法及perc太阳能电池
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
CN209880634U (zh) 太阳能电池背面钝化结构
CN109887841B (zh) 一种perc电池背面抛光工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant