CN110137309A - 一种提升双面电池背面抗pid性能的方法 - Google Patents

一种提升双面电池背面抗pid性能的方法 Download PDF

Info

Publication number
CN110137309A
CN110137309A CN201910433013.0A CN201910433013A CN110137309A CN 110137309 A CN110137309 A CN 110137309A CN 201910433013 A CN201910433013 A CN 201910433013A CN 110137309 A CN110137309 A CN 110137309A
Authority
CN
China
Prior art keywords
back side
sided
silicon nitride
technique
ensured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910433013.0A
Other languages
English (en)
Inventor
吴俊旻
张鹏
王岚
苏荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongwei Solar Chengdu Co Ltd
Original Assignee
Tongwei Solar Chengdu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongwei Solar Chengdu Co Ltd filed Critical Tongwei Solar Chengdu Co Ltd
Priority to CN201910433013.0A priority Critical patent/CN110137309A/zh
Publication of CN110137309A publication Critical patent/CN110137309A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提升双面电池背面抗PID性能的方法,属于晶硅太阳能电池制造生产技术领域,目的在于解决现有技术中双面电池背面抗PID性能较差的问题。其包括以下步骤:(1)双面PERC电池经制绒工艺、扩散工艺、刻蚀工艺后,进行退火工艺时,确保恒温范围处于680‑800℃,氧气流量500‑3000SCCM,退火时间为10‑100min;(2)使用原子层沉积法进行氧化铝镀膜工艺时,确保双面PERC电池背面氧化铝厚度为2‑10nm;(3)进行背面氮化硅镀膜工艺,确保双面PERC电池背面氮化硅镀膜厚度80‑110nm,折射率2.12‑2.3;(4)双面PRRC电池经背面氮化硅镀膜工艺后,进行后续工艺,即可检测分选,完成制备。本发明适用于提升双面电池背面抗PID性能。

Description

一种提升双面电池背面抗PID性能的方法
技术领域
本发明属于晶硅太阳能电池制造生产技术领域,具体涉及一种提升双面电池背面抗PID性能的方法。
背景技术
单晶双面PERC高效电池通过改变背面铝背场印刷为铝栅线印刷,并结合刻蚀工艺优化、背钝化和背镀膜工艺优化,在P型单晶上实现双面发电能力。匹配双玻组件封装技术安装于不同应用场景,可相比单面PERC产品增加10%-30%的系统发电增益。同时随着光伏行业发展,对电池片和组件可靠性的技术检测手段日趋完善,也越严格。其中PID的检测条件最严苛,主要是因为PID问题一直会伴随组件的使用寿命一直存在,如果不能在封装组件之前完全解决PID问题,严重影响组件质量。因此解决双面电池正背面PID问题是很重要的工作。电池正面PID目前已经成功解决,满足国家质检标准,但是目前由于单晶双面PERC电池在太阳能电池制造行业算是新产品、前端产品,对电池背面性能检测没有完善的检测标准,只能基于正面电池要求或者客户要求进行检测和把控。但是电池背面的确存在PID问题,给后期组件使用中增加风险。因此,如何解决双面PERC电池背面PID问题具有重要的研究意义。
本专利设计的背面抗PID性能制作方法,基于常规PERC电池生产线,完全兼容常规PERC电池生产线,在不增加新设备的前提下实现PERC双面电池背面抗PID性能,满足质检要求、客户要求。具有一定创新性和实用性。
发明内容
本发明的目的在于:提供一种提升双面电池背面抗PID性能的方法,解决现有技术中双面电池背面抗PID性能较差的问题。
本发明采用的技术方案如下:
一种提升双面电池背面抗PID性能的方法,包括以下步骤:
(1)双面PERC电池经制绒工艺、扩散工艺、刻蚀工艺后,在进行退火工艺时,确保恒温范围处于680-800℃,氧气流量500-3000SCCM,退火时间为10-100min;
(2)双面PERC电池经退火工艺后,使用原子层沉积法进行氧化铝镀膜工艺时,确保双面PERC电池背面氧化铝厚度为2-10nm;
(3)双面PERC电池氧化铝镀膜工艺后,进行背面氮化硅镀膜工艺,确保双面PERC电池背面氮化硅镀膜厚度80-110nm,折射率2.12-2.3;
(4)双面PRRC电池经背面氮化硅镀膜工艺后,进行正面氮化硅镀膜工艺、背面激光开槽工艺、丝网印刷工艺,即可检测分选,完成制备。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明中,设计的双面PERC电池背面抗PID性能制作方法,基于常规PERC电池生产线,完全兼容常规PERC电池生产线,在不增加新设备的前提下,通过精确控制退火工艺、ALD工艺、背面氮化硅镀膜工艺中的各项参数,实现了PERC双面电池背面抗PID性能提升,满足了质检要求、客户要求。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
一种提升双面电池背面抗PID性能的方法,包括以下步骤:
(1)双面PERC电池经制绒工艺、扩散工艺、刻蚀工艺后,在进行退火工艺时,确保恒温范围处于680-800℃,氧气流量500-3000SCCM,退火时间为10-100min;
(2)双面PERC电池经退火工艺后,使用原子层沉积法进行氧化铝镀膜工艺时,确保双面PERC电池背面氧化铝厚度为2-10nm;
(3)双面PERC电池氧化铝镀膜工艺后,进行背面氮化硅镀膜工艺,确保双面PERC电池背面氮化硅镀膜厚度80-110nm,折射率2.12-2.3;
(4)双面PRRC电池经背面氮化硅镀膜工艺后,进行正面氮化硅镀膜工艺、背面激光开槽工艺、丝网印刷工艺,即可检测分选,完成制备。
本发明在实施过程中,设计的双面PERC电池背面抗PID性能制作方法,基于常规PERC电池生产线,完全兼容常规PERC电池生产线,在不增加新设备的前提下,通过精确控制退火工艺、ALD工艺、背面氮化硅镀膜工艺中的各项参数,实现了PERC双面电池背面抗PID性能提升,满足了质检要求、客户要求。
实施例1
一种提升双面电池背面抗PID性能的方法,包括以下步骤:
(1)双面PERC电池经制绒工艺、扩散工艺、刻蚀工艺后,在进行退火工艺时,确保恒温范围处于680-800℃,氧气流量500-3000SCCM,退火时间为10-100min;
(2)双面PERC电池经退火工艺后,使用原子层沉积法进行氧化铝镀膜工艺时,确保双面PERC电池背面氧化铝厚度为2-10nm;
(3)双面PERC电池氧化铝镀膜工艺后,进行背面氮化硅镀膜工艺,确保双面PERC电池背面氮化硅镀膜厚度80-110nm,折射率2.12-2.3;
(4)双面PRRC电池经背面氮化硅镀膜工艺后,进行正面氮化硅镀膜工艺、背面激光开槽工艺、丝网印刷工艺,即可检测分选,完成制备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种提升双面电池背面抗PID性能的方法,其特征在于,包括以下步骤:
(1)双面PERC电池经制绒工艺、扩散工艺、刻蚀工艺后,在进行退火工艺时,确保恒温范围处于680-800℃,氧气流量500-3000SCCM,退火时间为10-100min;
(2)双面PERC电池经退火工艺后,使用原子层沉积法进行氧化铝镀膜工艺时,确保双面PERC电池背面氧化铝厚度为2-10nm;
(3)双面PERC电池氧化铝镀膜工艺后,进行背面氮化硅镀膜工艺,确保双面PERC电池背面氮化硅镀膜厚度80-110nm,折射率2.12-2.3;
(4)双面PRRC电池经背面氮化硅镀膜工艺后,进行正面氮化硅镀膜工艺、背面激光开槽工艺、丝网印刷工艺,即可检测分选,完成制备。
CN201910433013.0A 2019-05-23 2019-05-23 一种提升双面电池背面抗pid性能的方法 Pending CN110137309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910433013.0A CN110137309A (zh) 2019-05-23 2019-05-23 一种提升双面电池背面抗pid性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910433013.0A CN110137309A (zh) 2019-05-23 2019-05-23 一种提升双面电池背面抗pid性能的方法

Publications (1)

Publication Number Publication Date
CN110137309A true CN110137309A (zh) 2019-08-16

Family

ID=67572541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910433013.0A Pending CN110137309A (zh) 2019-05-23 2019-05-23 一种提升双面电池背面抗pid性能的方法

Country Status (1)

Country Link
CN (1) CN110137309A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993746A (zh) * 2019-11-13 2020-04-10 江苏科来材料科技有限公司 一种多晶硅太阳能电池的制备方法
WO2022205523A1 (zh) 2021-03-29 2022-10-06 横店集团东磁股份有限公司 一种双面太阳能电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045560A1 (en) * 2011-08-16 2013-02-21 Kenneth P. MacWilliams Techniques and systems for fabricating anti-reflective and passivation layers on solar cells
CN103996721A (zh) * 2014-05-16 2014-08-20 奥特斯维能源(太仓)有限公司 N型晶体硅双面电池及其制备方法
WO2016019396A2 (en) * 2014-08-01 2016-02-04 Solexel, Inc. Solar cell surface passivation using photo-anneal
CN106328765A (zh) * 2016-08-31 2017-01-11 晋能清洁能源科技有限公司 一种高效perc晶体硅太阳能电池的制备方法及工艺
CN106449876A (zh) * 2016-10-17 2017-02-22 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法
CN106711239A (zh) * 2017-02-24 2017-05-24 广东爱康太阳能科技有限公司 Perc太阳能电池的制备方法及其perc太阳能电池
CN108987531A (zh) * 2018-07-20 2018-12-11 通威太阳能(安徽)有限公司 一种类单晶perc太阳能电池制备方法
CN109244184A (zh) * 2018-09-12 2019-01-18 江苏顺风新能源科技有限公司 一种双面氧化铝结构的perc双面电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045560A1 (en) * 2011-08-16 2013-02-21 Kenneth P. MacWilliams Techniques and systems for fabricating anti-reflective and passivation layers on solar cells
CN103996721A (zh) * 2014-05-16 2014-08-20 奥特斯维能源(太仓)有限公司 N型晶体硅双面电池及其制备方法
WO2016019396A2 (en) * 2014-08-01 2016-02-04 Solexel, Inc. Solar cell surface passivation using photo-anneal
CN106328765A (zh) * 2016-08-31 2017-01-11 晋能清洁能源科技有限公司 一种高效perc晶体硅太阳能电池的制备方法及工艺
CN106449876A (zh) * 2016-10-17 2017-02-22 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法
CN106711239A (zh) * 2017-02-24 2017-05-24 广东爱康太阳能科技有限公司 Perc太阳能电池的制备方法及其perc太阳能电池
CN108987531A (zh) * 2018-07-20 2018-12-11 通威太阳能(安徽)有限公司 一种类单晶perc太阳能电池制备方法
CN109244184A (zh) * 2018-09-12 2019-01-18 江苏顺风新能源科技有限公司 一种双面氧化铝结构的perc双面电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993746A (zh) * 2019-11-13 2020-04-10 江苏科来材料科技有限公司 一种多晶硅太阳能电池的制备方法
WO2022205523A1 (zh) 2021-03-29 2022-10-06 横店集团东磁股份有限公司 一种双面太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN106972066B (zh) 一种perc电池背面钝化膜层以及基于ald工艺的perc电池制备方法
CN103904164B (zh) 一种n型背结太阳能电池的制备方法
CN108172658B (zh) 一种n型异质结双面太阳能电池的制备方法
CN110137309A (zh) 一种提升双面电池背面抗pid性能的方法
CN106711239A (zh) Perc太阳能电池的制备方法及其perc太阳能电池
CN110957378A (zh) 一种提升p型双面电池双面率的背膜及其制备方法
CN103594529A (zh) Mwt与背钝化结合的晶硅太阳能电池及其制造方法
CN110085702A (zh) 一种有效降低激光切割损失的高效光伏电池制作方法
CN109585600A (zh) 一种双面perc高效晶硅太阳能电池的制作方法
CN102969392A (zh) 一种太阳能单晶硅电池的单面抛光工艺
CN104009118A (zh) 一种高效n型晶体硅刻槽埋栅电池的制备方法
CN104051575A (zh) 一种仿生双面受光太阳能电池的制作工艺
CN103594530A (zh) 正面热氧化、选择性发射结与背钝化结合的晶硅太阳能电池及其制造方法
CN108447944A (zh) 一种n型pert双面电池制备方法
CN105304730A (zh) 一种具有背钝化膜的mwt电池及其制备方法
CN207967020U (zh) 一种n型异质结双面太阳能电池结构
CN104681665A (zh) 一种新型背钝化太阳能电池的制备方法
CN209434195U (zh) 一种具有三层钝化层结构的太阳电池
CN108400185B (zh) 一种散热型太阳能电池组件及其制造方法
CN203491268U (zh) 一种新型双面受光太阳电池
CN102709391B (zh) 一种选择性发射极太阳电池的制备方法
CN102522453B (zh) 一种场效应晶体硅太阳能电池的制作方法
CN109560143A (zh) 印刷Al2O3制备高效PERC电池的制备方法
CN115224132A (zh) 一种减少正面损伤的背接触异质结太阳能电池及其制作方法
CN107331714A (zh) 一种ibc电池工艺制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816

RJ01 Rejection of invention patent application after publication