CN109239651A - 互质面阵下的二维doa跟踪方法 - Google Patents

互质面阵下的二维doa跟踪方法 Download PDF

Info

Publication number
CN109239651A
CN109239651A CN201810815417.1A CN201810815417A CN109239651A CN 109239651 A CN109239651 A CN 109239651A CN 201810815417 A CN201810815417 A CN 201810815417A CN 109239651 A CN109239651 A CN 109239651A
Authority
CN
China
Prior art keywords
battle array
array
face battle
relatively prime
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810815417.1A
Other languages
English (en)
Other versions
CN109239651B (zh
Inventor
周梦婕
张小飞
林新平
何浪
葛超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810815417.1A priority Critical patent/CN109239651B/zh
Publication of CN109239651A publication Critical patent/CN109239651A/zh
Application granted granted Critical
Publication of CN109239651B publication Critical patent/CN109239651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明公开了一种互质面阵下的二维DOA跟踪方法,利用PASTd方法实时更新接收数据的信号子空间,然后基于互质面阵下的2D‑ESPRIT算法得到精确的DOA估计,并且通过联合子面阵间的角度关系来消除角度模糊问题,从而实现互质面阵下的低复杂度的DOA实时跟踪。本发明无需分解特征值和构造接收数据的协方差矩阵就能实现2D‑DOA信息的实时跟踪,复杂度低;对比互质阵下基于PAST进行DOA跟踪的方法,本发明具有更好的跟踪性能。

Description

互质面阵下的二维DOA跟踪方法
技术领域
本发明涉及阵列信号处理技术领域,尤其是一种互质面阵下的二维DOA跟踪方法。
背景技术
相对于传统面阵,互质面阵的主要思想是通过联合两个满足互质关系的子面阵进行空间谱估计,不仅能有效解决测向模糊问题,还可以获得较大的阵列孔径,显著提高波束形成和DOA估计中的自由度,因此得到广泛应用。传统的经典超分辨率DOA估计算法需要对接收信号的协方差矩阵进行特征值分解或者奇异值分解,计算量太大,难以满足DOA实时跟踪的需求,因此研究DOA跟踪算法变得很有实际意义。针对这个问题,国内外学者对其中的难点提出了诸多方法。其中比较有代表性的算法是子空间跟踪算法,包括PAST、PASTd、双迭代最小二乘(Bi-Iterative Least Squares,Bi-ILS)算法、双边迭代奇异值分解(Bi-iteration Singular Value Decomposition,Bi-SVD)算法等。本发明将互质面阵与PASTd算法相结合,提出互质面阵下的DOA实时跟踪算法,实现DOA角度的自动配对与跟踪,由于无需进行协方差矩阵的构造和特征值分解,算法复杂度低。
发明内容
本发明所要解决的技术问题在于,提供一种互质面阵下的二维DOA跟踪方法,能够实现互质面阵下的任意动态目标的低复杂度的DOA实时跟踪。
为解决上述技术问题,本发明提供一种互质面阵下的二维DOA跟踪方法,包括如下步骤:
(1)通过联合互质面阵中的两个子面阵构建阵列接收信号的数据模型;
(2)利用PASTd方法实时更新接收数据的信号子空间;
(3)基于阵列接收数据的信号子空间,利用互质面阵下的二维ESPRIT算法得到DOA估计,并通过联合阵列子阵间的角度关系实现解模糊。
优选的,步骤(1)具体为:
阵元总数为M2+N2-1的互质面阵,由阵元数分别为N×N和M×M的两个均匀子面阵构成,且两个子阵的阵元间距分别为Mλ/2和Nλ/2;对于子面阵i,其在X轴和Y轴上阵元的方向矩阵可以分别表示为 其中,方向向量 di为阵元间距;因此,子面阵i的接收信号xi(t)可以表示为
其中,s(t)为信源矢量,ni(t)为子面阵i的噪声,和о分别表示Kronecker积和Khatri-Rao积。
优选的,步骤(2)具体为:
(21)选择适当的初始值λk(0),W(0);
(22)对每一个t=1,2,…,J(J为快拍数),使得x1(t)=X(t);
(23)对每一个k=1,2,…,K(K为信源数),分别更新以下变量:阵列接收数特征值特征向量 以及阵列接收数据xk+1(t)=xk(t)-Wk(t)yk(t);
(24)当步骤(23)中的k=K后,使得t=t+1,再次从步骤(22)开始计算。
优选的,步骤(3)具体为:
在互质面阵中,对于子面阵i,按下式构造Ai1,Ai2
其中,Mi=M或Mi=N,Ai2=Ai1Φiy,旋转因子
将信号子空间Eis分解成Eix=Es(1:Mi(Mi-1),:),其中Eix为Eis的1到Mi(Mi-1)行,Eiy为Eis的Mi+1到行,Eix、Eiy也可表达为Eix=Ai1Ti,Eiy=Ai1ΦiyTi,矩阵满秩,进而有
其中,则Φiy的对角线的元素就是Ψi的特征值,由最小二乘法则可以得到Ψi的估计
特征值分解可以获得然后根据的特征矢量,就能得到T的估计结果在不考虑噪声的条件下有
Πi表示一个置换矩阵;因为的特征值是一致的,所以将特征值分解就可以得到 的估计为
其中的第k个特征值;
同样对矩阵Eis重构,可得类似地可以将E'is分解成矩阵E'ix=E'is(1:Mi(Mi-1),:)和矩阵构造矩阵那么,在不考虑噪声的条件下有其中Πi表示一个置换矩阵,类似于uik,可以得到的估计值
其中表示的是矩阵(E'ix)+E'iy第k个特征值;
通过联合两个子阵间的角度关系,可以消除互质面阵中角度估计的模糊值,即两个子阵相同的估计值即为真实角度,其余值为模糊值。
根据uik和vik的表达式可知,uik和vik的估计值有相同的列模糊,因此估计角度可以自动配对,角度配对完成后,根据以下公式即可得到信源仰角和方位角的估计值
本发明的有益效果为:本发明无需分解特征值和构造接收数据的协方差矩阵就能实现2D-DOA信息的实时跟踪,复杂度低;对比互质阵下基于PAST进行DOA跟踪的方法,本发明具有更好的跟踪性能。
附图说明
图1为本发明的阵列结构示意图。
图2为本发明的PASTd算法流程示意图。
图3为本发明实现的信源方位角的60s跟踪图。
图4为本发明实现的信源俯仰角的60s跟踪图。
图5为本发明实现的信源DOA的60s跟踪图。
图6为本发明在不同阵元数下的跟踪性能对比示意图。
图7为本发明与PAST算法在不同信噪比下的跟踪性能对比示意图。
具体实施方式
一、数据模型
互质面阵的阵列结构如图1所示,与传统均匀面阵相比,互质面阵可以分成两个子阵,N表示第一个子阵在X轴和Y轴方向的阵元数,M表示第二个子阵在X轴和Y轴方向的阵元数。子阵一是由阵元数为N×N的均匀面阵构成,子阵二由阵元数为M×M的均匀面阵构成。子阵阵元在原点位置重合,故互质面阵的阵元总数为M2+N2-1。其中子阵一的阵元间距为d1=Mλ/2,子阵二的阵元间距为d2=Nλ/2,各阵元的位置可表示为如下集合
Ds={(md1,nd1)|0≤m,n≤N-1}∪{(pd2,qd2)|0≤p,q≤M-1}
假设空间有K个非相干信源入射到上述互质面阵,θk,分别代表入射信源的俯仰角和方位角。考虑面阵中的子面阵i,其在X轴和Y轴上阵元的方向矩阵可以分别表示为其中,方向向量 因此,子面阵i的接收信号xi(t)可以表示为
其中,s(t)为信源矢量,ni(t)为子面阵i的噪声。分别表示Kronecker积和Khatri-Rao积。
二、利用PASTd方法实时更新信号子空间
定义一个无约束代价函数
J(W)=E{||x-WWHx||2}
=E{(x-WWHx)H(x-WWHx)}
=E{xHx}-2E{xHWWHx}+E{xHWWHWWHx}
可以发现
E{xHWWHx}=tr(E{WHxxHW})=tr(WHCW)
E{xHWWHWWHx}=tr(E{WHWxxHWHW})=tr(WHCWWHW)
其中C表示接收数据x的自相关矩阵。假设W秩为N,则J(W)可以表示为
J(W)=tr(C)-2tr(WHCW)+tr(WHCWWHW)
由Bin Yang提出的定理可以知道当目标函数J(W)取极小值时,W的列空间等价于信号子空间。
在现实情况中,为了更新得到t时刻的子空间W(t),需要利用t-1时刻的子空间W(t-1)以及t时刻的阵元数据x(t)。在此我们选择梯度下降法,选取下降梯度为
所以
其中,μ>0表示需要适当选择的步长值。将C(t)=x(t)xH(t),y(t)=WH(t-1)x(t)代入上式,得到
W(t)=W(t-1)-μ[2x(t)yH(t)-x(t)yH(t)
×WH(t-1)W(t-1)-W(t-1)WH(t-1)y(t)yH(t)]
由于J(W)取得极小值时,WH(t-1)W(t-1)=I,可得
W(t)=W(t-1)+μ[x(t)-W(t-1)y(t)]yH(t)
由于W(t)跟踪时变子空间的能力较差,算法收敛慢。为了解决这个问题可以定义一个新的指数加权函数
其中0<β≤1,表示遗忘因子,主要是保证在非稳定环境下将过去的数据降低权重,以保证跟踪的稳定性。当β=1时对应常见的滑动窗口。进一步,可以认为
y(i)=WH(i-1)x(i)≈WH(t)x(i)
因此得到已经修正的目标函数
当目标函数全局最小时,W(t)可以用自相关矩阵Cyy(t)和互相关矩阵Cxy(t)来表示,minJ(W(t))最优解是Wiener滤波器,即
其中,Cyy(t)和Cxy(t)更新公式为:
PASTd方法主要利用紧缩技术通过一定顺序来估计主分量,首先在目标数K为1时通过PAST方法估计出当前最主要的特征向量Wk(t),再把当前t时刻的数据xk(t)减去它在特征向量Wk(t)上的投影得到xk+1(t),然后重复上述步骤计算出Wk+1(t),Wk+2(t),…
利用PASTd方法求解信源信号子空间的具体步骤如下:
1)选择适当的初始值λk(0),W(0);
2)对每一个t=1,2,…,J(J为快拍数),使得x1(t)=X(t);
3)对每一个k=1,2,…,K(K为信源数),分别更新一下变量:阵列接收数特征值特征向量以及阵列接收数据xk+1(t)=xk(t)-Wk(t)yk(t);
4)当步骤(3)中的k=K后,使得t=t+1,再次从步骤(2)开始计算;
PASTd的算法流程图如图2所示,算法最后一步通过xk(t)减去C(t)的第k个特征向量Wk(t)达到算法紧缩。
三、利用2D-ESPRIT得到DOA信息
在互质面阵中,对于子面阵i,按下式构造Ai1,Ai2
其中,Mi=M或Mi=N,Ai2=Ai1Φiy,旋转因子
将由PASTd得到的信号子空间Eis分解成Eix=Es(1:Mi(Mi-1),:),其中Eix为Eis的1到Mi(Mi-1)行,Eiy为Eis的Mi+1到行,Eix、Eiy也可表达为Eix=Ai1Ti,Eiy=Ai1ΦiyTi。矩阵满秩。进而有
其中,则Φiy的对角线的元素就是Ψi的特征值。由最小二乘法则可以得到Ψi的估计
特征值分解可以获得然后根据的特征矢量,就能得到T的估计结果在不考虑噪声的条件下有
Πi表示一个置换矩阵。因为的特征值是一致的,所以将特征值分解就可以得到 的估计为
其中的第k个特征值。
同样对矩阵Eis重构,可得类似地可以将E'is分解成矩阵E'ix=E'is(1:Mi(Mi-1),:)和矩阵构造矩阵那么,在不考虑噪声的条件下有其中Πi表示一个置换矩阵。类似于uik,可以得到的估计值
其中表示的是矩阵(E'ix)+E'iy第k个特征值。
由于互质面阵中阵元间距大于半波长,因此会在非满秩面阵中会产生角度模糊。假设有空间角度为的非相干信源入射到互质面阵,考虑面阵中的子面阵i,子面阵i在X轴和Y轴方向上相邻阵元的相位差与阵元间距之间的关系可分别表示为
其中kx和ky都为整数,取值范围分别为 同时kx和ky还需满足确定时,存在一个或多个空间角度满足上式,当d=Mλ/2(M为大于1的整数)时,kx和ky的取值分别为M和M/2个,即使考虑到角度配对问题,仍有多个角度估计值满足上式,这些角度中只有一个为真实角度,其他均为模糊值。大量文献已证明,互质面阵的角度模糊消除可以通过联合两个子阵间的角度关系解决,两个子阵相同的估计值即为真实角度,其余值为模糊值。
根据uik和vik的表达式可知,uik和vik的估计值有相同的列模糊,因此估计角度可以自动配对。角度配对完成后,根据以下公式即可得到信源仰角和方位角的估计值
下面利用MATLAB仿真对本发明的算法性能进行分析。其中,采用求根均方误差(Root Mean Square Error,RMSE)来评估算法DOA估计性能,RMSE定义如下
其中,K表示空间中的信源个数,L表示Monte Carlo试验次数。分别表示第q次Monte Carlo试验时第k个信源仰角θk和方位角的估计值,θk,q分别表示其精确值。
N和M分别表示互质面阵中的两个子阵在X轴和Y轴方向的阵元数,阵列阵元总数为M2+N2-1。假设信源是以直线或曲线运动,方位角和仰角在时间T内线性变化,且整个跟踪过程中信源数保持不变。跟踪时间T设为60s。每隔1s跟踪一次,1s内快拍数J设为200。遗忘因子β设为0.97。PASTd算法的初始参数设置如下:λk=1(k=1,…,K),W(0)=[IK,0]T,IK为K×K的单位阵。
图3-5是SNR为20dB时基于PASTd算法的DOA跟踪结果,阵列参数M=4,N=5。从图3-5可以看出该算法能够有效的对信源的方位角和仰角进行跟踪。图5显示了两个信源的方位角和仰角在一个图中的变化轨迹,可看出本发明能够较精确的进行DOA跟踪。
图6是本发明在不同阵元数下的DOA跟踪性能比较图。在快拍数J为300的情况下,固定参数M为5,N=[3,4,6],可以看出随着阵元数的增加,本发明的跟踪性能变得越来越好。
图7显示了本发明与PAST算法在不同信噪比下的跟踪性能对比图,PAST算法同样基于图1的互质面阵模型。PASTd算法随着信噪比提高性能逐步改善,而在信噪比升高后性能增长减缓,同时可以看出本发明性能优于PAST算法。本发明在高信噪比时仍可以较精确的实现信源二维DOA跟踪。
本发明的复杂度分析:在图1所示的阵列模型下,PASTd算法每次更新的复杂度为O(4(M2+N2)K+2K),在互质面阵中得到信号子空间的情况下利用2D-ESPRIT算法进行二维DOA估计的复杂度为O(4K2M(M-1)+4K2N(N-1)+16K3)。由此可见,本发明的复杂度较低,利于实时跟踪DOA信息。
符号说明:小写(大写)粗体字来表示向量(矩阵)。(·)T、(·)H分别表示矩阵或向量的转置、共轭转置。E(·)是统计期望。分别表示Kronecker积和Khatri-Rao积。diag(·)代表使用向量的元素作为对角元素的对角矩阵。angle(·)表示取相角。triu(·)表示取矩阵上三角元素。表示对值x的估计。

Claims (4)

1.互质面阵下的二维DOA跟踪方法,其特征在于,包括如下步骤:
(1)通过联合互质面阵中的两个子面阵构建阵列接收信号的数据模型;
(2)利用PASTd方法实时更新接收数据的信号子空间;
(3)基于阵列接收数据的信号子空间,利用互质面阵下的二维ESPRIT算法得到DOA估计,并通过联合阵列子阵间的角度关系实现解模糊。
2.如权利要求1所述的互质面阵下的二维DOA跟踪方法,其特征在于,步骤(1)具体为:
阵元总数为M2+N2-1的互质面阵,由阵元数分别为N×N和M×M的两个均匀子面阵构成,且两个子阵的阵元间距分别为Mλ/2和Nλ/2;对于子面阵i,其在X轴和Y轴上阵元的方向矩阵可以分别表示为 其中,方向向量 di为阵元间距,因此,子面阵i的接收信号xi(t)可以表示为
其中,s(t)为信源矢量,ni(t)为子面阵i的噪声,分别表示Kronecker积和Khatri-Rao积。
3.如权利要求1所述的互质面阵下的二维DOA跟踪方法,其特征在于,步骤(2)具体为:
(21)选择适当的初始值λk(0),W(0);
(22)对每一个t=1,2,…,J(J为快拍数),使得x1(t)=X(t);
(23)对每一个k=1,2,…,K(K为信源数),分别更新以下变量:阵列接收数特征值特征向量 以及阵列接收数据xk+1(t)=xk(t)-Wk(t)yk(t);
(24)当步骤(23)中的k=K后,使得t=t+1,再次从步骤(22)开始计算。
4.如权利要求1所述的互质面阵下的二维DOA跟踪方法,其特征在于,步骤(3)具体为:
在互质面阵中,对于子面阵i,按下式构造Ai1,Ai2
其中,Mi=M或Mi=N,Ai2=Ai1Φiy,旋转因子
将信号子空间Eis分解成Eix=Es(1:Mi(Mi-1),:),其中Eix为Eis的1到Mi(Mi-1)行,Eiy为Eis的Mi+1到行,Eix、Eiy也可表达为Eix=Ai1Ti,Eiy=Ai1ΦiyTi,矩阵满秩,进而有
其中,则Φiy的对角线的元素就是Ψi的特征值,由最小二乘法则可以得到Ψi的估计
特征值分解可以获得然后根据的特征矢量,就能得到T的估计结果在不考虑噪声的条件下有
Πi表示一个置换矩阵;因为的特征值是一致的,所以将特征值分解就可以得到的估计为
其中的第k个特征值;
同样对矩阵Eis重构,可得类似地可以将E'is分解成矩阵E'ix=E'is(1:Mi(Mi-1),:)和矩阵构造矩阵那么,在不考虑噪声的条件下有其中Πi表示一个置换矩阵,类似于uik,可以得到的估计值
其中表示的是矩阵(E'ix)+E'iy第k个特征值;
通过联合两个子阵间的角度关系,可以消除互质面阵中角度估计的模糊值,即两个子阵相同的估计值即为真实角度,其余值为模糊值;
根据uik和vik的表达式可知,uik和vik的估计值有相同的列模糊,因此估计角度可以自动配对,角度配对完成后,根据以下公式即可得到信源仰角和方位角的估计值
CN201810815417.1A 2018-07-24 2018-07-24 互质面阵下的二维doa跟踪方法 Active CN109239651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810815417.1A CN109239651B (zh) 2018-07-24 2018-07-24 互质面阵下的二维doa跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810815417.1A CN109239651B (zh) 2018-07-24 2018-07-24 互质面阵下的二维doa跟踪方法

Publications (2)

Publication Number Publication Date
CN109239651A true CN109239651A (zh) 2019-01-18
CN109239651B CN109239651B (zh) 2023-06-20

Family

ID=65072985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810815417.1A Active CN109239651B (zh) 2018-07-24 2018-07-24 互质面阵下的二维doa跟踪方法

Country Status (1)

Country Link
CN (1) CN109239651B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673085A (zh) * 2019-09-25 2020-01-10 南京航空航天大学 一种均匀面阵下基于快速收敛平行因子的相干信源测向方法
CN110736959A (zh) * 2019-10-25 2020-01-31 北京理工大学 一种基于和差协同阵构建的平面互质阵列设计方法
CN111239679A (zh) * 2020-02-12 2020-06-05 南京航空航天大学 一种用于互质面阵下相干信源doa估计的方法
CN111580040A (zh) * 2020-03-29 2020-08-25 重庆邮电大学 双基地展开互质阵列mimo雷达dod和doa降维估计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785486A (zh) * 2017-01-09 2017-05-31 南京航空航天大学 一种广义互质面阵天线结构及角度估计方法
CN107102292A (zh) * 2017-06-19 2017-08-29 哈尔滨工业大学 一种基于贝叶斯方法的目标方位跟踪方法
CN108120967A (zh) * 2017-11-30 2018-06-05 山东农业大学 一种平面阵列doa估计方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785486A (zh) * 2017-01-09 2017-05-31 南京航空航天大学 一种广义互质面阵天线结构及角度估计方法
CN107102292A (zh) * 2017-06-19 2017-08-29 哈尔滨工业大学 一种基于贝叶斯方法的目标方位跟踪方法
CN108120967A (zh) * 2017-11-30 2018-06-05 山东农业大学 一种平面阵列doa估计方法及设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAILANG WU 等: "DOD and DOA Tracking Algorithm for Bistatic MIMO Radar Using PASTd without Additional Angles Pairing", 《2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE(ICACI)》 *
张小飞 等: "互质阵中空间谱估计研究进展", 《南京航空航天大学学报》 *
张正言 等: "改进型PASTd双基地MIMO雷达相干目标角度跟踪算法", 《火力与指挥控制》 *
梁炎夏 等: "基于PASTd的圆阵ESPRIT算法", 《系统仿真技术》 *
赵汇强 等: "运动目标DOA自适应跟踪算法", 《火力与指挥控制》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673085A (zh) * 2019-09-25 2020-01-10 南京航空航天大学 一种均匀面阵下基于快速收敛平行因子的相干信源测向方法
CN110736959A (zh) * 2019-10-25 2020-01-31 北京理工大学 一种基于和差协同阵构建的平面互质阵列设计方法
CN110736959B (zh) * 2019-10-25 2021-07-09 北京理工大学 一种基于和差协同阵构建的平面互质阵列设计方法
CN111239679A (zh) * 2020-02-12 2020-06-05 南京航空航天大学 一种用于互质面阵下相干信源doa估计的方法
CN111580040A (zh) * 2020-03-29 2020-08-25 重庆邮电大学 双基地展开互质阵列mimo雷达dod和doa降维估计方法

Also Published As

Publication number Publication date
CN109239651B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN109239651A (zh) 互质面阵下的二维doa跟踪方法
CN103399292B (zh) 一种基于软稀疏表示的doa估计方法
CN106772226B (zh) 基于压缩感知时间调制阵列的doa估计方法
Hysell et al. Optimal aperture synthesis radar imaging
CN107817465A (zh) 超高斯噪声背景下的基于无网格压缩感知的doa估计方法
CN107167778A (zh) 一种基于协方差矩阵重构和导向矢量估计的稳健波束形成方法
CN108872926B (zh) 一种基于凸优化的幅相误差校正及doa估计方法
CN108051810A (zh) 一种InSAR分布式散射体相位优化方法
CN107576931B (zh) 一种基于协方差低维度迭代稀疏重构的相关/相干信号波达方向估计方法
CN107870314B (zh) 基于极化敏感阵列的完备电磁分量加权融合测向优化方法
CN106021637A (zh) 互质阵列中基于迭代稀疏重构的doa估计方法
CN109188342A (zh) 共形圆阵下的低复杂度二维doa估计方法
CN109116293A (zh) 一种基于离格稀疏贝叶斯的波达方向估计方法
CN109597046A (zh) 基于一维卷积神经网络的米波雷达doa估计方法
Du et al. Robust statistical recognition and reconstruction scheme based on hierarchical Bayesian learning of HRR radar target signal
CN109752710A (zh) 一种基于稀疏贝叶斯学习的快速目标角度估计方法
CN105445718A (zh) 一种基于阵列重构的分布式多载舰超视距雷达的doa估计方法
CN108828502A (zh) 基于均匀圆阵中心对称性的相干源方向估计方法
Chen et al. Iterative reweighted proximal projection based DOA estimation algorithm for monostatic MIMO radar
CN104156553B (zh) 无需信源数估计的相干信号波达方向估计方法及系统
Xiang et al. Compressive sensing for high resolution differential SAR tomography-the SL1MMER algorithm
CN109738852A (zh) 基于低秩矩阵重建的分布式源二维空间谱估计方法
CN107861115A (zh) 一种基于瞬时自相关矩阵稀疏分解的othr机动目标参数估计方法
CN114895234A (zh) 互质面阵下降维Capon的二维DOA估计方法
Tan et al. Robust adaptive beamforming using k-means clustering: a solution to high complexity of the reconstruction-based algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant