CN109110827B - 一种二硫化镍纳米球的制备方法及其应用 - Google Patents

一种二硫化镍纳米球的制备方法及其应用 Download PDF

Info

Publication number
CN109110827B
CN109110827B CN201811382232.2A CN201811382232A CN109110827B CN 109110827 B CN109110827 B CN 109110827B CN 201811382232 A CN201811382232 A CN 201811382232A CN 109110827 B CN109110827 B CN 109110827B
Authority
CN
China
Prior art keywords
nickel
nanospheres
nickel disulfide
thioacetamide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811382232.2A
Other languages
English (en)
Other versions
CN109110827A (zh
Inventor
张竞超
张道军
张仁春
王军杰
曹智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Normal University
Original Assignee
Anyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Normal University filed Critical Anyang Normal University
Priority to CN201811382232.2A priority Critical patent/CN109110827B/zh
Publication of CN109110827A publication Critical patent/CN109110827A/zh
Application granted granted Critical
Publication of CN109110827B publication Critical patent/CN109110827B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种二硫化镍纳米球的制备方法及其应用,制备时,按比例取乙酸镍、柠檬酸三钠和硫代乙酰胺分散于混合溶剂中,再加入聚乙烯吡咯烷酮K30,并添加正丙胺调节反应体系的pH值至7~9,搅拌均匀后,于170‑190℃反应12‑24 h,反应结束后,后处理即得二硫化镍纳米球;其中,乙酸镍、柠檬酸三钠和硫代乙酰胺的摩尔比为1:(0.5‑2):2。该二硫化镍纳米材料“一锅法”即可制备得到,且尺寸显著缩小、形貌均匀,可作为超级电容器的电极材料使用。

Description

一种二硫化镍纳米球的制备方法及其应用
技术领域
本发明属于二硫化镍纳米材料制备技术领域,具体涉及一种二硫化镍纳米球的制备方法及其应用。
背景技术
到目前为止,已被报道的镍的硫化物的合成方法虽然已有多种,但大多需要借助模板或多步转化的方法,一步合成的例子不多。例如赵等人首先在180℃的条件下合成由氢氧化镍纳米片组成的微米球,再以该微米球为前体,加入硫代乙酰胺,通过金属氢氧化物与硫离子的阴离子交换反应,在120℃条件下转换成多孔硫化镍微米球,此方法合成的三维多孔硫化镍微球尺寸为3 μm,形貌均匀,但该制备方法需要两步完成,且合成的样品尺寸较大[ACS Nano2014, 8: 10909–10919]。楼雄文课题组通过牺牲模板的方法,合成了盒子套盒子结构的硫化镍,制备过程需要预先合成硬模板SiO2 [Adv. Funct. Mater. 2014, 24:7440–7446],此外,通过该球形SiO2模板转化法,还可以得到中空球形的硫化镍[RSC Adv.,2011, 1: 397–400]。曹等人以NiCl2·6H2O和硫脲为原料,通过简单的一步水热法,在180℃反应12 h 的条件下合成了尺寸为2~3 μm的Ni7S6纳米花[J. Mater. Chem., 2010, 20:1078–1085]。综上所述,一步法合成镍的硫化物,方法虽然简单,但是得到的晶体结晶度不高,形貌不规则,且尺寸比较大,而两步法合成的镍硫化物,得到的产物形貌较均匀,但是合成过程较为复杂。
发明内容
本发明针对二硫化镍制备存在的问题,提供一种二硫化镍纳米球的制备方法及其应用,该二硫化镍纳米材料“一锅法”即可制备得到,且尺寸显著缩小、形貌均匀,可作为超级电容器的电极材料使用。
本发明采用如下技术方案:
一种二硫化镍纳米球的制备方法,包括以下步骤:按比例取乙酸镍、柠檬酸三钠和硫代乙酰胺分散于混合溶剂中,再加入聚乙烯吡咯烷酮K30,并添加正丙胺调节反应体系的pH值至7~9,搅拌均匀后,于170-190℃反应12-24 h,反应结束后,后处理即得二硫化镍纳米球;
其中,乙酸镍、柠檬酸三钠和硫代乙酰胺的摩尔比为1: (0.5-2): 2;聚乙烯吡咯烷酮K30作为表面活性剂使用,聚乙烯吡咯烷酮K30与乙酸镍的摩尔比优选为1: 0.033。
优选地,所述混合溶剂由体积比为1:1的去离子水和N, N-二甲基乙酰胺混合而成。
上述制备方法得到的二硫化镍纳米球。
所述二硫化镍纳米球可作为超级电容器电极材料使用。
本发明的有益效果如下:
本发明采用简单的溶剂热法,并通过正丙胺调节体系至适宜反应的pH值范围,一步合成得到了形貌规则、结晶度好、尺寸均匀的二硫化镍(NiS2)纳米球,且所得二硫化镍纳米球的平均尺寸可以缩小至280 nm,显著低于目前报道的尺寸。经测试,该二硫化镍纳米球在碱性电解质中循环可逆性良好,且在0.5 A/g电流密度下,比容量达到1457.8 F/g,同时表现出较好的倍率性能,有望作为超级电容器电极材料使用。
附图说明
图1为不同正丙胺用量得到NiS2的XRD图: (a) 0 μL (b) 25 μL (c) 50 μL;
图2为不同正丙胺用量得到NiS2的SEM图:(a) 0 μL (b) 25 μL (c) 50 μL;
图3为NiS2纳米球的吸附等温线及孔分布图;
图4为NiS2纳米球在不同扫描速率下的CV曲线;
图5为NiS2纳米球在不同电流密度时的恒电流充放电曲线。
图6为NiS2纳米球在电流密度为时4 A/g时的循环寿命测试。
具体实施方式
为了使本发明的技术目的、技术方案和有益效果更加清楚,下面结合附图和具体实施例对本发明的技术方案作出进一步的说明。
实施例1
一种二硫化镍纳米球的制备方法,包括以下步骤:取乙酸镍24.88 mg(0.1 mmol),PVP-K30 100 mg(0.0033 mmol),柠檬酸三钠29.41 mg (0.1 mmol)和硫代乙酰胺15.03 mg(0.2 mmol)分散于4 mL去离子水和4 mL N, N-二甲基乙酰胺 (DMA)混合而成的混合溶剂中,磁力搅拌20 min,测得体系的pH值为7,转移至50 mL反应釜中,在180℃反应12 h,自然冷却到室温,得到的黑色沉淀用无水乙醇和去离子水交替洗涤数次,离心分离取固体产物,将所收集到的固体样品在60℃下干燥20 min,即得二硫化镍纳米球。
实施例2
一种二硫化镍纳米球的制备方法,包括以下步骤:取乙酸镍24.88 mg (0.1mmol),PVP-K30 100 mg (0.0033 mmol),柠檬酸三钠29.41 mg (0.1 mmol)和硫代乙酰胺15.03 mg (0.2 mmol)分散于4 mL去离子水和4 mL N, N-二甲基乙酰胺 (DMA)混合而成的混合溶剂中,再加入25 μL正丙胺,磁力搅拌20 min,测得体系的pH值为8,转移至50 mL反应釜中,在180℃反应12 h,自然冷却到室温,得到的黑色沉淀用无水乙醇和去离子水交替洗涤数次,离心分离取固体产物,将所收集到的固体样品在60℃下干燥20 min,即得二硫化镍纳米球。
实施例3
一种二硫化镍纳米球的制备方法,包括以下步骤:取乙酸镍24.88 mg(0.1 mmol),PVP-K30 100 mg (0.0033 mmol),柠檬酸三钠29.41 mg (0.1 mmol)和硫代乙酰胺15.03mg (0.2 mmol)分散于4 mL去离子水和4 mL N, N-二甲基乙酰胺 (DMA)混合而成的混合溶剂中,再加入50 μL正丙胺,磁力搅拌20 min,测得体系的pH值为9,转移至50 mL反应釜中,在180℃反应12 h,自然冷却到室温,得到的黑色沉淀用无水乙醇和去离子水交替洗涤数次,离心分离取固体产物,将所收集到的固体样品在60℃下干燥20 min,即得二硫化镍纳米球。
实施例4
一种二硫化镍纳米球的制备方法,包括以下步骤:取乙酸镍24.88 mg(0.1 mmol),PVP-K30 100 mg (0.0033 mmol),柠檬酸三钠14.71 mg (0.05 mmol)和硫代乙酰胺15.03mg (0.2 mmol)分散于4 mL去离子水和4 mL N, N-二甲基乙酰胺 (DMA)混合而成的混合溶剂中,再加入25 μL正丙胺,磁力搅拌20 min,测得体系的pH值为8,转移至50 mL反应釜中,在190℃反应12 h,自然冷却到室温,然后用无水乙醇和去离子水交替洗涤黑色沉淀数次,离心分离取固体产物,将所收集到的固体样品在60℃下干燥20 min,即得二硫化镍纳米球。
实施例5
一种二硫化镍纳米球的制备方法,包括以下步骤:取乙酸镍24.88 mg(0.1 mmol),PVP-K30 100 mg (0.0033 mmol),柠檬酸三钠58.82 mg (0.2 mmol)和硫代乙酰胺15.03mg (0.2 mmol)分散于4 mL去离子水和4 mL N, N-二甲基乙酰胺 (DMA)混合而成的混合溶剂中,再加入25 μL正丙胺,磁力搅拌20 min,测得体系的pH值为8,转移至50 mL反应釜中,在170℃反应24 h,自然冷却到室温,得到的黑色沉淀用无水乙醇和去离子水交替洗涤数次,离心分离取固体产物,将所收集到的固体样品在60℃下干燥20 min,即得二硫化镍纳米球。
以实施例1、 2和3制备得到的二硫化镍纳米球为例,其结构由XRD确定,如图1所示,可以看出,实施例2制备的二硫化镍纳米球的特征峰与标准PDF卡片号为65-3325的立方晶相匹配度较高,说明本发明制备得到的二硫化镍纳米球为立方晶相。
以实施例1、 2和3制备得到的二硫化镍纳米球为例,扫描电镜测试如图2所示,当反应体系中不加入正丙胺时,如图2a所示,纳米球的产率很低;当正丙胺的用量为25 μL时,得到的样品均为球形形貌,且平均尺寸约280 nm(图2b);当正丙胺的用量达到50 μL时,产物中出现了少许片状形貌(图2c)。由此可知,要得到尺寸和形貌较为均匀的二硫化镍纳米球,选择正丙胺用量为25 μL,此时调节体系最佳pH值为8 。
以实施例2制备得到的二硫化镍纳米球为例,如图3所示,NiS2纳米球的吸附等温线属于IV型中的H3型,样品的孔可能是由球形材料堆积缝隙所产生的,所测样品BET表面积为5.34 m2/g,主要孔径分布约为37 nm。
二硫化镍纳米球的电化学性能测试
以实施例2得到的样品进行如下测试。
图4为二硫化镍纳米球作为工作电极在2 mol/L KOH溶液中的CV曲线,采用铂丝作为对电极,饱和甘汞电极为参比电极。样品的扫描速率为 5~50 mV/s,电位窗口在0~0.6V范围内。由图中曲线可看出,氧化还原峰对称,阴极峰电流与阳极峰电流近似相等,且当扫描速度增加时,曲线的形状维持不变,只是峰电流增加,说明本发明二硫化镍纳米球具有较好的循环可逆性。
图5为在不同电流密度(0.5~6 A/g)下工作电极的恒电流充放电测试曲线,测试电压为0.42 V。在0.5 A/g、1 A/g、2 A/g、4 A/g、6 A/g的比电容值分别为1457.79 F/g、1273.26 F/g、1118.43 F/g、961.34 F/g、841.72 F/g,说明NiS2纳米球具有高的比电容值,且表现出较好的倍率性能。
图6为电流密度为4 A/g下的循环稳定性图,循环1000圈后,电容量为722.47 F/g。
最后所应说明的是:上述实施例仅用于说明而非限制本发明的技术方案,任何对本发明进行的等同替换及不脱离本发明精神和范围的修改或局部替换,其均应涵盖在本发明权利要求保护的范围之内。

Claims (3)

1.一种二硫化镍纳米球的制备方法,其特征在于,包括以下步骤:按比例取乙酸镍、柠檬酸三钠和硫代乙酰胺分散于混合溶剂中,再加入聚乙烯吡咯烷酮K30,并添加正丙胺调节反应体系的pH值至7~9,搅拌均匀后,于170-190℃下反应12-24 h,反应结束后,自然冷却到室温,得到的黑色沉淀用无水乙醇和去离子水交替洗涤数次,离心分离取固体产物,将所收集到的固体样品在60℃下干燥20 min,即得二硫化镍纳米球;
其中,乙酸镍、柠檬酸三钠和硫代乙酰胺的摩尔比为1: (0.5-2): 2;所述混合溶剂由体积比为1:1的去离子水和N, N-二甲基乙酰胺混合而成。
2.权利要求1所述制备方法得到的二硫化镍纳米球。
3.权利要求2所述二硫化镍纳米球作为超级电容器电极材料的应用。
CN201811382232.2A 2018-11-20 2018-11-20 一种二硫化镍纳米球的制备方法及其应用 Expired - Fee Related CN109110827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811382232.2A CN109110827B (zh) 2018-11-20 2018-11-20 一种二硫化镍纳米球的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811382232.2A CN109110827B (zh) 2018-11-20 2018-11-20 一种二硫化镍纳米球的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109110827A CN109110827A (zh) 2019-01-01
CN109110827B true CN109110827B (zh) 2020-06-26

Family

ID=64854086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811382232.2A Expired - Fee Related CN109110827B (zh) 2018-11-20 2018-11-20 一种二硫化镍纳米球的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109110827B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672075B (zh) * 2019-02-18 2020-09-25 哈尔滨工程大学 一种多波长光纤激光器及其二硫化镍锁模器件的制备方法
CN109942017B (zh) * 2019-04-30 2020-07-14 大连理工大学 一种粒径精确可控的硫化物高度均匀微球及其制备方法
CN111362320B (zh) * 2020-03-13 2022-07-19 江西师范大学 负载的硫化镍纳米棒材料及其制备方法和应用
CN114890481B (zh) * 2022-04-22 2023-12-12 四川智立方博导科技有限责任公司 一种二维硫氧化镍纳米薄片材料、制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1147970A (en) * 1980-12-23 1983-06-14 Victor A. Ettel Process for cobalt recovery from mixed sulfides
CN102633309A (zh) * 2012-01-13 2012-08-15 沈阳理工大学 一种形貌可控NiS2的水热制备方法
CN103058289B (zh) * 2013-01-05 2014-09-10 中南大学 镍的硫族化合物及氧化物空心球的制备方法
CN105449171A (zh) * 2016-01-05 2016-03-30 北京金吕能源科技有限公司 一种纳米硫化镍的制备方法
CN107344732A (zh) * 2017-03-29 2017-11-14 武汉理工大学 一种孔隙可控的三维多孔NiS2微球及其制备方法和应用
CN107010676B (zh) * 2017-05-08 2018-06-19 浙江师范大学 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法
CN107140699B (zh) * 2017-05-31 2018-12-11 武汉理工大学 NiS2介孔纳米球材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109110827A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN109110827B (zh) 一种二硫化镍纳米球的制备方法及其应用
Wang et al. Effect of electrodeposition temperature on the electrochemical performance of a Ni (OH) 2 electrode
Yuan et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors
CN106972155B (zh) 一种基于MOFs的双金属氧化物及制备方法和应用
Aghazadeh et al. Electrochemical preparation of α-Ni (OH) 2 ultrafine nanoparticles for high-performance supercapacitors
CN109553779B (zh) 一种三维纳米花金属有机框架材料的制备方法及应用
Lv et al. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors
CN107337190B (zh) 一种纳米花状的长在泡沫镍上的磷酸钴镍的制备方法
US20210090819A1 (en) Method for preparing super capacitor electrode material Ni doped CoP3/foam nickel
CN103318978B (zh) 一种介孔钴酸镍纤维的制备方法及其应用
CN106159254A (zh) 纳米片状三元或富锂锰基固溶体正极材料前驱体制备方法
CN103489661B (zh) 一种超级电容器电极材料及其制备方法
Chen et al. NiCo 2 S 4@ Ni 3 S 2 hybrid nanoarray on Ni foam for high-performance supercapacitors
CN112233912A (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
CN108855145A (zh) 一种两步法制备硫化钴/硫化钼复合材料及在氢气析出反应应用
Xin et al. 3D flower-like NiCo2O4 electrode material prepared by a modified solvothermal method for supercapacitor
CN103011306A (zh) 一种制备纳米级立方体状四氧化三钴的方法
CN103887082A (zh) 一种在金属泡沫镍表面生长六边形Co(OH)2的方法
Yao et al. Design and synthesis of hierarchical NiCo 2 S 4@ NiMoO 4 core/shell nanospheres for high-performance supercapacitors
Zhu et al. Nanorod-assembled NiCo 2 O 4 hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors
CN111921529B (zh) 镍钴金属有机骨架/镍钴金属氢氧化物异质材料的制备方法及应用
CN112017868B (zh) 一种介孔中空碳微米笼材料及其制备方法和应用
Guragain et al. Effect of dopant on the morphology and electrochemical performance of Ni 1-x Ca x Co 2 O 4 (0= x= 0.8) oxide hierarchical structures
CN110203976A (zh) 快速合成雪花状ZnCo2O4-ZnO复合电级材料的制备方法
Chen et al. The synthesis and electrochemical properties of low-crystallinity iron silicate derived from reed leaves as a supercapacitor electrode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200626

Termination date: 20211120

CF01 Termination of patent right due to non-payment of annual fee