CN109109142B - 一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法 - Google Patents

一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法 Download PDF

Info

Publication number
CN109109142B
CN109109142B CN201811024123.3A CN201811024123A CN109109142B CN 109109142 B CN109109142 B CN 109109142B CN 201811024123 A CN201811024123 A CN 201811024123A CN 109109142 B CN109109142 B CN 109109142B
Authority
CN
China
Prior art keywords
powder
alon
mold
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811024123.3A
Other languages
English (en)
Other versions
CN109109142A (zh
Inventor
田庭燕
王震
张微
王颖
吴宁
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinoma intraocular lens Research Institute Co., Ltd
Beijing Sinoma Synthetic Crystals Co Ltd
Original Assignee
Beijing Sinoma Synthetic Crystals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinoma Synthetic Crystals Co Ltd filed Critical Beijing Sinoma Synthetic Crystals Co Ltd
Priority to CN201811024123.3A priority Critical patent/CN109109142B/zh
Publication of CN109109142A publication Critical patent/CN109109142A/zh
Application granted granted Critical
Publication of CN109109142B publication Critical patent/CN109109142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/42Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for heating or cooling, e.g. steam jackets, by means of treating agents acting directly on the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法,包括模具主体和底座,模具主体包括位于中央的型腔,整个型腔高度为130mm,模具的型腔设有锥度;模具主体的上部和下部分别设有台阶部,底座上部设有与之相对应的凸台部。型腔内设有多个石墨垫片隔离粉料,所述石墨垫片厚度为4mm,模具的型腔内壁上设有排气孔,排气孔为圆形或十字形,排气孔的数量在模具自下而上的高度方向上逐步减少。提高了烧结产品的致密度,增加了成品率、力学和光学等性能。

Description

一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结 AlON的方法
技术领域
本发明涉及陶瓷材料领域,尤其涉及一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法。
背景技术
氮氧化铝(AlON)是Al2O3-AlN二元体系中的一个稳定的单相固溶体,是一种透明多晶陶瓷,其强度和硬度高达380MPa和1800kg/mm2,仅次于单晶蓝宝石,从近紫外(0.2μm) 到中红外(6.0μm)有着很好的光学透过性,因此,AlON透明陶瓷可应用于轻型防护和装甲防弹等对于材料硬度、韧性和透光性都有严格要求的应用领域。目前制备AlON透明陶瓷所用AlON粉体的制备方法主要有两种:高温固相反应法和氧化铝还原氮化法。其中,高温固相反应法的反应机理是以Al2O3和AlN粉体为原料在高温下进行固相反应得到AlON粉体,该方法工艺简单,但要求AlN和Al2O3粉必须高纯超细,其中高质量的 AlN粉体主要依赖进口,价格较高,导致生产成本较高,同时高温固相反应法反应速率不易控制,易引起粉体团聚或混合不均匀,从而严重影响材料的透光性,因此难以实现产业化。氧化铝还原氮化法是指采用Al2O3粉体为原料,与C、Al、NH3、H等还原剂混合,随后在氮气环境下还原得到AlON粉体,该方法中,主要原料Al2O3粉体纯度高、粒度小、性能稳定且价格便宜,同时以碳作为还原剂得到的产品质量稳定可靠,还原氮化反应工艺可控性好,安全、环保,所制备的AlON粉体纯度高,因此碳热还原氮化法制备高纯AlON粉具有非常好的应用前景,易实现批量化生产。但上述氧化铝还原氮化法制备出的AlON粉体,是高温烧结后得到的,需要经过再进一步的破碎和磨细,该过程增加了工序和生产成本,同时在破碎细磨过程中易引入杂质,降低粉体的质量。
目前AlON透明陶瓷制品的主要制备方法为热压烧结与无压烧结,其中热压烧结法是一种机械加压的烧结方法,把AlON等陶瓷粉末装在热压模具内,在加压的同时将粉末加热到烧成温度,从外部施加压力补充驱动力,因此可以在较短的时间内达到致密化,并且获得具有细小均匀晶粒的显微结构,石墨模具是常用的模具材料,相对便宜,易加工,且高温抗蠕变性非常好。但目前在制备过程中,亟待解决的两个问题是石墨模具的脱模和除气,由于AlON粉体中含有一定数量的气体,在热压过程中粉体被压实,粉体中的气体被压出,如果排气不顺畅,则被压出的气体不能及时排出,留在工件内部,造成气孔缺陷,使产品部件的致密性下降,影响性能,并使得废品率增加。同时热压烧结成型在高温下进行,由于高温下石墨有可能与陶瓷试样发生反应,造成接触面的侵蚀或产品粘在模具壁上,脱模困难。
发明内容
为解决上述技术问题,本发明提供了一种热压烧结AlON透明陶瓷用石墨模具。
本发明完整的技术方案包括:
一种热压烧结AlON透明陶瓷用石墨模具,其特征在于,所述模具包括模具主体和底座,模具主体包括位于中央的型腔,整个型腔高度为130mm,模具的型腔设有(1:9)~ (1:12)的锥度;
模具主体的上部和下部分别设有台阶部,所述台阶部的直径为130mm,高度为15mm,底座上部设有与之相对应的凸台部,凸台部的直径为130mm,高度为15mm。型腔内设有多个石墨垫片隔离粉料,所述石墨垫片厚度为4mm;
模具的型腔内壁上设有排气孔,所述排气孔为圆形,排气孔直径为2-5mm,排气孔深度为6-10mm,在模具底部,排气孔设置的间隔为10-15mm,而在模具顶部,排气孔设置的间隔为40-60mm,排气孔的数量在模具自下而上的高度方向上逐步减少。
所述的排气孔还可以为十字形。
利用所述的模具进行AlON热压烧结的方法,包括如下步骤:
(1)配料:以重量份计,选取AlON陶瓷粉体99-99.5份,Y2O3+La2O3粉为0.5-1 份,其中AlON陶瓷粉体的平均粒径为1~10μm,Y2O3、La2O3粉体的平均粒径为 150-200nm,将上述粉体混合,得到混合粉体。
(2)将粉体放入行星球磨机,加入无水乙醇作为溶剂进行球磨,球磨后放入真空干燥箱中烘干,制成混合粉料,将混合粉料在15MPa的压力下,压制形成AlON陶瓷坯体。
(3)将坯体置于石墨模具中,在惰性气氛下,真空热压炉中烧结成型,其中,真空热压炉的烧结温度为1750-1950℃,烧结压力为25-35MPa。具体地,将真空热压炉设定为阶段式程序升温,阶段式程序升温包括两个阶段:第一阶段由常温升至1400℃,升温速率为15℃/min,并保温0.5h,该阶段为无压烧结,设计升温速度较慢,并配合一定的保温时间,使坯料中的气体有充分时间溢出至排气孔或模具外;第二阶段开始加压至烧结压力,温度由1400℃升至1900℃的烧结温度,升温速率为20℃/min,并保温4h。
本发明相对于现有技术的改进为:由于本申请人在原料制备方面,在氧化铝还原氮化法的基础上引入沸腾床法,在反应室内形成自下而上的气体悬浮系统,获得了粒径非常小的 AlON粉料,采用该粉体进行AlON的产品烧结大幅提高了陶瓷制品的性能,但由于粉体的粒径非常小,致使粉料中的气体含量增加,在热压烧结过程中,排气成为了主要的问题,采用传统的石墨模具烧结时,制品中的气孔含量较高,严重影响了制品质量与成品率,因而在此基础上,对石墨模具进行了锥度和排气孔设计,并优化了烧结过程,采用两段式烧结的方式,增加排气时间,提高了烧结产品的致密度,增加了成品率和性能。
附图说明
图1为本发明采用的石墨模具结构示意图。
图2为石墨模具内侧壁的排气孔结构示意图。
图3为石墨模具内侧壁的排气孔结构又一示意图。
图中:1-模具主体,2-底座,3-台阶部,4-凸台部,5-石墨垫片,6-型腔,7-排气孔。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明。
如图1-3所示,本发明中所用的模具为石墨模具,模具包括模具主体1和底座2,模具主体包括位于中央的型腔6,整个型腔高度为130mm,模具主体的上部和下部分别设有台阶部3,所述台阶部的直径为130mm,高度为15mm,底座上部设有与之相对应的凸台部4,凸台部的直径为130mm,高度为15mm。型腔内设有多个石墨垫片5用于隔离粉料,可一次做多片产品,石墨垫片厚度为4mm。
模具的型腔设有一定的锥度,在本发明中,锥度的设计主要考虑热压烧结过程中排气和烧结后的脱模难度,排气顺畅与坯料中的含气量有关,而脱模则与坯料的厚度以及坯料与模具壁的反应程度有关。在本实施例中,通过对实验结果进行分析比较,采用了 (1:9)~(1:12)的锥度设计。
模具的型腔内壁上设有排气孔7,在本发明中,设置排气孔是因为在实际中发现,单纯靠锥度设计排气,并不能保证最佳的排气效果,因此在模具的内壁上加工排气孔,经验证,十字形和圆形的排气孔均可实现较好的排气设置,排气孔的直径尺寸为2-5mm,较小的尺寸保证对产品的成型不会造成影响,排气孔深度为6-10mm,提高了排气的效果,又保证了模具的强度,同时数量设置上,经过验证发现,越靠近模具底部,坯体的排气越困难,因此设计排气孔的数量在模具自下而上的高度上逐步减少,具体地,在模具底部,排气孔设置的间隔为10-15mm,而在模具顶部,排气孔设置的间隔为40-60mm。
实施例1:
本实施例中,包括如下步骤:
(1)配料:以重量份计,选取AlON陶瓷粉体99.5-99份,Y2O3+La2O3粉为0.5-1 份,其中AlON陶瓷粉体的平均粒径为1~10μm、Y2O3、La2O3粉体的平均粒径为 150-200nm,将上述粉体混合,得到混合粉体。其中AlON陶瓷粉体是作为烧结的基体, Y2O3和La2O3粉体作为烧结助剂,在实验中对上述烧结助剂组分的含量和粒度进行反复试验后,发现此含量和粒度下能较好地实现降低烧结温度,提高烧结致密度,并适当提高产品力学和光学性能的综合效果。助剂添加含量较低则效果不明显,添加含量过高则会导致AlON基体中第二相生成,反而降低了性能。
(2)将粉体放入行星球磨机罐中,加入无水乙醇作为溶剂进行球磨,球磨后放入真空干燥箱中烘干,制成混合粉料,将混合粉料于15MPa压力下压制形成AlON陶瓷坯体。
(3)将坯体置于模具中,在惰性气氛下,真空热压炉中烧结成型,其中,真空热压炉的烧结温度为1750-1950℃,烧结压力为25-35MPa。具体地,将真空热压炉设定为阶段式程序升温,阶段式程序升温包括两个阶段:第一阶段由常温升至1400℃,升温速率为15℃/min,并保温0.5h,该阶段为无压烧结,设计升温速度较慢,并配合一定的保温时间,使坯料中的气体有充分时间溢出至排气孔或模具外;第二阶段开始加压至烧结压力,温度由1400℃升至1900℃的烧结温度,升温速率为20℃/min,并保温4h。
具体的,本发明所使用的AlON粉体,是采用Al2O3粉末与碳源作为原料,在氧化铝还原氮化法的基础上,引入沸腾床法,在沸腾床中通入氮气作为沸腾气体,使部分Al2O3在碳源的还原作用下形成气态Al2O3或Al,然后与氮气反应后形成AIN和Al2O3的混合粉末;随后继续升高沸腾床反应室内温度,使Al2O3和AIN在高温下通过固相反应生成AlON;冷却后得到AlON粉体。其中一个具体的工艺流程为:
(1)配料:采用纯度>99.99%,粒度分布D50为60nm的高纯γ-Al2O3粉末,与纯度>99.99%,粒度分布D50为180-200nm的炭黑作为原料,Al2O3与炭黑质量比为16:1;
(2)将炭黑装入加热室,预热到750℃,同时往沸腾床的反应室中通入纯度>99.99%,压力为0.8MPa的氮气,使反应室内为氮气气氛;
(3)随后高纯γ-Al2O3粉末与预热后的炭黑粉混合并由物料进口一起被送入反应室中,粉料床层厚度约为0.5m;
(4)使沸腾床反应室内温度达到1600℃,从沸腾床反应室底部的鼓风机通入纯度>99.99%,压力为1.1MPa的氮气作为沸腾气体,氮气流速为0.7m/s,保温20min,该过程中使部分Al2O3在石墨的还原作用下形成气态Al2O3或Al,然后与氮气反应后形成AIN 和Al2O3的混合粉末;
(5)随后使沸腾床床反应室内温度达到1800℃,增大氮气压力到1.3Mpa,氮气流速为 0.8m/s,保温15min,该过程中Al2O3和AIN在高温下通过固相反应生成γ-AlON;
(6)鼓风机将反应后的γ-AlON粉体输送到旋风分离器,进行分离,冷却后得到AlON 粉体。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (1)

1.一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法,其特征在于,所述模具包括模具主体和底座,模具主体包括位于中央的型腔,整个型腔高度为130mm,模具的型腔设有(1:9)~(1:12)的锥度;
模具主体的上部和下部分别设有台阶部,所述台阶部的直径为130mm,高度为15mm,底座上部设有与之相对应的凸台部,凸台部的直径为130mm,高度为15mm,型腔内设有多个石墨垫片隔离粉料,所述石墨垫片厚度为4mm;
模具的型腔内壁上设有排气孔,所述排气孔为圆形,排气孔直径为2-5mm,排气孔深度为6-10mm,在模具底部,排气孔设置的间隔为10-15mm,而在模具顶部,排气孔设置的间隔为40-60mm,排气孔的数量在模具自下而上的高度方向上逐步减少;
包括如下步骤:
(1)配料:以重量份计,选取AlON陶瓷粉体99-99.5份,Y2O3+La2O3粉为0.5-1份,其中AlON陶瓷粉体的平均粒径为1~10μm,Y2O3、La2O3粉体的平均粒径为150-200nm,将上述粉体混合,得到混合粉体;
(2)将粉体放入行星球磨机,加入无水乙醇作为溶剂进行球磨,球磨后放入真空干燥箱中烘干,制成混合粉料,将混合粉料在15MPa的压力下,压制形成AlON陶瓷坯体;
(3)将坯体置于石墨模具中,在惰性气氛下,真空热压炉中烧结成型,其中,真空热压炉的烧结温度为1750-1950℃,烧结压力为25-35Mpa;具体地,将真空热压炉设定为阶段式程序升温,阶段式程序升温包括两个阶段:第一阶段由常温升至1400℃,升温速率为15℃/min,并保温0.5h,该阶段为无压烧结,设计升温速度较慢,并配合一定的保温时间,使坯料中的气体有充分时间溢出至排气孔或模具外;第二阶段开始加压至烧结压力,温度由1400℃升至1900℃的烧结温度,升温速率为20℃/min,并保温4h;
步骤(1)中所述的AlON陶瓷粉体制备方法为采用Al2O3粉末与碳源作为原料,在氧化铝还原氮化法的基础上,引入沸腾床法,在沸腾床中通入氮气作为沸腾气体,使部分Al2O3在碳源的还原作用下形成气态Al2O3或Al,然后与氮气反应后形成AIN和Al2O3的混合粉末;随后继续升高沸腾床反应室内温度,使Al2O3和AIN在高温下通过固相反应生成AlON;冷却后得到AlON粉体,其具体的工艺流程为:
(a)配料:采用纯度>99.99%,粒度分布D50为60nm的高纯γ-Al2O3粉末,与纯度>99.99%,粒度分布D50为180-200nm的炭黑作为原料,Al2O3与炭黑质量比为16:1;
(b)将炭黑装入加热室,预热到750℃,同时往沸腾床的反应室中通入纯度>99.99%,压力为0.8MPa的氮气,使反应室内为氮气气氛;
(c)随后高纯γ-Al2O3粉末与预热后的炭黑粉混合并由物料进口一起被送入反应室中,粉料床层厚度约为0.5m;
(d)使沸腾床反应室内温度达到1600℃,从沸腾床反应室底部的鼓风机通入纯度>99.99%,压力为1.1MPa的氮气作为沸腾气体,氮气流速为0.7m/s,保温20min,该过程中使部分Al2O3在石墨的还原作用下形成气态Al2O3或Al,然后与氮气反应后形成AIN和Al2O3的混合粉末;
(e)随后使沸腾床床反应室内温度达到1800℃,增大氮气压力到1.3Mpa,氮气流速为0.8m/s,保温15min,该过程中Al2O3和AIN在高温下通过固相反应生成γ-AlON;
(f)鼓风机将反应后的γ-AlON粉体输送到旋风分离器,进行分离,冷却后得到AlON粉体。
CN201811024123.3A 2018-09-04 2018-09-04 一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法 Active CN109109142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811024123.3A CN109109142B (zh) 2018-09-04 2018-09-04 一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811024123.3A CN109109142B (zh) 2018-09-04 2018-09-04 一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法

Publications (2)

Publication Number Publication Date
CN109109142A CN109109142A (zh) 2019-01-01
CN109109142B true CN109109142B (zh) 2020-08-11

Family

ID=64861879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811024123.3A Active CN109109142B (zh) 2018-09-04 2018-09-04 一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法

Country Status (1)

Country Link
CN (1) CN109109142B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516813B (zh) * 2019-01-08 2021-04-23 大连海事大学 一种直接水注成型制备高透光性AlON透明陶瓷的方法
CN110128120B (zh) * 2019-05-10 2021-12-07 福建省长汀金龙稀土有限公司 一种复合陶瓷的制备方法
CN110223857A (zh) * 2019-06-13 2019-09-10 合肥康特微科技有限公司 一种带通气孔的电池电容密封端盖模具
CN111548018B (zh) * 2020-03-26 2022-04-15 常熟佳合显示科技有限公司 一种手机3d后盖保护材料的制备方法
CN111267219B (zh) * 2020-03-31 2021-05-11 中材人工晶体研究院有限公司 一种AlON陶瓷凝胶注模成型真空除气方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1166779A (en) * 1968-07-17 1969-10-08 Du Pont Hot Pressing Process and Apparatus
JP5336852B2 (ja) * 2005-10-27 2013-11-06 コーニンクレッカ フィリップス エヌ ヴェ 一軸加圧及び加熱装置
CN101033139A (zh) * 2007-02-07 2007-09-12 山东理工大学 透明氮氧化铝陶瓷的制备工艺
CN102093057A (zh) * 2010-12-01 2011-06-15 山东理工大学 高透光率γ-ALON透明陶瓷的制备技术
CN204136205U (zh) * 2014-09-19 2015-02-04 邱艳 一种排气迅速的骨质陶瓷模具
CN104647573B (zh) * 2015-03-06 2016-08-24 张龙宜 一种易脱防堵原装边陶瓷砖成型模具
CN205420147U (zh) * 2016-03-23 2016-08-03 三责(上海)新材料科技有限公司 一种模造玻璃的陶瓷模具
CN107008897A (zh) * 2017-04-05 2017-08-04 安徽工业大学 一种粉末成型模具及成型方法
CN206622616U (zh) * 2017-04-19 2017-11-10 兰州工业学院 一种热压石墨模具

Also Published As

Publication number Publication date
CN109109142A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN109109142B (zh) 一种利用热压烧结AlON透明陶瓷用石墨模具进行热压烧结AlON的方法
US11634364B2 (en) Boron carbide composite and production method therefor
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN110698205B (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN111217611B (zh) 一种氮化铝氮化硼复合陶瓷材料及其制备方法
CN1793038A (zh) 利用微波技术烧结Sialon结合碳化硅耐火材料的方法
CN108585917B (zh) 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN110272282B (zh) AlON透明陶瓷的低温制备方法
CN110903091B (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
US7919040B2 (en) Method of preparing pressureless sintered, highly dense boron carbide materials
CN1529682A (zh) 陶瓷光学部件的制造方法
CN109534820B (zh) 一种玻璃热弯成型用陶瓷模具及其制备方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN112645714B (zh) 一种氮化硅陶瓷脱水元件及其制备方法和应用
KR101151209B1 (ko) 머시너블 흑색 세라믹 복합체 및 그 제조방법
KR102249470B1 (ko) 입자성장을 억제한 고밀도 보론카바이드 세라믹 제조방법 및 제조된 세라믹 소결체
KR20130112363A (ko) 초경합금 및 초경합금의 제조방법
CN1566021A (zh) 一种黑色氧化锆陶瓷的制造方法
CN113582517B (zh) 玻璃注塑胚体的烧结工艺、玻璃制品的加工方法及玻璃制品
CN116103765A (zh) 一种烧结态钼坩埚及制备方法
CN1286769C (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN108892528A (zh) 一种多孔氮化硅陶瓷材料及其制备方法
CN115246737A (zh) 一种制备等静压石墨制品的焙烧方法及其制品
CN109721381B (zh) 氮化硅壳体强化氮化硅泡沫陶瓷的制备方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201021

Address after: 100018 Beijing Chaoyang District pine Park No. 1 in

Patentee after: Sinoma intraocular lens Research Institute Co., Ltd

Patentee after: BEIJING SINOMA SYNTHETIC CRYSTALS Co.,Ltd.

Address before: 100018 Beijing Chaoyang District pine Park No. 1

Patentee before: BEIJING SINOMA SYNTHETIC CRYSTALS Co.,Ltd.

TR01 Transfer of patent right