CN109103277A - 一种基于ZnO纳米网格的紫外光电探测器及其制备方法 - Google Patents

一种基于ZnO纳米网格的紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN109103277A
CN109103277A CN201810840948.6A CN201810840948A CN109103277A CN 109103277 A CN109103277 A CN 109103277A CN 201810840948 A CN201810840948 A CN 201810840948A CN 109103277 A CN109103277 A CN 109103277A
Authority
CN
China
Prior art keywords
film
zno nano
preparation
mixed solution
nano grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810840948.6A
Other languages
English (en)
Other versions
CN109103277B (zh
Inventor
杨为家
沈耿哲
何鑫
梁萍
刘俊杰
刘铭全
刘艳怡
王诺媛
陈毅湛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201810840948.6A priority Critical patent/CN109103277B/zh
Publication of CN109103277A publication Critical patent/CN109103277A/zh
Application granted granted Critical
Publication of CN109103277B publication Critical patent/CN109103277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种基于ZnO纳米网格的紫外光电探测器及其制备方法。经过制备混合溶液、多层薄膜、高温烧结、金属纳米粒子、电极等步骤制备所述基于ZnO纳米网格的紫外光电探测器。本发明所述制备方法适用范围广,可以在多种大尺寸衬底上实现基于ZnO纳米网格的紫外光电探测器的制备,有利于降低生产成本,而且制造设备简单,工艺成熟,方便规模化生产,另外,本发明所述的紫外光电探测器光电响应性能优良。

Description

一种基于ZnO纳米网格的紫外光电探测器及其制备方法
技术领域
本发明涉及光电探测器领域,特别涉及一种基于ZnO纳米网格的紫外光电探测器及其制备方法。
背景技术
随着现代工业的高速发展,温室气体对臭氧层造成了严重的破坏,臭氧层变薄,甚至臭氧层局部出现了空洞。臭氧层的变薄或者空洞会导致入射到地球表面的紫外线增加。过量的紫外线对地球生物而言有极大的危害。特别对于人类而言,过高的紫外剂量照射很容易灼伤皮肤甚至诱发皮肤癌等严重疾病。因此,加强对户外紫外线的监测就显得非常重要。ZnO是一种无毒、生物兼容性极佳、原材料丰富的Ⅱ-Ⅵ族宽带隙半导体材料,也是一种新兴的紫外光电材料,在光催化降解、气敏传感、光电探测、光电显示等领域具有广阔的应用前景。室温下,未参杂的ZnO的吸收带边在360nm附近,属于近紫外波段,且具有较好的综合光电性能。因此,ZnO材料是一种制造紫外探测的理想材料。现有技术中有较多利用ZnO薄膜来制备紫外探测器的。如CN1400674A该发明利用光刻胶遮挡和磁控溅射的方式溅射出电极,制备紫外探测器。还有如CN106711283A将ZnO制作成墨水,通过喷墨打印的方式制造紫外光电探测器。但这些制造过程条件大多苛刻,对设备要求高,不利于生产成本的降低。
此外,ZnO纳米网格材料也是一种很好的制造紫外探测的理想材料,有望在气敏传感、光电探测、光催化等领域扮演重要的角色。因此,针对现有技术的不足,发展一种低成本、可控的基于ZnO纳米网格的紫外光电探测器制备技术,对促进ZnO纳米网格的应用和紫外光电探测发展具有积极的意义。
发明内容
针对现有技术的不足,本发明提供一种基于ZnO纳米网格的紫外光电探测器及其制备方法。该制备方法过程简单、成本低,制造的紫外光电探测器具有尺寸可控、分布均匀性好且光电响应性能优良的特点。
本发明通过以下技术方案实现。
一种基于ZnO纳米网格的紫外光电探测器,由下往上,依次由衬底、ZnO薄膜、ZnO纳米网格、金属纳米粒子、电极组成。
优选的,所述衬底选自玻璃、蓝宝石、硅、石英、金属基板中的一种。
优选的,所述金属纳米粒子包含Pt、Ag、Ni、Ti、Fe、Cu中的至少一种。
本发明还提供一种基于ZnO纳米网格的紫外光电探测器的制备方法。
一种基于ZnO纳米网格的紫外光电探测器的制备方法,包括以下步骤:
(1)混合溶液的制备:将醋酸锌和乙醇(分析纯AR,体积分数为98%)按0.08-0.8g:20-160mL的比例制备混合溶液,并使用磁力搅拌器搅拌30-70min,获得醋酸锌和乙醇的混合溶液A,接着,将醋酸锌、碳酸锌、乙醇按0.08-0.8g:0.035-0.4g:20-160mL的比例配置混合溶液;并使用磁力搅拌器搅拌30-70min,获得醋酸锌、碳酸锌、乙醇的混合溶液B;
(2)薄膜C的制备:以玻璃、石英、硅片、蓝宝石、金属板的一种为衬底,衬底尺寸在2cm×2cm-10英寸,使用旋涂仪(北京金时速仪器设备有限公司提供,型号为TA-280)在衬底上均匀涂覆一层醋酸锌、乙醇混合薄膜,具体的旋涂工艺如下:首先在衬底上使用滴管滴加4-12滴混合溶液A,接着第一次利用旋涂仪以350-500r/min的速度旋转衬底30-90s,使混合溶液A均匀铺展在衬底上,之后,第二次以1200-1600r/min的速度旋转衬底10-50s,接着第三次以3500-5500r/min的速度旋转衬底50-140s,并在旋转过程中滴加4-15滴混合溶液A,制得薄膜C,备用;
(3)低温烘干:将薄膜C转移到电热板(鹤壁市民生科技开发有限责任公司提供,型号为民生星SB电热板)上,在60-130℃烘烤8-40min,获得醋酸锌薄膜,备用;
(4)以步骤(3)所得薄膜为基础,依次重复步骤(2)和(3)5-25次,制得薄膜D;
(5)以薄膜D为基础,使用混合溶液B(将混合溶液B滴加在薄膜D上),依次按照步骤(2)和(3)重复1-3次,制得多层薄膜E;
(6)高温烧结:将制备好的多层薄膜E转移到箱式炉中,以每分钟3-8℃的速率升温到350-650℃,保温0.5-3h,在升温的过程中,醋酸锌脱水变成150-500nm厚的ZnO薄膜;而碳酸锌在高温下分解成CO2和ZnO,CO2将醋酸锌、碳酸锌混合薄膜撑开从而在ZnO薄膜上形成ZnO纳米网格;
(7)制备金属纳米粒子:将经步骤(6)制备好的ZnO样品转移到喷金仪(广州竞赢科学仪器有限公司提供,型号为108Auto/SE)中,并在0.6-1.0mbar下,使用9-11mA的电流溅射金属靶材5-10s,即可在ZnO薄膜及ZnO纳米网格上形成直径为1-15nm的金属纳米粒子;
(8)制备电极:在步骤(7)的基础上接着使用掩膜板遮挡ZnO薄膜及ZnO纳米网格,在0.6-1.0mbar下,使用9-11mA的电流分别溅射两种金属靶材40-140s,制得金属电极两电极之间的距离为2-50μm,进而,在150-450℃下进行合金化处理1-3h,获得欧姆接触的金属电极,最后获得所述紫外光电探测器。
优选的,步骤(1)中制备混合溶液A的醋酸锌和乙醇的比例为0.1-0.5g:30-120mL,制备混合溶液B的醋酸锌、碳酸锌、乙醇的比例为0.1-0.5g:0.035-0.2g:30-120mL。
优选的,步骤(3)中薄膜C在80-120℃下烘烤。
优选的,步骤(6)中以每分钟3-5℃的速率升温到450-550℃,保温1-2h。
优选的,步骤(7)中在0.8mbar下,使用10mA的电流溅射金属靶材。
优选的,步骤(7)中金属纳米粒子直径为2-10nm。
优选的,步骤(8)中在200-400℃下进行合金化处理1-2h。
优选的,步骤(8)中金属靶材为Pt、Cr。
与现有技术相比,本发明具有如下有益效果:(1)本发明适用范围广,可以在多种大尺寸衬底上实现基于ZnO纳米网格的紫外光电探测器的制备,衬底包括载玻片、Si、蓝宝石、金属,有利于降低生产成本;(2)制造设备简单,工艺成熟,方便规模化生产;(3)本发明所述的紫外光电探测器光电响应性能优良。
附图说明
图1是本发明的实施例2的ZnO纳米网格的扫描电子显微镜照片。
图2是本发明的实施例2制备的ZnO纳米网格的X射线衍射图谱。
图3是本发明的实施例2制备的基于ZnO纳米网格的光电探测器的结构示意图。
图4是本发明的实施例2制备的基于ZnO纳米网格的光电探测器在不同波长光照射下的响应电流。
具体实施方式
本发明所述实施例旨在进一步说明本发明所述技术方案,而不是对本发明的限制。
实施例1
一种基于ZnO纳米网格的紫外光电探测器的制备方法,包括以下步骤:
(1)混合溶液的制备:将醋酸锌和乙醇按0.08g:20mL的比例制备混合溶液,并使用磁力搅拌器搅拌30min,获得醋酸锌和乙醇的混合溶液A,接着,将醋酸锌、碳酸锌、乙醇按0.08g:0.035g:20mL的比例配置混合溶液;并使用磁力搅拌器搅拌30min,获得醋酸锌、碳酸锌、乙醇的混合溶液B;
(2)薄膜C的制备:以玻璃、石英、硅片、蓝宝石、金属板的一种为衬底,衬底尺寸为2cm×2cm,使用旋涂仪在衬底上均匀涂覆一层醋酸锌、乙醇混合薄膜,具体的旋涂工艺如下:首先在衬底上使用滴管滴加4滴混合溶液A,接着第一次利用旋涂仪以350r/min的速度旋转衬底30s,使混合溶液A均匀铺展在衬底上,之后,第二次以1200r/min的速度旋转衬底10s,接着第三次以3500r/min的速度旋转衬底50s,并在旋转过程中滴加4滴混合溶液A,制得薄膜C,备用;
(3)低温烘干:将薄膜C转移到电热板上,在60℃烘烤40min,获得醋酸锌薄膜,备用;
(4)以步骤(3)所得薄膜为基础,依次重复步骤(2)和(3)5次,制得薄膜D;
(5)以薄膜D为基础,使用混合溶液B,依次按照步骤(2)和(3)重复1次,制得多层薄膜E;
(6)高温烧结:将制备好的多层薄膜E转移到箱式炉中,以每分钟3℃的速率升温到350℃,保温0.5h,在升温的过程中,醋酸锌脱水变成ZnO薄膜;而碳酸锌在高温下分解成CO2和ZnO,CO2将醋酸锌、碳酸锌混合薄膜撑开从而在ZnO薄膜上形成ZnO纳米网格;
(7)制备金属纳米粒子:将经步骤(6)制备好的ZnO样品转移到喷金仪当中,并在0.6mbar下,使用9mA的电流溅射Pt靶材5s,即可在ZnO薄膜及ZnO纳米网格上形成直径为1-3nm的金属纳米粒子;
(8)制备电极:在步骤(7)的基础上接着使用掩膜板遮挡ZnO薄膜及ZnO纳米网格,在0.6mbar下,使用9mA的电流分别溅射Pt、Cr金属靶材140s,制得金属电极,进而,在150℃下进行合金化处理3h,获得欧姆接触的Pt、Cr金属电极,最后获得所述紫外光电探测器。
实施例2
一种基于ZnO纳米网格的紫外光电探测器的制备方法,包括以下步骤:
(1)混合溶液的制备:将醋酸锌和乙醇按0.1g:30mL的比例制备混合溶液,并使用磁力搅拌器搅拌60min,获得醋酸锌和乙醇的混合溶液A,接着,将醋酸锌、碳酸锌、乙醇按0.1g:0.035g:30mL的比例配置混合溶液;并使用磁力搅拌器搅拌60min,获得醋酸锌、碳酸锌、乙醇的混合溶液B;
(2)薄膜C的制备:以玻璃、石英、硅片、蓝宝石、金属板的一种为衬底,衬底尺寸为5cm×5cm,使用旋涂仪在衬底上均匀涂覆一层醋酸锌、乙醇混合薄膜,具体的旋涂工艺如下:首先在衬底上使用滴管滴加10滴混合溶液A,接着第一次利用旋涂仪以450r/min的速度旋转衬底60s,使混合溶液A均匀铺展在衬底上,之后,第二次以1600r/min的速度旋转衬底30s,接着第三次以5000r/min的速度旋转衬底120s,并在旋转过程中滴加12滴混合溶液A,制得薄膜C,备用;
(3)低温烘干:将薄膜C转移到电热板上,在120℃烘烤10min,获得醋酸锌薄膜,备用;
(4)以步骤(3)所得薄膜为基础,依次重复步骤(2)和(3)20次,制得薄膜D;
(5)以薄膜D为基础,使用混合溶液B,依次按照步骤(2)和(3)重复1次,制得多层薄膜E;
(6)高温烧结:将制备好的多层薄膜E转移到箱式炉中,以每分钟5℃的速率升温到600℃,保温2h,在升温的过程中,醋酸锌脱水变成ZnO薄膜;而碳酸锌在高温下分解成CO2和ZnO,CO2将醋酸锌、碳酸锌混合薄膜撑开从而在ZnO薄膜上形成ZnO纳米网格;
(7)制备金属纳米粒子:将经步骤(6)制备好的ZnO样品转移到喷金仪当中,并在0.8mbar下,使用10mA的电流溅射金属靶材10s,即可在ZnO薄膜及ZnO纳米网格上形成直径为2-4nm的金属纳米粒子;
(8)制备电极:在步骤(7)的基础上接着使用掩膜板遮挡ZnO薄膜及ZnO纳米网格,在0.8mbar下,使用10mA的电流分别溅射Pt、Cr金属靶材120s,制得金属电极,进而,在400℃下进行合金化处理2h,获得欧姆接触的Pt、Cr金属电极,最后获得所述紫外光电探测器。
如图1所示,本实施例制备的紫外光电探测器的ZnO纳米网格的扫描电子显微镜照片。从图中可以看到清晰的纳米网格形貌。图2是基于ZnO纳米网格的X射线衍射图谱。图2中出现的(100)(002)(101)(102)(110)都是ZnO的特征衍射峰,(002)峰最强代表所制备的ZnO纳米花以(002)择优取向为主,由此说明探测器的材料为ZnO。图3是本实施例制备的基于ZnO纳米网格的光电探测器的结构示意图,11为衬底,12为ZnO薄膜,13为ZnO纳米网格,14为金属纳米粒子,两个15都为Pt/Cr混合而成的金属电极。图4是本实施例制备的基于ZnO纳米网格的光电探测器在不同波长光照射下的响应电流。当入射光为250nm,光电探测器产生的光电流为64μA,大于其他构造(如其他制备过程与本实施例相同,但没有制备ZnO纳米网格的过程,在此情况下,光电探测器的光电流为58μA)。由此说明,本发明所述光电探测器具有优异的光电响应性能。
实施例3
一种基于ZnO纳米网格的紫外光电探测器的制备方法,包括以下步骤:
(1)混合溶液的制备:将醋酸锌和乙醇按0.15g:30mL的比例制备混合溶液,并使用磁力搅拌器搅拌60min,获得醋酸锌和乙醇的混合溶液A,接着,将醋酸锌、碳酸锌、乙醇按0.15g:0.035g:30mL的比例配置混合溶液;并使用磁力搅拌器搅拌60min,获得醋酸锌、碳酸锌、乙醇的混合溶液B;
(2)薄膜C的制备:以玻璃、石英、硅片、蓝宝石、金属板的一种为衬底,衬底尺寸为8cm×8cm,使用旋涂仪在衬底上均匀涂覆一层醋酸锌、乙醇混合薄膜,具体的旋涂工艺如下:首先在衬底上使用滴管滴加10滴混合溶液A,接着第一次利用旋涂仪以400r/min的速度旋转衬底60s,使混合溶液A均匀铺展在衬底上,之后,第二次以1600r/min的速度旋转衬底20s,接着第三次以4000r/min的速度旋转衬底120s,并在旋转过程中滴加12滴混合溶液A,制得薄膜C,备用;
(3)低温烘干:将薄膜C转移到电热板上,在80-120℃烘烤10-30min,获得醋酸锌薄膜,备用;
(4)以步骤(3)所得薄膜为基础,依次重复步骤(2)和(3)20次,制得薄膜D;
(5)以薄膜D为基础,使用混合溶液B,依次按照步骤(2)和(3)重复1次,制得多层薄膜E;
(6)高温烧结:将制备好的多层薄膜E转移到箱式炉中,以每分钟5℃的速率升温到600℃,保温2h,在升温的过程中,醋酸锌脱水变成ZnO薄膜;而碳酸锌在高温下分解成CO2和ZnO,CO2将醋酸锌、碳酸锌混合薄膜撑开从而在ZnO薄膜上形成ZnO纳米网格;
(7)制备金属纳米粒子:将经步骤(6)制备好的ZnO样品转移到喷金仪当中,并在0.8mbar下,使用10mA的电流溅射金属靶材10s,即可在ZnO薄膜及ZnO纳米网格上形成直径为2-4nm的金属纳米粒子;
(8)制备电极:在步骤(7)的基础上接着使用掩膜板遮挡ZnO薄膜及ZnO纳米网格,在0.8mbar下,使用10mA的电流分别溅射Pt、Cr金属靶材100s,制得Pt、Cr金属电极,进而,在400℃下进行合金化处理2h,获得欧姆接触的Pt、Cr金属电极,最后获得所述紫外光电探测器。
实施例4
一种基于ZnO纳米网格的紫外光电探测器的制备方法,包括以下步骤:
(1)混合溶液的制备:将醋酸锌和乙醇按0.8g:160mL的比例制备混合溶液,并使用磁力搅拌器搅拌70min,获得醋酸锌和乙醇的混合溶液A,接着,将醋酸锌、碳酸锌、乙醇按0.8g:0.4g:160mL的比例配置混合溶液;并使用磁力搅拌器搅拌70min,获得醋酸锌、碳酸锌、乙醇的混合溶液B;
(2)薄膜C的制备:以玻璃、石英、硅片、蓝宝石、金属板的一种为衬底,衬底尺寸为10英寸,使用旋涂仪在衬底上均匀涂覆一层醋酸锌、乙醇混合薄膜,具体的旋涂工艺如下:首先在衬底上使用滴管滴加12滴混合溶液A,接着第一次利用旋涂仪以500r/min的速度旋转衬底90s,使混合溶液A均匀铺展在衬底上,之后,第二次以1600r/min的速度旋转衬底50s,接着第三次以5500r/min的速度旋转衬底140s,并在旋转过程中滴加15滴混合溶液A,制得薄膜C,备用;
(3)低温烘干:将薄膜C转移到电热板上,在130℃烘烤40min,获得醋酸锌薄膜,备用;
(4)以步骤(3)所得薄膜为基础,依次重复步骤(2)和(3)25次,制得薄膜D;
(5)以薄膜D为基础,使用混合溶液B,依次按照步骤(2)和(3)重复3次,制得多层薄膜E;
(6)高温烧结:将制备好的多层薄膜E转移到箱式炉中,以每分钟7-8℃的速率升温到650℃,保温3h,在升温的过程中,醋酸锌脱水变成ZnO薄膜;而碳酸锌在高温下分解成CO2和ZnO,CO2将醋酸锌、碳酸锌混合薄膜撑开从而在ZnO薄膜上形成ZnO纳米网格;
(7)制备金属纳米粒子:将经步骤(6)制备好的ZnO样品转移到喷金仪当中,并在1.0mbar下,使用11mA的电流溅射Ti靶材10s,即可在ZnO薄膜及ZnO纳米网格上形成直径为10-15nm的金属纳米粒子;
(8)制备电极:在步骤(7)的基础上接着使用掩膜板遮挡ZnO薄膜及ZnO纳米网格,在1.0mbar下,使用11mA的电流分别溅射Pt、Cr金属靶材140s,制得Pt、Cr金属电极,进而,在450℃下进行合金化处理3h,获得欧姆接触的Pt、Cr金属电极,最后获得所述紫外光电探测器。

Claims (10)

1.一种基于ZnO纳米网格的紫外光电探测器,其特征在于,所述紫外光电探测器由衬底和衬底上的ZnO薄膜、ZnO薄膜上的ZnO纳米网格、ZnO纳米网格上的金属纳米粒子以及电极构成。
2.根据权利1所述的一种基于ZnO纳米网格的紫外光电探测器,其特征在于,所述金属纳米粒子包含Pt、Ag、Ni、Ti、Fe、Cu中的至少一种。
3.根据权利1所述的一种基于ZnO纳米网格的紫外光电探测器,其特征在于,所述衬底为玻璃、蓝宝石、硅、石英、金属中的一种。
4.一种根据上述权利要求中任一项所述的基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,包括以下步骤:
(1)混合溶液的制备:将醋酸锌和乙醇按0.08-0.8g:20-160mL的比例制备混合溶液,搅拌30-70min,制得混合溶液A;然后将醋酸锌、碳酸锌、乙醇按0.08-0.8g:0.035-0.4g:20-160mL的比例制备混合溶液,搅拌30-70min,制得混合溶液B;
(2)薄膜C的制备:在衬底上滴加4-12滴混合溶液A,接着第一次利用旋涂仪以350-500r/min的速度旋转衬底30-90s,接着第二次以1200-1600r/min的速度旋转10-50s,接着第三次以3500-5500r/min的速度旋转50-140s,并在旋转过程中滴加4-15滴混合溶液A,制得薄膜C,备用;
(3)低温烘干:在60-130℃下烘烤薄膜C 8-40min,备用;
(4)以步骤(3)所得薄膜为基础,依次重复步骤(2)和(3)5-25次,制得薄膜D;
(5)以薄膜D为基础,使用混合溶液B替代步骤(2)中的混合溶液A,依次按照步骤(2)和(3)重复1-3次,制得多层薄膜E;
(6)高温烧结:将多层薄膜E以每分钟3-8℃的速率升温到350-650℃,保温0.5-3h,制得ZnO纳米网格样品;
(7)制备金属纳米粒子:将经步骤(6)制备好的ZnO纳米网格样品转移到喷金仪中,并在0.6-1.0mbar,9-11mA的电流下溅射金属靶材5-10s,获得直径为1-15nm的金属纳米粒子;
(8)制备电极:在步骤(7)的基础上使用掩膜板遮挡,在0.6-1.0mbar,9-11mA的电流下分别溅射两种靶材40-140s,然后在150-450℃下进行合金化处理1-3h,获得电极,最后组装获得所述紫外光电探测器。
5.根据权利要求4所述的一种基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,步骤(1)中制备混合溶液A的醋酸锌和乙醇的比例为0.1-0.5g:30-120mL,制备混合溶液B的醋酸锌、碳酸锌、乙醇的比例为0.1-0.5g:0.035-0.2g:30-120mL。
6.根据权利要求4所述的一种基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,步骤(3)中在80-120℃下烘烤薄膜C。
7.根据权利要求4所述的一种基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,步骤(6)中以每分钟3-5℃的速率升温到450-550℃,保温1-2h。
8.根据权利要求4所述的一种基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,步骤(7)中在0.8mbar下,使用10mA的电流溅射金属靶材。
9.根据权利要求4所述的一种基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,步骤(8)中在200-400℃下进行合金化处理1-2h。
10.根据权利要求4所述的一种基于ZnO纳米网格的紫外光电探测器的制备方法,其特征在于,步骤(8)中靶材为Pt、Cr。
CN201810840948.6A 2018-07-27 2018-07-27 一种基于ZnO纳米网格的紫外光电探测器及其制备方法 Active CN109103277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810840948.6A CN109103277B (zh) 2018-07-27 2018-07-27 一种基于ZnO纳米网格的紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810840948.6A CN109103277B (zh) 2018-07-27 2018-07-27 一种基于ZnO纳米网格的紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN109103277A true CN109103277A (zh) 2018-12-28
CN109103277B CN109103277B (zh) 2020-06-12

Family

ID=64847651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810840948.6A Active CN109103277B (zh) 2018-07-27 2018-07-27 一种基于ZnO纳米网格的紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN109103277B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582486A (zh) * 2020-12-15 2021-03-30 广西大学 一种NiO紫外光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565366A (zh) * 2016-01-21 2016-05-11 山东科技大学 一种具有三维立体结构的多孔氧化锌的制备方法
KR101738573B1 (ko) * 2016-01-04 2017-05-22 가천대학교 산학협력단 ZnO 나노로드 어레이, 및 이의 제조방법
CN106935666A (zh) * 2017-04-21 2017-07-07 常州亿晶光电科技有限公司 一种新型光伏材料及制备方法和用途
WO2018098155A1 (en) * 2016-11-23 2018-05-31 Georgetown University Zno photodetector
CN108122999A (zh) * 2016-11-29 2018-06-05 中国科学院金属研究所 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738573B1 (ko) * 2016-01-04 2017-05-22 가천대학교 산학협력단 ZnO 나노로드 어레이, 및 이의 제조방법
CN105565366A (zh) * 2016-01-21 2016-05-11 山东科技大学 一种具有三维立体结构的多孔氧化锌的制备方法
WO2018098155A1 (en) * 2016-11-23 2018-05-31 Georgetown University Zno photodetector
CN108122999A (zh) * 2016-11-29 2018-06-05 中国科学院金属研究所 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法
CN106935666A (zh) * 2017-04-21 2017-07-07 常州亿晶光电科技有限公司 一种新型光伏材料及制备方法和用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KEWEI LIU: ""Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles"", 《J. PHYS. CHEM. C》 *
R. SHABANNIA: ""Characteristics of Photoconductive UV Photodetector Based on ZnO Nanorods Grown on Polyethylene Naphthalate Substrate by Chemical Bath Deposition Method"", 《ELECTRON. MATER. LETT.》 *
S. SAFA: ""The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YINHUA LI: ""Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights"", 《SENSORS AND ACTUATORS A: PHYSICAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582486A (zh) * 2020-12-15 2021-03-30 广西大学 一种NiO紫外光电探测器及其制备方法
CN112582486B (zh) * 2020-12-15 2023-09-26 广西大学 一种NiO紫外光电探测器及其制备方法

Also Published As

Publication number Publication date
CN109103277B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
Cao et al. Challenges and opportunities toward real application of VO2-based smart glazing
CN104034763A (zh) 一种混杂贵金属掺粒子和金属氧化物薄膜的集成气体传感器及其制备方法
CN104374810A (zh) 一种基于正交相氧化钼纳米带的氢气敏感元件制备方法
CN102074373B (zh) 一种染料敏化太阳能电池光阳极及其制备方法
Deng et al. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: A higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells
CN102709399B (zh) 一种纳米天线太阳能电池的制作方法
CN105957966A (zh) 稀土氧化物下转换材料钙钛矿太阳电池及制备方法
CN104788022A (zh) 片状纳米银电致变色薄膜的制备方法及其应用
CN106431005B (zh) 一种钛酸锶-二氧化钛复合纳米管阵列薄膜及其制备方法与应用
CN101271774A (zh) 一种可用于太阳能电池光阳极的材料、其制备方法及应用
Hossain et al. Microstructured ZnO photoelectrode grown on the sputter-deposited ZnO passivating-layer for improving the photovoltaic performances
CN102442787B (zh) 一种纳米气敏薄膜及其制备方法
Esakki et al. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method
CN108996918A (zh) 一种纳米NiOx电致变色薄膜及其制备方法和应用
CN109103277A (zh) 一种基于ZnO纳米网格的紫外光电探测器及其制备方法
CN108821326B (zh) 一种ZnO纳米材料、及其制备方法
CN109292820A (zh) VO2/ZnO双层薄膜及其制备方法
CN104409218B (zh) 一种用于量子点敏化太阳能电池的CuXS对电极及其制备和应用
CN207097869U (zh) 一种有机太阳能电池
CN107262124B (zh) 一种具有抗菌功能的CuI-BiOI/Cu薄膜材料的制备方法
CN110010770A (zh) 一种金双棱锥等离子增强的钙钛矿太阳能电池的制备
CN105154841B (zh) 铋掺杂氧化锡薄膜的制备方法
CN102041477A (zh) 高比表面二氧化钛薄膜的制备方法
Mariammal et al. Ethanol Sensor Using Zn1− x Cd x O (x= 0.00 and 0.10) Nanorods by Fiber-Optic Technique
CN108428753A (zh) 半透明薄膜太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant