CN109093108A - 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法 - Google Patents

高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法 Download PDF

Info

Publication number
CN109093108A
CN109093108A CN201811004802.4A CN201811004802A CN109093108A CN 109093108 A CN109093108 A CN 109093108A CN 201811004802 A CN201811004802 A CN 201811004802A CN 109093108 A CN109093108 A CN 109093108A
Authority
CN
China
Prior art keywords
carbon nanotube
copper
graphene
preparation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811004802.4A
Other languages
English (en)
Other versions
CN109093108B (zh
Inventor
张平
冼耀琪
翟四平
袁朋
姜雄
杨道国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201811004802.4A priority Critical patent/CN109093108B/zh
Publication of CN109093108A publication Critical patent/CN109093108A/zh
Application granted granted Critical
Publication of CN109093108B publication Critical patent/CN109093108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Abstract

本发明公开了一种高定向石墨烯‑碳纳米管混合增强铜基复合材料及其制备方法,涉及导热功能材料技术领域。所述复合材料由氧化石墨烯纳米片5~20wt%、碳纳米管5~20wt%和余量铜组成;该方法混合石墨烯和碳纳米管两种悬浮液并加入铜粉,通过真空筛选石墨烯/碳纳米管/铜悬浮液后形成石墨烯/碳纳米管/铜片,解决了石墨烯和碳纳米管定向性差以及增强基无法形成导热通路的问题;打碎石墨烯/碳纳米管/铜之后利用放电等离子体烧结技术制得复合材料。本发明可使石墨烯和碳纳米管高定向分布在基体材料中,并且形成三维导热通路,同时提高铜基材料的热导率。

Description

高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法
技术领域
本发明涉及金属基复合材料技术领域,具体涉及一种高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法。
背景技术
接触热阻对于表征热管理中界面的热传递非常重要,这是由宏观和微观尺度上的两种材料的复杂微观形貌或能量载流子(声子,电子,光子)传输不匹配引起的。随着工程应用中微纳米技术的应用,造成电子器件功率密度飙升,接触热阻能够占用封装中总热预算的一半,直接影响产品的可靠性,性能,功耗甚至寿命。热界面材料的应用是降低接触热阻的重要手段,对其研究也是科学领域中的一个热点问题。
在200W/cm2以上量级的超高热流密度条件下,系统的温度水平将更高,温度分布将更加不均匀,温度控制难度将更大。在高功率电子系统中,如功率芯片以200W/cm2的热耗散密度计算,如果功率器件与组件的表面不进行特殊处理,两个单元只是简单组合涂抹普通的热界面材料,那么两者之间的接触热阻以目前市场较高水平40mm2℃/W(已经商业化的界面导热材料其热阻大多在30~200mm2℃/W之间)估算,则仅功率器件与组件的之间的温差将达到80℃。目前常用的导热膏、导热胶和相变材料(PCM)等热界面材料、自身有效导热系数较低。所以众多学者将目光转向金属基复合材料,低维材料如石墨烯、碳纳米管等由于其优良的导热性能和其他综合性能被当做填料加入金属材料,但传统混合制备方法中,填料自由分散,且互不相连,大大降低了低维填料的高导热性能在复合材料中发挥作用。因此,下一代的热界面材料的研究热点在于使用低维材料以及纳米颗粒等作为填料,采用科学的方法使新型填料高定向分布并形成导热通路制备出综合性能优良的热界面材料。
发明内容
为了解决石墨烯和碳纳米管在铜基体中定向差以及增强基无法形成导热通路的问题,本发明的目的是提供一种高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法,可使石墨烯和碳纳米管高定向分布在基体材料中,并且形成三维导热通路,同时提高铜基材料的热导率。
针对上述技术问题,本发明提供的技术方案是:一种高定向石墨烯-碳纳米管混合增强铜基复合材料,由下列重量百分比的组分组成:
氧化石墨烯纳米片5~20wt%,碳纳米管5~20wt%,余量为铜。
优选的,所述复合材料中含有下列质量百分比的组分:
氧化石墨烯纳米片20wt%,碳纳米管20wt%,余量为铜。
所述的高定向石墨烯-碳纳米管混合增强铜基复合材料制备方法,包括以下步骤:
S1,将氧化石墨烯和碳纳米管在氩气保护下进行高温退火处理;
S2,将处理后的氧化石墨烯和碳纳米管加入到无水乙醇中超声分散30-60min,随后加入铜粉,搅拌30-60min,得到复合粉末悬浮液;
S3,将步骤S2得到的复合粉末悬浮液利用滤膜进行真空筛选,得到氧化石墨烯/碳纳米管/铜薄片;
S4,将步骤S3中所得的氧化石墨烯/碳纳米管/铜薄片从滤膜上剥离,随后自然干燥24小时;
S5,将步骤S4剥离的氧化石墨烯/碳纳米管/铜薄片装入模具内,利用放电等离子烧结工艺进行烧结,制备得到高定向石墨烯-碳纳米管铜基复合材料。
进一步地,所述的步骤S1中,氧化石墨烯纳米片厚度为5~10nm。
进一步地,所述的步骤S1中,将氧化石墨烯纳米片和碳纳米管置于氩气的保护中进行高温退火处理,退火温度为800-1000摄氏度,退火时间为30-60min。
进一步地,所述的步骤S2中,所述的铜粉为直径2-5微米球形颗粒,优选2微米直径铜粉,直径过大会影响悬浮液的分散性。
进一步地,所述的步骤S2中,碳纳米管为直径20纳米、长度20-30微米的多壁碳纳米管,长度优选25微米,碳纳米管长度过短会使得导热通路连接不充分,降低复合材料的热导率;而长度过长的碳纳米管易发生团聚现象,同样会降低复合材料的热导率。
进一步地,所述的步骤S2中,将处理后的400mg氧化石墨烯和400mg碳纳米管加入到60毫升无水乙醇中超声分散30-60min。
进一步地,所述的步骤S3中,所述的滤膜采用直径为60毫米,空隙为0.5毫米的聚四氟乙烯滤膜。
进一步地,所述的步骤S4中,所述的氧化石墨烯/碳纳米管/铜薄片为2-4克。
进一步地,所述的步骤S5中,放电等离子体烧结温度为700-750摄氏度,优选750摄氏度,温度过低会使得材料密度较低,降低整体热导率,烧结时间为5-10min,烧结压力40MPa。
本发明与现有技术相比,具有以下有益效果:
1.本发明通过对氧化石墨烯和碳纳米管进行筛选处理,提高氧化石墨烯和碳纳米管在基体材料的定向性,使其能在基体材料中高定向分布,使复合材料具有高各向异性。
2.本发明通过掺杂碳纳米管到铜基-石墨烯复合热界面材料中,利用碳纳米管和石墨烯混合连接,形成三维立体网络的热传输途径,减少了复合材料内部的界面热阻。
附图说明
图1为高定向石墨烯-碳纳米管混合铜基复合材料的制备流程图;
具体实施方式
下面通过结合附图和实施例对本发明作进一步说明,但不是对本发明的限制。
图1示出了高定向石墨烯-碳纳米管混合铜基复合材料的制备方法,包括如下步骤:
S1.将氧化石墨烯和碳纳米管在氩气保护下进行高温退火处理;
S2.将处理后的氧化石墨烯和碳纳米管加入到无水乙醇中超声分散30-60min,随后加入铜粉,搅拌30-60min,得到复合粉末悬浮液;
S3.将步骤S2得到的复合粉末悬浮液利用聚四氟乙烯滤膜进行真空筛选,得到氧化石墨烯/碳纳米管/铜薄片;
S4.将步骤S3中所得的氧化石墨烯/碳纳米管/铜薄片从滤膜上剥离,随后自然干燥24小时;
S5.将步骤S4中所得的一些氧化石墨烯/碳纳米管/铜薄片装入模具内,利用放电等离子烧结工艺进行烧结,制备得到高定向石墨烯-碳纳米管铜基复合材料。
实施例1:
为了使氧化石墨烯能够更好地分散在复合材料中,将400mg氧化石墨烯和400mg碳纳米管置于氩气中进行高温热处理,设置温度800摄氏度处理1小时。将处理后的氧化石墨烯和碳纳米管加入60ml无水乙醇中超声分散60min;随后将1200mg纯铜粉加入到上述混合液中;在真空下搅拌60min,得到复合粉末悬浮液。
利用空隙为0.5mm的聚四氟乙烯滤膜对上述复合粉末悬浮液进行真空筛选,将滤膜上的氧化石墨烯/碳纳米管/铜薄片剥离,自然干燥24h;将所得的氧化石墨烯/碳纳米管/铜薄片细分为3mm的薄片;将上述薄片放入放电等离子体烧结炉中进行烧结,烧结温度为750度,烧结时间为5分钟,烧结压力为40MPa,得到高定向石墨烯-碳纳米管混合铜基复合热界面材料。
实施例2:
为了使氧化石墨烯能够更好地分散在复合材料中,将400mg氧化石墨烯和400mg碳纳米管置于氩气中进行高温热处理,设置温度800摄氏度处理1小时。将处理后的氧化石墨烯和碳纳米管加入60ml无水乙醇中超声分散60min;随后将1200mg纯铜粉加入到上述混合液中;在真空下搅拌60min,得到复合粉末悬浮液。
将上述悬浮液真空烘干,得到氧化石墨烯/碳纳米管/铜复合粉末;将复合粉末倒入模具中在10MPa压力下预压成型,然后放入放电等离子体烧结炉中进行烧结,烧结温度为750度,烧结时间为5分钟,烧结压力为40MPa,得到石墨烯-碳纳米管混合铜基复合热界面材料。
对比实施例1,检验是否对氧化石墨烯和碳纳米管进行筛选所产生的材料性能,实验结果见表1。
表1是否对氧化石墨烯和碳纳米管进行筛选所产生的材料性能
由上述结果可知,对氧化石墨烯和碳纳米管进行筛选所产生的材料性能较好(实施例1)。
实施例3:
其他条件同实施例1,检验(氧化石墨烯+碳纳米管)/铜粉不同质量比例所产生的材料性能,其中氧化石墨烯和碳纳米管的质量比例仍为1:1,实验结果见表2。
表2氧化石墨烯和碳纳米管/铜粉不同比例所产生的材料性能
由上述结果可知,氧化石墨烯和碳纳米管/铜粉质量比优选2:3(实施例1)。
实施例4:
其他条件同实施例1,检验氧化石墨烯/碳纳米管不同质量比例所产生的材料性能,实验结果见表3。
表3氧化石墨烯/碳纳米管不同比例所产生的材料性能
由上述结果可知,氧化石墨烯/碳纳米管质量比优选1:1(实施例1)。
采用本发明的技术方案可进一步提高氧化石墨烯与碳纳米管在复合材料中的定向度并减少复合材料内部的界面热阻,从而整体提高复合材料的导热性能。
以上结合附图和实施例对本发明的实施方式做出了详细说明,但本发明不局限于所描述的实施方式。对于本领域技术人员而言,在不脱离本发明的原理和精神的情况下,对这些实施方式进行各种变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (10)

1.高定向石墨烯-碳纳米管混合增强铜基复合材料,其特征在于,由下列重量百分比的组分组成:
氧化石墨烯纳米片5~20wt%,碳纳米管5~20wt%,余量为铜。
2.高定向石墨烯-碳纳米管混合增强铜基复合材料,其特征在于,由下列重量百分比的组分组成:
氧化石墨烯纳米片20wt%,碳纳米管20wt%,余量为铜。
3.如权利要求1或2所述的高定向石墨烯-碳纳米管混合增强铜基复合材料的制备方法,其特征在于,包括以下步骤:
S1,将氧化石墨烯和碳纳米管在氩气保护下进行高温退火处理;
S2,将处理后的氧化石墨烯和碳纳米管加入到无水乙醇中超声分散均匀,随后加入铜粉,搅拌均匀,得到复合粉末悬浮液;
S3,将步骤S2得到的复合粉末悬浮液利用滤膜进行真空筛选,得到氧化石墨烯/碳纳米管/铜薄片;
S4,将步骤S3中所得的氧化石墨烯/碳纳米管/铜薄片从滤膜上剥离,随后自然干燥24小时以上;
S5,将步骤S4剥离的氧化石墨烯/碳纳米管/铜薄片装入模具内,利用放电等离子烧结工艺进行烧结,制备得到高定向石墨烯-碳纳米管铜基复合材料。
4.如权利要求3所述的制备方法,其特征在于,步骤S1中,氧化石墨烯纳米片厚度为5~10nm。
5.如权利要求3所述的制备方法,其特征在于,步骤S1中,将氧化石墨烯纳米片和碳纳米管置于氩气的保护中进行高温退火处理,退火温度为800-1000摄氏度,退火时间为30-60min。
6.如权利要求3所述的制备方法,其特征在于,步骤S2中,所述的铜粉为直径2-5微米球形颗粒,碳纳米管为直径20纳米、长度20-30微米的多壁碳纳米管。
7.如权利要求3所述的制备方法,其特征在于,步骤S2中,将处理后的400mg氧化石墨烯和400mg碳纳米管加入到60毫升无水乙醇中超声分散30-60min,随后加入铜粉,搅拌30-60min,得到复合粉末悬浮液。
8.如权利要求3所述的制备方法,其特征在于,步骤S3中,所述的滤膜采用直径为60毫米,空隙为0.5毫米的聚四氟乙烯滤膜。
9.如权利要求3所述的制备方法,其特征在于,步骤S4中,所述的氧化石墨烯/碳纳米管/铜薄片为2-4克。
10.如权利要求3所述的制备方法,其特征在于,步骤S5中,放电等离子体烧结温度为700-750摄氏度,烧结时间为5-10min,烧结压力40MPa。
CN201811004802.4A 2018-08-30 2018-08-30 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法 Active CN109093108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811004802.4A CN109093108B (zh) 2018-08-30 2018-08-30 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811004802.4A CN109093108B (zh) 2018-08-30 2018-08-30 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109093108A true CN109093108A (zh) 2018-12-28
CN109093108B CN109093108B (zh) 2021-04-16

Family

ID=64864450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811004802.4A Active CN109093108B (zh) 2018-08-30 2018-08-30 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109093108B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666915A (zh) * 2019-01-30 2019-04-23 中南大学 一种复合金属层镀覆碳纳米管/石墨烯复合材料的制备方法
CN109722644A (zh) * 2018-12-29 2019-05-07 赛福纳米科技(徐州)有限公司 碳纳米杂化材料的表面改性方法
CN113345809A (zh) * 2021-08-05 2021-09-03 度亘激光技术(苏州)有限公司 一种半导体器件和热沉键合的方法
CN113549430A (zh) * 2021-08-13 2021-10-26 广西师范大学 一种构建离域共轭π键的碳纳米管/铜复合导热材料的制备方法
CN113716552A (zh) * 2021-09-08 2021-11-30 西北有色金属研究院 一种高定向高导热石墨烯/铜复合材料的制备方法
CN115896518A (zh) * 2022-12-08 2023-04-04 福州大学 一种定向碳纳米管-石墨烯/铜复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518079A (ja) * 2009-02-16 2012-08-09 バイエル・インターナショナル・ソシエテ・アノニム 金属とナノ粒子を含む複合材料およびその製造方法
CN105441711A (zh) * 2015-12-28 2016-03-30 哈尔滨工业大学 一种三维结构CNTs增强Cu基复合材料的制备方法
CN105779805A (zh) * 2016-03-21 2016-07-20 中南大学 泡沫金刚石骨架增强铜基复合材料及制备方法
CN105803242A (zh) * 2016-03-21 2016-07-27 中南大学 一种片状与线状导热材料耦合增强复合材料及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518079A (ja) * 2009-02-16 2012-08-09 バイエル・インターナショナル・ソシエテ・アノニム 金属とナノ粒子を含む複合材料およびその製造方法
CN105441711A (zh) * 2015-12-28 2016-03-30 哈尔滨工业大学 一种三维结构CNTs增强Cu基复合材料的制备方法
CN105779805A (zh) * 2016-03-21 2016-07-20 中南大学 泡沫金刚石骨架增强铜基复合材料及制备方法
CN105803242A (zh) * 2016-03-21 2016-07-27 中南大学 一种片状与线状导热材料耦合增强复合材料及制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109722644A (zh) * 2018-12-29 2019-05-07 赛福纳米科技(徐州)有限公司 碳纳米杂化材料的表面改性方法
CN109722644B (zh) * 2018-12-29 2020-09-18 赛福纳米科技(徐州)有限公司 碳纳米杂化材料的表面改性方法
CN109666915A (zh) * 2019-01-30 2019-04-23 中南大学 一种复合金属层镀覆碳纳米管/石墨烯复合材料的制备方法
CN113345809A (zh) * 2021-08-05 2021-09-03 度亘激光技术(苏州)有限公司 一种半导体器件和热沉键合的方法
CN113549430A (zh) * 2021-08-13 2021-10-26 广西师范大学 一种构建离域共轭π键的碳纳米管/铜复合导热材料的制备方法
CN113716552A (zh) * 2021-09-08 2021-11-30 西北有色金属研究院 一种高定向高导热石墨烯/铜复合材料的制备方法
CN113716552B (zh) * 2021-09-08 2022-12-27 西北有色金属研究院 一种高定向高导热石墨烯/铜复合材料的制备方法
CN115896518A (zh) * 2022-12-08 2023-04-04 福州大学 一种定向碳纳米管-石墨烯/铜复合材料的制备方法

Also Published As

Publication number Publication date
CN109093108B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN109093108A (zh) 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法
Ren et al. Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity
Guo et al. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology
Ren et al. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance
Mishra et al. Superior thermal conductivity and photo-thermal conversion efficiency of carbon black loaded organic phase change material
Fu et al. Thermal conductivity enhancement with different fillers for epoxy resin adhesives
Zhang et al. Thermal conductivity of polyethylene glycol nanofluids containing carbon coated metal nanoparticles
CN110951254A (zh) 氮化硼复合高导热绝缘高分子复合材料及其制备方法
Zhang et al. Highly thermally conductive and electrically insulating polydimethylsiloxane composites prepared by ultrasonic-assisted forced infiltration for thermal management applications
CN108165018A (zh) 一种电磁屏蔽用硅橡胶/石墨烯/银纳米线纳米复合材料及其制备方法
CN109135685A (zh) 一种基于液态金属的绝缘导热纳米材料及其制备和应用
Tian et al. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers
CN113150544A (zh) 一种定向排列氮化硼@聚多巴胺@银杂化纳米片柔性热界面材料及其制备方法
Zhang et al. Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method
Peng et al. FDM-3D printing LLDPE/BN@ GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding
CN112646552A (zh) 一种高效导热硅脂及其制备方法
Shu et al. Effective regulation of thermal conductivity of polyetherimide/low–melting–point alloy composites based on the construction of segregated structure
Li et al. Conductivity and mechanical properties of conductive adhesive with silver nanowires
Hu et al. Flexible and thermal conductive poly (vinylidene fluoride) composites with silver decorated hexagonal boron nitride/silicon carbide hybrid filler
Yang et al. The fabrication and thermal conductivity of epoxy composites with 3D nanofillers of AgNWs@ SiO 2 &GNPs
Ge et al. Flexible and leakage-proof phase change composite for microwave attenuation and thermal management
CN111410190A (zh) 具有绝缘导热性能的石墨烯-氮化硼复合薄膜及其制备方法
Jiao et al. Enhanced thermal conductivity of liquid metal composite with lower surface tension as thermal interface materials
Wang et al. Facile fabrication of three-dimensional thermal conductive composites with synergistic effect of multidimensional fillers
Ba et al. Porous graphene composites fabricated by template method used for electromagnetic shielding and thermal conduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant