CN109087945A - 一种igbt的制造方法 - Google Patents

一种igbt的制造方法 Download PDF

Info

Publication number
CN109087945A
CN109087945A CN201810959024.8A CN201810959024A CN109087945A CN 109087945 A CN109087945 A CN 109087945A CN 201810959024 A CN201810959024 A CN 201810959024A CN 109087945 A CN109087945 A CN 109087945A
Authority
CN
China
Prior art keywords
region
igbt
sub
few
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810959024.8A
Other languages
English (en)
Other versions
CN109087945B (zh
Inventor
廖兵
沈礼福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Crystal Microelectronics Co Ltd
Original Assignee
Suzhou Crystal Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Crystal Microelectronics Co Ltd filed Critical Suzhou Crystal Microelectronics Co Ltd
Priority to CN201810959024.8A priority Critical patent/CN109087945B/zh
Publication of CN109087945A publication Critical patent/CN109087945A/zh
Application granted granted Critical
Publication of CN109087945B publication Critical patent/CN109087945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种IGBT的制造方法,首先在N‑衬底上形成N+少子存储区域,再通过比N+少子存储区域更大的光刻视场形成窗口,以保证P+区域可以在横向上完全覆盖N+少子存储区域,形成被N+少子存储层半包围的P+区域,通过这种方式既引入了CS区域,又最大程度的降低了CS层对器件击穿电压的影响,最终得到了平面局域少子存储IGBT,既有效提升导通压降与关断损耗间的折衷关系又最大程度的减少了少子存储区域对器件的击穿电压的影响,本发明实用性强、易于使用和推广。

Description

一种IGBT的制造方法
技术领域
本发明涉及半导体技术,具体是一种IGBT的制造方法。
背景技术
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管)是一种双极型器件,从结构上看,正面是一个MOSFET的结构,背面是一个PIN二极管的结构,通过这种结构的组合,从而使IGBT既具有双极型功率晶体管导通压降低、电流容量大的特点,又具有功率MOSFET输入阻抗高、驱动电路简单的优点。随着电气化的普及,IGBT应用越来越广泛,诸如:新能源汽车、高铁、工业变频、白色家电等领域。IGBT之所以具有较低的通态压降,主要是在开通过程中,N-漂移区内存储大量过剩载流子。但是在关断过程中,由于背部P型集电区的存在,过剩载流子无法快速抽取,只能复合消失,这样就会造成关断的拖尾电流,大大增加了关断损耗。N-漂移区内过剩载流子的数量越多,通态压降越低,但是关断损耗也会大大增加。因此,IGBT器件在静态损耗与动态损耗之间存在着强烈的折衷关系。
由三菱电机公司提出的CSTBT(Carrier Stored Trench-gate BipolarTransistor,载流子存储槽栅双极晶体管)是在沟槽IGBT两侧槽栅之间的Pbody基区底部引入N型CS层(Carrier Stored layer,载流子存储层),其浓度高于N-漂移区浓度,形成极低电压的扩散势,阻止空穴向上流出器件。为了保证电中性,相应数量的电子通过沟道流入N-漂移区,从而增大整体的过剩载流子浓度,降低导通压降,有效提升导通压降与关断损耗间的折衷关系。但是因为N型CS的电阻率低于N-漂移区,所以CS层的引入会降低器件的击穿电压。
发明内容
本发明的目的在于提供一种IGBT的制造方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种IGBT的制造方法,包括以下步骤:
采用N型单晶硅片,制备N型衬底,N型衬底即为N-漂移区,在N-漂移区上表面成N+少子存储层区域;
在N+少子存储层区域内形成P+区域;
形成正面的平面MOS结构,包括N+源区、栅极氧化层、发射极金属、栅极金属的部分;
进行背面减薄、注入、背金工艺,背面形成P+集电极和集电极金属。
作为本发明进一步的方案:所述N-漂移区的电阻率即为N型单晶衬底的电阻率。
作为本发明再进一步的方案:所述P+区域横向上完全覆盖N+少子存储层区域且纵向上不完全覆盖N+少子存储层区域。
作为本发明再进一步的方案:所述P+区域和N+少子存储层形成过程包括以下步骤:
步骤一、在N-漂移区上通过光刻、注入、扩散形成N+掺杂;
步骤二、形成比N+掺杂更大的光刻区域,通过注入扩散在N+掺杂区域内形成P+区域,形成了纵向上P+区域被N+少子存储层包围,横向上P+区域不被N+少子存储层包围。
与现有技术相比,本发明的有益效果是:首先在N-衬底上形成N+少子存储区域,再通过比N+少子存储区域更大的光刻视场形成窗口,以保证P+区域可以在横向上完全覆盖N+少子存储区域,形成被N+少子存储层半包围的P+区域。通过这种方式既引入了CS区域,又最大程度的降低了CS层对器件击穿电压的影响,最终得到了平面局域少子存储IGBT,既有效提升导通压降与关断损耗间的折衷关系又最大程度的减少了少子存储区域对器件的击穿电压的影响,本发明实用性强、易于使用和推广。
附图说明
图1为IGBT的制造方法最终所形成的IGBT结构剖面图。
图2为IGBT的制造方法中在N-漂移区上通过光刻、注入、扩散形成N+掺杂的示意图。
图3为IGBT的制造方法中N+掺杂区上形成比N+掺杂更大的光刻区域,通过注入扩散在N+掺杂区域内形成P+区域的示意图。
其中:N-漂移区1、N+少子存储层区域2、P+区域3、N+源区4、栅极氧化层5、发射极金属6、栅极金属7、P+集电极8、集电极金属9。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
请参阅图1~3,本发明实施例中,一种IGBT的制造方法,包括以下步骤:采用N型单晶硅片,制备N型衬底,N型衬底即为N-漂移区(1),在N-漂移区(1)上表面成N+少子存储层区域(2),再在N+少子存储层区域(2)内形成P+区域(3),P+区域(3)横向上完全覆盖N+少子存储层区域(2)且纵向上不完全覆盖N+少子存储层区域(2),从而达到仅保留P+区域(3)下方N+少子存储层的目的,而后正常的形成正面的平面MOS结构,包括N+源区(4)、栅极氧化层(5)、发射极金属(6)、栅极金属(7)等部分。再进行背面减薄、注入、背金等工艺,背面形成P+集电极(8)和集电极金属(9),最终形成具有局域少子存储层的平面IGBT。既保留了少子存储效果,达到了降低导通压降,提高开关速度的效果,同时又保留了P+区域(3)不完全被N+少子存储层(2)包围,保证了器件的击穿电压,是对传统的IGBT的一种有效优化。
所述N-漂移区(1)的电阻率即为N型单晶衬底的电阻率。
所述P+区域(3)和N+少子存储层(2)形成过程包括以下步骤:
步骤一、在N-漂移区(1)上通过光刻、注入、扩散形成N+掺杂。
步骤二、形成比N+掺杂更大的光刻区域,通过注入扩散在N+掺杂区域内形成P+区域(3),形成了纵向上P+区域(3)被N+少子存储层(2)包围,横向上P+区域(3)不被N+少子存储层(2)包围。
所述其N+源区(4)、栅极氧化层(5)、发射极金属(6)、栅极金属(7)等部分与普通的平面IGBT没有差异,芯片正面结构完成以后,再进行背面减薄、注入、背金等工艺,背面形成P+集电极(8)和集电极金属(9)的制造流程与普通的IGBT也没有差异,最终形成了平面局域少子存储IGBT,既有效提升导通压降与关断损耗间的折衷关系又最大程度的减少了少子存储区域对器件的击穿电压的影响。
实施例2:
以600V IGBT的制造工艺流程为例,其具体工艺过程如下:
一、衬底材料准备,采用电阻率约为40Ω·cm,厚度为400~600μm的n型区熔单晶硅衬底,其晶向为<100>;
二、在N-漂移区1上通过光刻、注入、扩散形成N+掺杂区2,注入剂量。磷注入剂量1e13cm-3,注入能量100KeV,扩散温度1100℃,扩散时间60分钟。
三、形成比N+掺杂更大的光刻区域,P+区域光刻开孔宽度比N+掺杂区开孔宽度大2μm~6μm,通过硼的注入扩散在N+掺杂区域2内形成P+区域3,硼注入的剂量为5e13cm-3,注入能量为80KeV,扩散温度1100℃,扩散时间40分钟。形成了纵向上P+区域3被N+少子存储层2包围,横向上P+区域3不被N+少子存储层2包围。
步骤三、在器件正面形成N+源区、栅极氧化层、发射极金属、栅极金属等部分与普通的平面IGBT没有差异,芯片正面结构完成以后,再进行背面减薄、注入、背金等工艺,背面形成P+集电极(8)和集电极金属(9)的制造流程与普通的IGBT也没有差异。
需要特别说明的是,本申请中所述其N+源区(4)、栅极氧化层(5)、发射极金属(6)、栅极金属(7)部分与普通的平面IGBT没有差异,背面形成P+集电极(8)和集电极金属(9)的制造流程与普通的IGBT也没有差异,均为现有技术的应用,本申请的基本工艺方案是首先在N-衬底上形成N+少子存储区域,再通过比N+少子存储区域更大的光刻视场形成窗口,以保证P+区域可以在横向上完全覆盖N+少子存储区域,形成被N+少子存储层半包围的P+区域。通过这种方式既引入了CS区域,又最大程度的降低了CS层对器件击穿电压的影响,最终得到了平面局域少子存储IGBT,既有效提升导通压降与关断损耗间的折衷关系又最大程度的减少了少子存储区域对器件的击穿电压的影响。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (4)

1.一种IGBT的制造方法,其特征在于,包括以下步骤:
采用N型单晶硅片,制备N型衬底,N型衬底即为N-漂移区(1),在N-漂移区(1)上表面成N+少子存储层区域(2);
在N+少子存储层区域(2)内形成P+区域(3);
形成正面的平面MOS结构,包括N+源区(4)、栅极氧化层(5)、发射极金属(6)、栅极金属(7)的部分;
进行背面减薄、注入、背金工艺,背面形成P+集电极(8)和集电极金属(9)。
2.根据权利要求1所述的IGBT的制造方法,其特征在于,所述N-漂移区(1)的电阻率即为N型单晶衬底的电阻率。
3.根据权利要求1所述的IGBT的制造方法,其特征在于,所述P+区域(3)横向上完全覆盖N+少子存储层区域(2)且纵向上不完全覆盖N+少子存储层区域(2)。
4.根据权利要求1所述的IGBT的制造方法,其特征在于,所述P+区域(3)和N+少子存储层(2)形成过程包括以下步骤:
步骤一、在N-漂移区(1)上通过光刻、注入、扩散形成N+掺杂;
步骤二、形成比N+掺杂更大的光刻区域,通过注入扩散在N+掺杂区域内形成P+区域(3),形成了纵向上P+区域(3)被N+少子存储层(2)包围,横向上P+区域(3)不被N+少子存储层(2)包围。
CN201810959024.8A 2018-08-22 2018-08-22 一种igbt的制造方法 Active CN109087945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810959024.8A CN109087945B (zh) 2018-08-22 2018-08-22 一种igbt的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810959024.8A CN109087945B (zh) 2018-08-22 2018-08-22 一种igbt的制造方法

Publications (2)

Publication Number Publication Date
CN109087945A true CN109087945A (zh) 2018-12-25
CN109087945B CN109087945B (zh) 2021-11-26

Family

ID=64794205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810959024.8A Active CN109087945B (zh) 2018-08-22 2018-08-22 一种igbt的制造方法

Country Status (1)

Country Link
CN (1) CN109087945B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069418A (ko) * 2010-12-20 2012-06-28 주식회사 케이이씨 절연형 게이트 바이폴라 트랜지스터 및 그 제조 방법
CN103839987A (zh) * 2012-11-23 2014-06-04 中国科学院微电子研究所 功率器件-mpt-ti-igbt的结构及其制备方法
CN105047705A (zh) * 2015-06-30 2015-11-11 西安理工大学 一种电子注入增强型的高压igbt及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069418A (ko) * 2010-12-20 2012-06-28 주식회사 케이이씨 절연형 게이트 바이폴라 트랜지스터 및 그 제조 방법
CN103839987A (zh) * 2012-11-23 2014-06-04 中国科学院微电子研究所 功率器件-mpt-ti-igbt的结构及其制备方法
CN105047705A (zh) * 2015-06-30 2015-11-11 西安理工大学 一种电子注入增强型的高压igbt及其制造方法

Also Published As

Publication number Publication date
CN109087945B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN103383958B (zh) 一种rc-igbt器件及其制作方法
CN103413824B (zh) 一种rc-ligbt器件及其制作方法
CN107293579B (zh) 一种具有低导通压降的超结igbt
CN105789290B (zh) 一种沟槽栅igbt器件及其制造方法
CN105932042A (zh) 一种双分裂沟槽栅电荷存储型igbt及其制造方法
CN105932055B (zh) 一种平面栅igbt及其制作方法
CN107170816B (zh) 一种横向绝缘栅双极型晶体管
CN107768436A (zh) 一种沟槽栅电荷储存型igbt及其制造方法
CN105742346A (zh) 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN102169892B (zh) 一种增强型平面绝缘栅双极型晶体管
CN105870180B (zh) 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN105870179A (zh) 一种沟槽栅电荷存储型rc-igbt及其制造方法
CN110504310A (zh) 一种具有自偏置pmos的ret igbt及其制作方法
CN108321193A (zh) 一种沟槽栅电荷存储型igbt及其制作方法
CN109713041A (zh) 一种适用于超结dmos器件的改良结构
CN106129110B (zh) 一种双通道rc-igbt器件及其制备方法
CN107195678A (zh) 一种载流子存储增强的超结igbt
CN107305909A (zh) 一种逆导型igbt背面结构及其制备方法
CN106783984A (zh) 一种双面终端结构、逆导型半导体器件及其制备方法
CN106057879A (zh) Igbt器件及其制造方法
CN106067481A (zh) 一种双通道rc‑igbt器件及其制备方法
CN105870181B (zh) 一种平面栅igbt及其制作方法
CN106098763B (zh) 一种rc-ligbt器件及其制备方法
CN103378141B (zh) 绝缘栅双极型晶体管及其制作方法
CN109087945A (zh) 一种igbt的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant