CN109081684A - 一种碳纳米管增强氧化铝基复合材料的制备方法 - Google Patents

一种碳纳米管增强氧化铝基复合材料的制备方法 Download PDF

Info

Publication number
CN109081684A
CN109081684A CN201810862416.2A CN201810862416A CN109081684A CN 109081684 A CN109081684 A CN 109081684A CN 201810862416 A CN201810862416 A CN 201810862416A CN 109081684 A CN109081684 A CN 109081684A
Authority
CN
China
Prior art keywords
carbon nanotube
preparation
solution
matrix composite
alumina matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810862416.2A
Other languages
English (en)
Inventor
易健宏
庄永起
谈松林
熊倪
鲍瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810862416.2A priority Critical patent/CN109081684A/zh
Publication of CN109081684A publication Critical patent/CN109081684A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种碳纳米管增强氧化铝基复合材料的制备方法,采用浓硫酸与浓硝酸的混合酸对碳纳米管进行预处理,经超声均匀分散于铝盐溶液中,在磁力搅拌的同时滴加碱溶液,生成的氢氧化铝沉淀以碳纳米管为形核点长大从而包覆碳纳米管,经过滤、洗涤、干燥后,低温煅烧、高温焙烧制成复合粉体,最后经SPS烧结得到高韧性的碳纳米管增强氧化铝基复合材料;碳纳米管表面被氧化铝包覆从而减少其团聚现象,并可以提高增强相与基体的界面结合强度;碳纳米管在基体中均匀分散能保证材料性能的连续性;本发明工艺简单,相对于球磨工艺可以减少制备过程对碳纳米管的破坏作用,设备要求低,适用于工业化生产。

Description

一种碳纳米管增强氧化铝基复合材料的制备方法
技术领域
本发明涉及一种碳纳米管增强氧化铝基复合材料的制备方法,属于复合材料制备技术领域。
背景技术
氧化铝陶瓷材料具有良好的力学性能、化学稳定性、隔热性和电绝缘性,是一种被广泛应用的材料,在高速切割、耐磨损部件等领域有着非常广泛的应用,但由于其断裂韧性较差,限制了它在许多高端领域的应用。碳纳米管具有优良的力学性能,抗拉强度达到50~200GPa是钢的100倍,是良好的增韧纤维,经常被用来增韧陶瓷,能有效的提高陶瓷的断裂韧性。但碳纳米管极易团聚,其在氧化铝中如何达到均匀分散一直是该领域很难突破的问题。
发明内容
本发明针对现有技术存在的问题,提供了一种碳纳米管增强氧化铝基复合材料的制备方法,将碳纳米管均匀分散于铝的盐溶液中,通过添加碱性溶液产生氢氧化铝沉淀并以碳纳米管为形核点,将碳纳米管包覆起来使其无法团聚,随后通过煅烧使氢氧化铝分解为氧化铝,最后采用SPS烧结成碳纳米管增强氧化铝基复合材料,该材料具有良好的力学性能。
一种碳纳米管增强氧化铝基复合材料的制备方法,具体步骤如下:
(1)碳纳米管预处理:将质量分数为98%的浓硫酸与质量分数为65%的浓硝酸按体积比3:1混合制得混酸,按照碳纳米管与浓硫酸质量体积比g:mL为1:4~6的比例,将碳纳米管加入到混酸中,封口,65℃水浴恒温4~6小时,再加入8~15倍混酸体积的去离子水,搅拌成混合均匀的混合液,抽滤并洗涤滤饼至中性,将所得产物干燥至恒重备用;
(2)配置铝盐溶液A,铝盐溶液A中铝离子浓度为0.1~1mol/L;
(3)配制碱溶液B,碱溶液B中氢氧根离子浓度为0.1~1mol/L;
(4)将步骤(1)的产物加入去离子水中,超声15~60分钟制成溶液C;
(5)按照步骤(1)的产物与根据步骤(2)铝盐溶液A中铝离子理论制得的氧化铝的质量比为1:50~1:200的比例,当碳纳米管加入太多时,碳纳米管会团聚影响性能,将铝盐溶液A与溶液C混合并超声均匀,将碱溶液B缓慢滴加到混合溶液并磁力搅拌,调节溶液pH值至9,抽滤,并用去离子水洗涤沉淀至中性,然后干燥至恒重;
(6)将步骤(5)的干燥产物置于空气中,在350~450℃煅烧1~3小时,然后置于保护气氛中,在1150~1300℃煅烧1~3小时,得到复合粉体;
(7)将步骤(6)制得的复合粉体采用SPS烧结成型,得到碳纳米管增强氧化铝基复合材料。
步骤(2)所述铝盐为硝酸铝、氯化铝、硫酸铝中的一种或几种任意比例混合。
步骤(3)所述碱溶液B为氨水、氢氧化钠溶液、氢氧化钾溶液中的一种或几种任意比例混合。
步骤(5)所述碱溶液B的滴加速度为0.1~5mL/min。
步骤(5)所述洗涤方式是抽滤滤饼加入去离子水中,搅拌分散均匀后过滤,且洗涤次数为2~4次。
步骤(5)所述干燥方式为干燥箱干燥、冷冻干燥或真空干燥。
步骤(6)所述保护气氛为氩气气氛或氮气气氛。
步骤(7)所述SPS烧结的烧结参数为:真空条件下,压力30~80MPa,烧结温度1150~1500℃,升温速度为80~150℃/min。
所述SPS烧结为放电等离子烧结的缩写。
本发明的有益效果是:
本发明的碳纳米管增强氧化铝基复合材料碳纳米管表面被氧化铝包覆从而减少其团聚现象,并可以提高增强相与基体的界面结合强度;碳纳米管在基体中均匀分散能保证材料性能的连续性;工艺简单,相对于球磨工艺可以减少制备过程对碳纳米管的破坏作用;该方法设备要求低,适用于工业化生产;采用SPS快速烧结方法使产品既能拥有较高的强度,又能显著提高其断裂韧性。
附图说明
图1为实施例1步骤(6)制备的碳纳米管表面包覆氧化铝颗粒的复合粉体FE-SEM图;
图2为实施例1步骤(6)380℃热处理后与1200℃热处理后XRD对比图;
图3为实施例1步骤(7)最后得到的碳纳米管增强氧化铝基复合材料的FE-SEM图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种碳纳米管增强氧化铝基复合材料的制备方法,具体步骤如下:
(1)碳纳米管预处理:将质量分数为98%的浓硫酸与质量分数为65%的浓硝酸按体积比3:1混合制得混酸,按照碳纳米管与浓硫酸质量体积比g:mL为1:6的比例,将碳纳米管加入到混酸中,封口,65℃水浴恒温5.5小时,再加入12倍混酸体积的去离子水,搅拌成混合均匀的混合液,抽滤并洗涤滤饼至中性,将所得产物恒温干燥箱70℃干燥至恒重备用;
(2)配置氯化铝溶液A,氯化铝溶液A中铝离子浓度为0.6mol/L;
(3)配制氢氧化钾溶液B,氢氧化钾溶液B中氢氧根离子浓度为0.6mol/L;
(4)将步骤(1)的产物加入去离子水中,超声40分钟制成溶液C;
(5)按照步骤(1)的产物与根据步骤(2)氯化铝溶液A中铝离子理论制得的氧化铝的质量比为1:100的比例,将氯化铝溶液A与溶液C混合并超声均匀,将氢氧化钾溶液B缓慢滴加到混合溶液并磁力搅拌,氢氧化钾溶液B的滴加速度为1mL/min,调节溶液pH值至9,抽滤,并用去离子水洗涤沉淀至中性,洗涤方式是抽滤滤饼加入去离子水中,搅拌分散均匀后过滤,且洗涤次数为3次,然后干燥箱干燥至恒重;
(6)将步骤(5)的干燥产物置于空气中,在380℃煅烧2.5h,然后置于氮气气氛中,在1200℃煅烧1.5小时,得到碳纳米管表面包覆氧化铝颗粒的复合粉体;
(7)将步骤(6)制得的复合粉体采用SPS烧结成型,SPS烧结的烧结参数为:真空条件下,压力60MPa,烧结温度1400℃,升温速度为120℃/min,得到碳纳米管增强氧化铝基复合材料。
本实施例所得复合材料相对密度为97.66%,抗弯强度为495.3KN/mm2,断裂韧性比纯氧化铝提高86%。
如图1所示为本实施例步骤(6)制备的碳纳米管表面包覆氧化铝颗粒的复合粉体FE-SEM图,从图中可以看出CNTs被包裹在氧化铝基体中,分散均匀且不会因后期粉末的移动而发生再次团聚,从而解决了CNTs在复合材料中的团聚问题;图2步骤(6)380℃热处理后与1200℃热处理后XRD对比图,从图中可以看出380℃预烧后所形成的为无定型氧化铝,1200℃预烧后产物变成了α-Al2O3,这么做的目的是在低温下分解氢氧化铝并保证其产生的水分子不会对碳纳米管造成破坏,然后在高温下预烧将原料预烧为稳定的α-Al2O3,有利于烧结的致密化;图3步骤(7)最后得到的碳纳米管增强氧化铝基复合材料的FE-SEM图,从图中可以看出碳纳米管均匀的嵌入氧化铝基体中,可以发挥其优良的力学性能,阻碍裂纹的扩展,从而提高陶瓷的断裂韧性及弯曲强度。
实施例2
一种碳纳米管增强氧化铝基复合材料的制备方法,具体步骤如下:
(1)碳纳米管预处理:将质量分数为98%的浓硫酸与质量分数为65%的浓硝酸按体积比3:1混合制得混酸,按照碳纳米管与浓硫酸质量体积比g:mL为1:5的比例,将碳纳米管加入到混酸中,封口,65℃水浴恒温4小时,再加入8倍混酸体积的去离子水,搅拌成混合均匀的混合液,抽滤并洗涤滤饼至中性,将所得产物冷冻干燥至恒重备用;
(2)配置硝酸铝溶液A,硝酸铝溶液A中铝离子浓度为0.1mol/L;
(3)配制氨水B,氨水B中氢氧根离子浓度为0.1mol/L;
(4)将步骤(1)的产物加入去离子水中,超声15分钟制成溶液C;
(5)按照步骤(1)的产物与根据步骤(2)硝酸铝溶液A中铝离子理论制得的氧化铝的质量比为1: 50的比例,将硝酸铝溶液A与溶液C混合并超声均匀,将氨水B缓慢滴加到混合溶液并磁力搅拌,氨水B的滴加速度为2mL/min,调节溶液pH值至9,抽滤,并用去离子水洗涤沉淀至中性,洗涤方式是抽滤滤饼加入去离子水中,搅拌分散均匀后过滤,且洗涤次数为3次,然后干燥箱干燥至恒重;
(6)将步骤(5)的干燥产物置于空气中,在450℃煅烧1h,然后置于氩气气氛中,在1300℃煅烧1小时,得到碳纳米管表面包覆氧化铝颗粒的复合粉体;
(7)将步骤(6)制得的复合粉体采用SPS烧结成型,SPS烧结的烧结参数为:真空条件下,压力30MPa,烧结温度1500℃,升温速度为150℃/min,得到碳纳米管增强氧化铝基复合材料。
所得复合材料相对密度为96.68%,抗弯强度为362.4KN/mm2,断裂韧性比纯氧化铝提高73%。
实施例3
一种碳纳米管增强氧化铝基复合材料的制备方法,具体步骤如下:
(1)碳纳米管预处理:将质量分数为98%的浓硫酸与质量分数为65%的浓硝酸按体积比3:1混合制得混酸,按照碳纳米管与浓硫酸质量体积比g:mL为1:4的比例,将碳纳米管加入到混酸中,封口,65℃水浴恒温6小时,再加入15倍混酸体积的去离子水,搅拌成混合均匀的混合液,抽滤并洗涤滤饼至中性,将所得产物于恒温干燥箱70℃干燥至恒重备用;
(2)配置硝酸铝溶液A,硝酸铝溶液A中铝离子浓度为1mol/L;
(3)配制氢氧化钠溶液B,氢氧化钠溶液B中氢氧根离子浓度为1mol/L;
(4)将步骤(1)的产物加入去离子水中,超声60分钟制成溶液C;
(5)按照步骤(1)的产物与根据步骤(2)硝酸铝溶液A中铝离子理论制得的氧化铝的质量比为1:200的比例,将硝酸铝溶液A与溶液C混合并超声均匀,将氢氧化钠溶液B缓慢滴加到混合溶液并磁力搅拌,氢氧化钠溶液B的滴加速度为5mL/min,调节溶液pH值至9,抽滤,并用去离子水洗涤沉淀至中性,洗涤方式是抽滤滤饼加入去离子水中,搅拌分散均匀后过滤,且洗涤次数为2次,然后干燥箱干燥至恒重;
(6)将步骤(5)的干燥产物置于空气中,在350℃煅烧3h,然后置于氩气气氛中,在1150℃煅烧3小时,得到碳纳米管表面包覆氧化铝颗粒的复合粉体;
(7)将步骤(6)制得的复合粉体采用SPS烧结成型,SPS烧结的烧结参数为:真空条件下,压力80MPa,烧结温度1150℃,升温速度为80℃/min,得到碳纳米管增强氧化铝基复合材料。
所得复合材料相对密度为92.6%,抗弯强度为355.7KN/mm2,断裂韧性比纯氧化铝提高64%。
实施例4
一种碳纳米管增强氧化铝基复合材料的制备方法,具体步骤如下:
(1)碳纳米管预处理:将质量分数为98%的浓硫酸与质量分数为65%的浓硝酸按体积比3:1混合制得混酸,按照碳纳米管与浓硫酸质量体积比g:mL为1:4.5的比例,将碳纳米管加入到混酸中,封口,65℃水浴恒温5小时,再加入10倍混酸体积的去离子水,搅拌成混合均匀的混合液,抽滤并洗涤滤饼至中性,将所得产物真空干燥至恒重备用;
(2)配置硝酸铝和氯化铝质量比1:2混合后加水形成的溶液A,溶液A中铝离子浓度为0.5mol/L;
(3)配制氢氧化钠和氢氧化钾质量比1:1混合后加水形成的溶液B,溶液B中氢氧根离子浓度为1mol/L;
(4)将步骤(1)的产物加入去离子水中,超声30分钟制成溶液C;
(5)按照步骤(1)的产物与根据步骤(2)溶液A中铝离子理论制得的氧化铝的质量比为1:120的比例,将溶液A与溶液C混合并搅拌均匀,将溶液B缓慢滴加到混合溶液并磁力搅拌,溶液B的滴加速度为0.1mL/min,调节溶液pH值至9,抽滤,并用去离子水洗涤沉淀至中性,洗涤方式是抽滤滤饼加入去离子水中,搅拌分散均匀后过滤,且洗涤次数为3次,然后干燥箱干燥至恒重;
(6)将步骤(5)的干燥产物置于空气中,在400℃煅烧2小时,然后置于氮气气氛中,在1250℃煅烧2小时,得到碳纳米管表面包覆氧化铝颗粒的复合粉体;
(7)将步骤(6)制得的复合粉体采用SPS烧结成型,SPS烧结的烧结参数为:真空条件下,压力50MPa,烧结温度1300℃,升温速度为100℃/min,得到碳纳米管增强氧化铝基复合材料。
所得复合材料相对密度为93.4%,抗弯强度为455.7KN/mm2,断裂韧性比纯氧化铝提高71%。

Claims (6)

1.一种碳纳米管增强氧化铝基复合材料的制备方法,其特征在于,具体步骤如下:
(1)碳纳米管预处理:将质量分数为98%的浓硫酸与质量分数为65%的浓硝酸按体积比3:1混合制得混酸,按照碳纳米管与浓硫酸质量体积比g:mL为1:4~6的比例,将碳纳米管加入到混酸中,封口,65℃水浴恒温4~6小时,再加入8-15倍混酸体积的去离子水,搅拌成混合均匀的混合液,抽滤并洗涤滤饼至中性,将所得产物干燥至恒重备用;
(2)配置铝盐溶液A,铝盐溶液A中铝离子浓度为0.1~1mol/L;
(3)配制碱溶液B,碱溶液B中氢氧根离子浓度为0.1~1mol/L;
(4)将步骤(1)的产物加入去离子水中,超声15~60分钟制成溶液C;
(5)按照步骤(1)的产物与根据步骤(2)铝盐溶液A中铝离子理论制得的氧化铝的质量比为1:50~200的比例,将铝盐溶液A与溶液C混合并超声混匀,将碱溶液B滴加到混合溶液并磁力搅拌,调节pH值至9,抽滤,并用去离子水洗涤沉淀至中性,然后干燥至恒重;
(6)将步骤(5)的干燥产物置于空气中,在350~450℃煅烧1~3小时,然后置于保护气氛中,在1150~1300℃煅烧1~3小时,得到复合粉体;
(7)将步骤(6)制得的复合粉体采用SPS烧结成型,得到碳纳米管增强氧化铝基复合材料。
2.根据权利要求1所述碳纳米管增强氧化铝基复合材料的制备方法,其特征在于,步骤(2)所述铝盐为硝酸铝、氯化铝、硫酸铝中的一种或几种任意比例混合。
3.根据权利要求1所述碳纳米管增强氧化铝基复合材料的制备方法,其特征在于,步骤(3)所述碱溶液B为氨水、氢氧化钠溶液、氢氧化钾溶液中的一种或几种任意比例混合。
4.根据权利要求1所述碳纳米管增强氧化铝基复合材料的制备方法,其特征在于,步骤(5)所述碱溶液B的滴加速度为0.1~5mL/min。
5.根据权利要求1所述碳纳米管增强氧化铝基复合材料的制备方法,其特征在于,步骤(6)所述保护气氛为氩气气氛或氮气气氛。
6.根据权利要求1所述碳纳米管增强氧化铝基复合材料的制备方法,其特征在于,步骤(7)所述SPS烧结的烧结参数为:真空条件下,压力30~80MPa,烧结温度1150~1500℃,升温速度为80~150℃/min。
CN201810862416.2A 2018-08-01 2018-08-01 一种碳纳米管增强氧化铝基复合材料的制备方法 Pending CN109081684A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810862416.2A CN109081684A (zh) 2018-08-01 2018-08-01 一种碳纳米管增强氧化铝基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810862416.2A CN109081684A (zh) 2018-08-01 2018-08-01 一种碳纳米管增强氧化铝基复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN109081684A true CN109081684A (zh) 2018-12-25

Family

ID=64833497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810862416.2A Pending CN109081684A (zh) 2018-08-01 2018-08-01 一种碳纳米管增强氧化铝基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109081684A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824280A (zh) * 2019-02-25 2019-05-31 深圳市辉翰科技发展有限公司 一种基于多元防火胶的层状复合防火玻璃及其制备方法
CN109926588A (zh) * 2019-04-28 2019-06-25 北京科技大学 一种碳纳米管增强泡沫铝基复合材料的制备方法
CN112323167A (zh) * 2020-11-09 2021-02-05 上海桐轩医疗科技有限公司 一种防护口罩及其制备方法
CN115747591A (zh) * 2022-11-28 2023-03-07 凤阳爱尔思轻合金精密成型有限公司 一种高韧性铝合金材料及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724473A (zh) * 2005-05-27 2006-01-25 清华大学 碳纳米管/纳米氧化锆复合增韧材料及其制备方法
CN105462441A (zh) * 2015-12-25 2016-04-06 成都石大力盾科技有限公司 一种Al2O3改性多壁碳纳米管/环氧树脂复合材料及其制备方法
US9902889B2 (en) * 2015-11-26 2018-02-27 Korea Institute Of Ceramic Engineering & Technology Alumina composite ceramic composition and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724473A (zh) * 2005-05-27 2006-01-25 清华大学 碳纳米管/纳米氧化锆复合增韧材料及其制备方法
US9902889B2 (en) * 2015-11-26 2018-02-27 Korea Institute Of Ceramic Engineering & Technology Alumina composite ceramic composition and method of manufacturing the same
CN105462441A (zh) * 2015-12-25 2016-04-06 成都石大力盾科技有限公司 一种Al2O3改性多壁碳纳米管/环氧树脂复合材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SEUNG I. CHA等: ""Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process"", 《SCRIPTA MATERIALIA》 *
庄永起: ""碳纳米管增强氧化铝基复合材料的制备与性能研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
曹茂盛: "《超微颗粒制备科学与技术》", 31 December 1998 *
郭昭泉等: "《炼油催化剂制造技术基础》", 31 January 1989 *
黄玉媛等: "《精细无机配方常用原料手册》", 31 March 1998, 广东科技出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824280A (zh) * 2019-02-25 2019-05-31 深圳市辉翰科技发展有限公司 一种基于多元防火胶的层状复合防火玻璃及其制备方法
CN109926588A (zh) * 2019-04-28 2019-06-25 北京科技大学 一种碳纳米管增强泡沫铝基复合材料的制备方法
CN109926588B (zh) * 2019-04-28 2020-09-11 北京科技大学 一种碳纳米管增强泡沫铝基复合材料的制备方法
CN112323167A (zh) * 2020-11-09 2021-02-05 上海桐轩医疗科技有限公司 一种防护口罩及其制备方法
CN112323167B (zh) * 2020-11-09 2022-10-04 上海桐轩医疗科技有限公司 一种防护口罩及其制备方法
CN115747591A (zh) * 2022-11-28 2023-03-07 凤阳爱尔思轻合金精密成型有限公司 一种高韧性铝合金材料及其制备工艺
CN115747591B (zh) * 2022-11-28 2024-02-13 凤阳爱尔思轻合金精密成型有限公司 一种高韧性铝合金材料及其制备工艺

Similar Documents

Publication Publication Date Title
CN109081684A (zh) 一种碳纳米管增强氧化铝基复合材料的制备方法
CN104986786B (zh) 一种粒径大小可控的片状α‑Al2O3粉体及其制备方法
CN105418071A (zh) 高纯超细ZrC-SiC复合粉体的合成方法
CN108129151B (zh) 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法
CN111453706A (zh) 一种六方氮化硼的合成方法
CN111484050B (zh) 一种类球形α相纳米氧化铝的制备方法
CN103626510B (zh) 原位生长制备硼酸镁晶须多孔陶瓷的方法
CN101967005B (zh) 一种制备大颗粒、大比表面积氟化镨钕的方法
CN109081685B (zh) 一种氧化铝陶瓷及其制备方法
KR100740633B1 (ko) 실리카가 코팅된 흑연의 제조방법
CN111087235A (zh) 一种采用钇/助剂/铝三重核壳结构粉体制备yag透明陶瓷的方法
CN108083334A (zh) 一种单分散球形纳米二氧化锆粉体材料的制备方法
CN116535196A (zh) 一种氧化铝陶瓷的制备方法与应用
CN103664218A (zh) 一种高韧高强远红外陶瓷及其制备方法
CN112692276B (zh) 一种铁基抗氧化磁性复合粉体及其制备方法
CN104803695A (zh) 一种高强碳纤维增强氮化硼陶瓷基复合材料及其制备方法
TWI400218B (zh) 核殼式無機聚合物複合材料及其製法
CN110697725B (zh) 一种二硅酸锂晶须的制备方法
CN112159240A (zh) 一种熔盐法合成铪酸镧粉体的制备方法
CN111847506A (zh) 一种高吸油值二氧化钛/高岭土复合材料的制备方法
CN109095860A (zh) 一种耐磨陶瓷涂料
CN110642280A (zh) 一种α-Al2O3纳米管及其制备方法
CN115676858B (zh) 一种片状多孔硅钢级氧化镁的制备方法
CN114772598B (zh) 一种可控形貌的空心max相粉体及其制备方法
CN103553102A (zh) 一种微米级氧化铝纤维的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181225

RJ01 Rejection of invention patent application after publication