CN109075312A - 用于电化学装置的铟镓氮化物电极的制造方法 - Google Patents

用于电化学装置的铟镓氮化物电极的制造方法 Download PDF

Info

Publication number
CN109075312A
CN109075312A CN201780015634.6A CN201780015634A CN109075312A CN 109075312 A CN109075312 A CN 109075312A CN 201780015634 A CN201780015634 A CN 201780015634A CN 109075312 A CN109075312 A CN 109075312A
Authority
CN
China
Prior art keywords
ingan
electrode
supporting object
conductive supporting
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780015634.6A
Other languages
English (en)
Other versions
CN109075312B (zh
Inventor
理查德·诺伊泽尔
斯特凡诺·桑吉内蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universita degli Studi di Milano Bicocca
Original Assignee
Universita degli Studi di Milano Bicocca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universita degli Studi di Milano Bicocca filed Critical Universita degli Studi di Milano Bicocca
Publication of CN109075312A publication Critical patent/CN109075312A/zh
Application granted granted Critical
Publication of CN109075312B publication Critical patent/CN109075312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/205Light-sensitive devices comprising a semiconductor electrode comprising AIII-BV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

描述了一种用于实现具有最大表面面积的催化活性电化学电极的方法。在该方法中,InGaN以薄层的形式外延沉积在暴露(111)晶面的硅衬底上,从而迫使InGaN电极材料生长以暴露催化活性表面。然后移除衬底,将InGaN层制成碎片,并将这些碎片转移到具有一维、二维或三维结构的导电支撑物上,该结构可以是导线、可能折叠的二维导电箔片或三维导电织物、海绵或笼状结构。由此能够获得具有增加的表面面积的基于InGaN的电极和具有高催化活性的暴露表面。

Description

用于电化学装置的铟镓氮化物电极的制造方法
发明领域
本发明涉及一种用于在电化学装置领域中使用的高效电极的制造方法。已知这些装置种类繁多,其用于驱动化学反应。
背景和先前技术
电化学装置在诸如能源、健康和环境等经济和社会最相关的领域中有着广泛的应用领域。仅举几个例子,这些装置的应用包括太阳能电池和通过水解离生成太阳氢以用于太阳能收集和储存;用于医学诊断、环境监测和食品控制的生物传感器;以及用于能量储存和供应的电池、超级电容器和燃料电池。
所有这些电化学装置及其应用都依赖于高效的电化学电极,其特征在于电极材料表面的高催化活性以及大的表面面积。许多广泛使用的电极材料(诸如金属氧化物和IV族及III-V族半导体)由于不同的表面能和化学键构型而具有带有不同催化活性的晶面的晶体结构。为了高电极效率,需要暴露对某一电极材料具有高催化活性的晶面以及这些晶面的大表面面积。
专利申请JP 2009-019233A公开了一种制造电极的方法,该方法大体上包括以下步骤:将材料高速沉积到衬底表面上,将获得的粉末形式的沉积物从衬底上分离;以及将粉末转移到导电支撑物上,例如铜箔;以生产用于电池的电极。
最大化表面面积的一种可能方式是通过利用自组装隔离/胶体纳米和微米级结构或者通过利用自组装电极表面纳米和微米级结构(诸如,纳米/微米级壁、纳米/微米级片或纳米/微米级线、棒、柱)来开发纳米结构的电极材料。然而,由于在形成过程中表面能的最小化,这种方法固有地导致低催化活性或无催化活性的表面的暴露。
在所引用的半导体中,迄今为止,铟镓氮化物(InGaN)已经允许生产具有每表面积最高效率的电极,特别是当以暴露催化活性晶体c面的层状材料和相关异质结构的形式制备时。独立地,催化活性可以通过掺杂或(助/电)催化剂耦合来提高,其中表面面积没有增加。利用具有在蓝宝石和硅衬底上的表面InN量子点(QD)的外延InGaN材料获得了最佳结果。QD是在所有三个空间方向上具有几nm大小的材料岛,能够将电荷载流子(电子和空穴)限制在极其有限的空间中;这种布置产生了新的或增强的光电性质。InN/InGaN QD及其通常在电化学反应领域的应用中已经在几篇论文中有所描述,诸如aveed ul Hassan Alvi等人在Sensors,2013,13,13917-13927上的“An InN/InGaN Quantum Dot ElectrochemicalBiosensor for Clinical Diagnosis”;以及Paul E.D.在ElectrochemistryCommunications,60(2015)158–162上的“Electrocatalytic oxidation enhancement atthe surface of InGaN films and nanostructures grown directly on Si(111)”。
Kim等人在Chemical Physics Letters,412(2005)454-458的论文“Indium-related novel architecture on GaN nanorod grown by molecular beam epitaxy”描述了GaN独立式纳米结构的生产;没有提到这些纳米结构相对于晶格轴的特定形态。
通过在硅(111)衬底上外延生长薄膜产生的结构在本领域中是已知的,例如,根据专利申请JP 2004-319250 A;这个文件描述了InGaAs、p掺杂层的生产。
由于衬底的几何/结构原因,这些材料遇到的一般问题是潜在的限制。主要是衬底抑制了其上产生QD的电极活性材料的表面面积的增加。此外,这些材料的性能虽然令人满意,但仍有待改进。因此,问题是如何实现表面面积增加的电极,暴露出电极活性材料具有高催化活性的表面。
因此,本发明的一个目的是提供一种电极,该电极具有作为活性元件的InGaN的碎片和相关异质结构,该异质结构具有增大的表面面积并暴露出具有高催化活性的表面。
发明概述
本发明实现了这个和其他目的,本发明在其第一方面中涉及一种用于制造电极的方法,包括以下步骤:
a)在暴露(111)晶面的硅衬底的表面上外延沉积薄层形式的铟镓氮化物(InGaN),使得所述表面导致InGaN生长,暴露具有高催化活性的表面;
b)从衬底上分离InGaN的沉积物;
c)使InGaN的沉积物碎裂;
d)将由此获得的InGaN的碎片转移到具有一维、二维或三维结构的导电支撑物上。
可选地,本发明的方法包括在步骤a)和b)之间进行的另一步骤a’),包括在InGaN层的表面上生产三维InN离散纳米结构,诸如量子点或量子环。
在其第二方面中,本发明涉及通过上述方法生产的电极。
附图简述
现在将参照附图在下文对本发明进行详细描述,在附图中:
-图1示出了沉积在硅衬底上的InGaN层;
-图2示出了衬底移除后的InGaN,准备沿着黑线碎裂;
-图3示出了本发明的电极的第一实施例,其中InGaN的碎片连接到导电材料的导线;
-图4示出了本发明的电极的第一实施例,其中InGaN的碎片连接到导电材料的箔片;
-图5示出了本发明的电极的第二实施例,其中InGaN的碎片连接到形成为呈现开口的结构的导电材料。
在附图中,不同部分的尺寸没有按比例绘制,特别是InGaN薄膜的厚度和其碎片的尺寸被大大放大,以清楚地表示。
发明的详细描述
本发明人发现了一种简单且方便的方式来获得一种结构,其中首先以暴露催化活性表面的形式生产InGaN的碎片和相关异质结构;然后,这些碎片被收集并以三维布置连接到电极支撑物。利用这种方法,获得了一种布置,其中所述碎片的每一个保持高度催化表面被暴露,同时与原始外延层相比增加了暴露的表面面积,从而实现了将具有提高效率的电极。
可选地,且根据本发明的优选实施例,InGaN碎片在暴露的催化活性表面上带有离散的InN纳米结构,诸如量子点或量子环。在说明书和权利要求书中,在一个表面上具有离散InN纳米结构的InGaN层或碎片被称为“InGaN相关异质结构”;此外,在本说明书的其余部分,每当提到InGaN的层和碎片时,总是希望这些层和碎片可以带有InN纳米结构以形成所述异质结构,除非明确提到相反的情况。
该过程的步骤已经被指示为a)至d)以清楚地识别它们,但是这并不意味着这些步骤必须以指示的顺序执行。从下面的描述中明显的是,特别是步骤b)和c)的顺序可以互换,或者这些可以基本上同时进行,作为单个操作的一部分。类似地,步骤c)和d)的顺序可以互换,特别是当电极导电支撑物是二维结构时。
在本发明方法的步骤a)中,InGaN以薄层的形式外延沉积在暴露(111)晶面的硅衬底上。术语“薄层”类似于“薄膜”,是本领域技术人员熟知的;为了本发明的目的,薄层是优选厚度在约5nm和5μm之间,更优选在10nm和2μm之间的层。适用于外延的沉积技术在材料科学领域是众所周知的,且另外包括金属有机气相外延、化学气相沉积的改型或分子束外延(MBE)。如在本发明中,当外延膜沉积在不同化学组成的衬底上时,该过程被称为异质外延。
参照图1,外延是这样一种技术,其中衬底12起到籽晶的作用,使得其上的膜11沿着期望的晶体取向生长。在该技术中,通过知道期望暴露的沉积材料的表面,可以选择衬底和生长条件,以确保暴露正确晶面的目标材料的生长。
在本发明中,在作为衬底的硅(111)上生长InGaN和相关异质结构;沿着(111)面切割的硅衬底在该领域中被广泛采用并且是商业上可获得的。在硅(111)上,InGaN层沿着c轴外延生长,并因此暴露出具有高催化活性的c平面。
外延也允许制造具有最佳设计的异质结构,以最大化表面活性。在本发明的优选实施例中,在InGaN层上生长InN量子点或量子环。在该系统中,发明人观察到由于带正电荷的表面施主态的高密度以及电子离开该点而留下未补偿的施主的量子排斥而导致的增强的催化活性。
在本发明方法的步骤b)中,外延膜11从衬底12上分离。这可以通过任何合适的技术来实现:例如,能够通过机械研磨或选择性干蚀刻来机械地移除衬底;可选地,能够利用这两种材料在合适溶剂中的不同溶解度以选择性方式化学蚀刻(湿法蚀刻)衬底。还能够将机械研磨和蚀刻结合起来,其中大部分的衬底首先通过机械研磨去除,而最终部分通过蚀刻去除。在随后的描述和所附权利要求中,“分离”是指实现从硅衬底物理分开InGaN的外延层(和相关异质结构)的结果的任何操作,从而允许前者的回收。
本发明方法的该步骤的结果可以是独立的膜,例如如图2中的元件21所示。然后需要步骤c)作为单独的方法步骤,其中这样获得的膜例如沿着图中示例的线23被破碎成碎片22。将膜21破碎成碎片的可能方法是机械冲击或振动,可能借助超声波搅拌。这提供了额外的设计参数,因为所得的InGaN碎片的平均尺寸将取决于超声搅拌中机械冲击或振动的强度。一旦膜21被破碎,InGaN的碎片被收集,并且可以例如通过离心分离和分开而被分成不同尺寸范围的部分,从而缩窄尺寸分布并且获得最终电极的更均匀和受控的行为。
由于非常薄的膜缺乏机械阻力,或者如果膜断开或者有裂纹或者其是多孔的,因此分离步骤本身也可能导致膜破裂成碎片。在这种情况下,实际上该方法的步骤b)和c)同时发生,或者后者在前者之后不久发生,并且是前者的直接结果。
本发明方法的最后步骤d)存在于将膜21的碎片22转移到导电支撑物上,并在于使这些碎片粘附到所述支撑物上。
支撑物可以具有任何形状。它可以基本上是一维、二维或三维的。一维支撑物是导线,其可以是直的或弯曲的。二维支撑物通常是导电材料的箔片(平面或曲面)。最后,支撑物可以具有三维形状,特别是它可以具有呈现开口的结构,诸如网、织物、海绵状或笼状结构;这些后一种结构的优点是电极作为整体的单位体积的暴露表面更高。
这些替代实施例示意性地表示在图3、图4和图5中;在图3中,导电支撑物为导线31的形式;在图4中,导电支撑物是折叠箔片41的形式;在图5中,举例说明了三维网51形式的导电支撑物;在图3、图4和图5所示的所有情况下,膜21的碎片22粘附到导电支撑物上。
更详细地,图3示出了根据本发明的第一可选可能实施例生产的一维电极(30),其中支撑物是导线31,以大体弯曲布置示出,但也可以是直的或缠绕的,InGaN的碎片22粘附在该导线上。
图4示出了根据第二可选可能实施例生产的二维电极(40),其中支撑物是导电材料的箔片(41),其可以弯曲、折叠或卷起,以生成电极活性材料碎片22的三维布置,其中每几何面积的表面积增加。
最后,图5示出了本发明的另一个实施例,其中电极活性材料的碎片(22)联结到三维导电支撑物51,获得具有三维结构的电极(50)。三维导电结构的可能实施例包括导电织物或海绵或笼状结构。这第二种情况允许获得具有最高活性的电极,因为碎片22不局限于二维箔片的表面(不管该箔片能折叠成如何的卷曲形状),而是所述碎片分布在电极的外几何表面上以及电极的内表面上,其中每几何体积/面积的表面面积增加。
支撑物可以用任何导电材料生产,特别是那些用于支撑胶体半导体或金属氧化物颗粒的材料。可用于生产二维支撑物的材料的示例是铝箔(其用于生产超级电容器的用途已知),以及导电聚合物膜和纤维(其已用于传感器应用)。在三维支撑物的情况下,有用材料的示例是导电碳纳米管包裹的纺织纤维、纯碳纳米管网络或石墨烯薄片组件,它们已经用于燃料电池和超级电容器。
InGaN的碎片转移到导电支撑物上以及结构的固结可以采用已经建立的胶体结构技术来进行。例如,在专利申请US 2006/0278534 A1中记录了促进碎片转移到导电支撑物上的示例性方法,其包括将衬底浸入含有碎片的液体介质中,并搅拌液体悬浮液或使液体悬浮液起泡。优选地,碎片和导电支撑物也是带电的,使得纳米颗粒在导电支撑物表面上的附着经由静电键合发生。为了稳定所得结构,可以使用聚合物电解质薄膜(如燃料电池领域众所周知),例如基于Nafion的薄膜(Nafion是杜邦公司的注册商标)。
因此,根据本发明的典型方法包括以下步骤:
-提供Si(111)衬底;
-在硅衬底上生长具有纳米结构顶表面的InGaN外延层;
-通过在KOH中的化学蚀刻去除硅衬底;
-例如通过超声搅拌将InGaN层破碎成小碎片;
-将碎片转移到导电电极支撑物(例如铝箔);
-通过浸渍用薄膜覆盖所得结构。
与已知的其中电极活性材料以薄层的形式存在于基底上的情况相比,本发明的电极提供的优点是碎片22呈现更大的暴露表面:对于每个碎片22,催化活性表面面积几乎加倍(背面和正面),从而导致电极活性材料的具有高催化活性的表面的大暴露面积,并最终导致电化学活性增加。
另一种可能性在于外延膜21最初转移到2D导电支撑物上。在这种情况下,通过弯曲2D导电支撑物,InGaN层将断裂。因此,在该实施例中,步骤d)在步骤c)之前进行。

Claims (17)

1.一种用于电极的制造的方法,包括以下步骤:
a)在暴露(111)晶面的硅衬底的表面(12)上外延沉积薄层(11)形式的铟镓氮化物(InGaN);
b)从所述衬底分离InGaN的沉积物(21);
c)将所述InGaN的沉积物破碎;
d)将由此获得的InGaN的碎片(32)转移到具有一维、二维或三维结构的导电支撑物(31;41;51)上。
2.根据权利要求1所述的方法,包括在步骤a)之后进行的另一步骤a’),其中InN的量子点或量子环生成到InGaN层上。
3.根据权利要求1或2中任一项所述的方法,其中,步骤b)和c)同时发生,或者步骤c)紧接在步骤b)之后并作为步骤b)的直接结果而发生。
4.根据前述权利要求中任一项所述的方法,其中,步骤a)通过金属有机气相外延或分子束外延(MBE)执行。
5.根据前述权利要求中任一项所述的方法,其中,步骤b)通过选自机械研磨、选择性干蚀刻、湿法蚀刻或其组合的技术来执行。
6.根据前述权利要求中任一项所述的方法,其中,步骤c)通过冲击、振动、超声搅拌或其组合来执行。
7.根据前述权利要求中任一项所述的方法,其中,在步骤c)之后,所获得的碎片被分成不同尺寸范围的部分,回收将在步骤d)中使用的窄尺寸分布的一个或更多个部分。
8.根据前述权利要求中任一项所述的方法,其中,步骤d)通过制备步骤c)中获得的碎片在液体介质中的悬浮液、将具有一维、二维或三维结构的所述导电支撑物浸入所述悬浮液中,并使所述悬浮液起泡或搅拌所述悬浮液来执行。
9.根据前述权利要求中任一项所述的方法,其中,步骤d)还包括执行经由静电键合将所述碎片粘附到所述导电支撑物的操作。
10.根据前述权利要求中任一项所述的方法,其中,步骤d)还包括使用聚合物电解质薄膜执行稳定所得结构的操作。
11.根据权利要求1所述的方法,其中,通过首先将步骤b)中获得的InGaN的所述沉积物(21)转移到二维导电支撑物上,随后弯曲所述二维导电支撑物导致InGaN的所述沉积物断裂,步骤d)在步骤c)之前执行。
12.一种根据前述权利要求中的任一项产生的电极(30;40;50)。
13.根据权利要求12所述的电极(30),其中,所述导电支撑物(31)具有一维结构,并且呈现InGaN的碎片(22)粘附在其上的直的、弯曲的或缠绕线的形式。
14.根据权利要求12所述的电极(40),其中,所述导电支撑物(41)具有二维结构,并且呈InGaN的碎片(22)粘附在其上的平面或弯曲箔片的形式。
15.根据权利要求14所述的电极,其中,所述导电支撑物是铝箔。
16.根据权利要求12所述的电极(50),其中,所述导电支撑物(51)具有三维结构,并且呈InGaN的碎片(22)粘附在其表面上的网、织物、海绵结构或笼状结构。
17.根据权利要求16所述的电极,其中,所述导电支撑物是碳纳米管包裹的纺织纤维、纯碳纳米管网络或石墨烯薄片组件。
CN201780015634.6A 2016-03-15 2017-03-14 用于电化学装置的铟镓氮化物电极的制造方法 Active CN109075312B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITUA2016A001691A ITUA20161691A1 (it) 2016-03-15 2016-03-15 Metodo per la produzione di elettrodi per dispositivi elettrochimici
IT102016000027125 2016-03-15
PCT/EP2017/056029 WO2017157960A1 (en) 2016-03-15 2017-03-14 Method for the fabrication of indium-gallium nitride electrodes for electrochemical devices

Publications (2)

Publication Number Publication Date
CN109075312A true CN109075312A (zh) 2018-12-21
CN109075312B CN109075312B (zh) 2022-08-05

Family

ID=56084221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780015634.6A Active CN109075312B (zh) 2016-03-15 2017-03-14 用于电化学装置的铟镓氮化物电极的制造方法

Country Status (6)

Country Link
US (1) US10644303B2 (zh)
EP (1) EP3430659B1 (zh)
CN (1) CN109075312B (zh)
ES (1) ES2784436T3 (zh)
IT (1) ITUA20161691A1 (zh)
WO (1) WO2017157960A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336028A (zh) * 2019-04-30 2019-10-15 中国科学院半导体研究所 电池负极材料及其制备方法、锂电池
CN111912886A (zh) * 2019-05-08 2020-11-10 华南师范大学 外延片及其制造方法以及电化学传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164759A (zh) * 1996-03-25 1997-11-12 住友电气工业株式会社 化合物半导体的气相外延工艺
CN1211641A (zh) * 1998-08-12 1999-03-24 北京大学 铟镓氮单晶薄膜金属有机物气相外延生长技术
JP2004319250A (ja) * 2003-04-16 2004-11-11 Nippon Telegr & Teleph Corp <Ntt> 燃料電池
US20060278534A1 (en) * 2005-06-13 2006-12-14 Hwang Ki Y Method for producing nanosilver on a large scale, method for manufacturing nanosilver-adsorbed fiber, and antibacterial fiber thereby
JP2007184252A (ja) * 2005-12-05 2007-07-19 Mitsubishi Chemicals Corp 非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及びその製造方法、非水電解質二次電池用電極集電体の製造方法、並びに非水電解質二次電池
JP2009019233A (ja) * 2007-07-11 2009-01-29 Mitsubishi Chemicals Corp 薄膜又は粉末製造方法、薄膜又は粉末製造装置、非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029289A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164759A (zh) * 1996-03-25 1997-11-12 住友电气工业株式会社 化合物半导体的气相外延工艺
CN1211641A (zh) * 1998-08-12 1999-03-24 北京大学 铟镓氮单晶薄膜金属有机物气相外延生长技术
JP2004319250A (ja) * 2003-04-16 2004-11-11 Nippon Telegr & Teleph Corp <Ntt> 燃料電池
US20060278534A1 (en) * 2005-06-13 2006-12-14 Hwang Ki Y Method for producing nanosilver on a large scale, method for manufacturing nanosilver-adsorbed fiber, and antibacterial fiber thereby
JP2007184252A (ja) * 2005-12-05 2007-07-19 Mitsubishi Chemicals Corp 非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及びその製造方法、非水電解質二次電池用電極集電体の製造方法、並びに非水電解質二次電池
JP2009019233A (ja) * 2007-07-11 2009-01-29 Mitsubishi Chemicals Corp 薄膜又は粉末製造方法、薄膜又は粉末製造装置、非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAUL E.D. SOTO RODRIGUEZ等: "Electrocatalytic oxidation enhancement at the surface of InGaN films and nanostructures grown directly on Si(111)", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
周志敏等: "《漫步LED世界 驱动电路设计篇》", 31 January 2013 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336028A (zh) * 2019-04-30 2019-10-15 中国科学院半导体研究所 电池负极材料及其制备方法、锂电池
CN110336028B (zh) * 2019-04-30 2021-03-30 中国科学院半导体研究所 电池负极材料及其制备方法、锂电池
CN111912886A (zh) * 2019-05-08 2020-11-10 华南师范大学 外延片及其制造方法以及电化学传感器
CN111912886B (zh) * 2019-05-08 2022-01-11 华南师范大学 外延片及其制造方法以及电化学传感器

Also Published As

Publication number Publication date
ITUA20161691A1 (it) 2017-09-15
US20190109319A1 (en) 2019-04-11
WO2017157960A1 (en) 2017-09-21
EP3430659A1 (en) 2019-01-23
EP3430659B1 (en) 2020-01-08
US10644303B2 (en) 2020-05-05
CN109075312B (zh) 2022-08-05
ES2784436T3 (es) 2020-09-25

Similar Documents

Publication Publication Date Title
JP5858510B1 (ja) カーボンナノチューブ複合材料構造及びその製造方法
TWI597888B (zh) 電氣裝置
Grote et al. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors
US9160197B2 (en) Apparatus for generating and storing electric energy
Liu et al. Resist-dyed textile alkaline Zn microbatteries with significantly suppressed Zn dendrite growth
TWI443896B (zh) 鋰離子電池負極及其製備方法
CN112151629B (zh) 一种微管式三维异质结器件结构及其制备方法和应用
JP2010262928A (ja) 燃料電池用膜電極複合体に用いられる触媒層、それを用いる燃料電池用膜電極複合体、燃料電池、およびその製造方法
Liu et al. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors
WO2008129524A1 (en) Method of aligning carbon nanotubes in metal nanowires and applications thereof which include a fuel cell catalyst
CN106935813A (zh) 石墨烯基柔性复合电极材料及其制备方法和应用
US20230105347A1 (en) Flexible artificial leaves for hydrogen production and methods for making
CN109075312A (zh) 用于电化学装置的铟镓氮化物电极的制造方法
JP2011063458A (ja) カーボンナノチューブ粉体、電極用導電助剤及びそれを用いた電極並びに該電極を用いた蓄電デバイス
JP2009099935A (ja) 電気二重層キャパシタ用電極及びその製造方法
JP5875095B2 (ja) 電池用負極材料、電池用負極および電池
CN109037642A (zh) 锂离子电池负极材料的制备方法
TWI700852B (zh) 電池用電極以及生化燃料電池
KR101998648B1 (ko) 슈퍼커패시터용 금속-실리사이드 나노선 기반 전극, 이 전극의 제조 방법, 이 전극을 사용한 슈퍼커패시터 및 이 슈퍼커패시터의 제조 방법
de Souza et al. Energy Materials: Fundamentals to Advanced Applications
Loh et al. Multifunctional metal oxides and 2D materials utilizing carbon nanotubes as a base template for clean energy and other applications
Sourav et al. Silicon nanowire anode for lithium ion battery
Bernard et al. Interface Analysis of Si-based Anode in Li-ion Batteries through Electrochemical Impedance Spectroscopy and equivalent electrical circuit analysis
WO2015199627A1 (en) A nano structured electrode production method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant