CN109045297A - 一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法 - Google Patents

一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法 Download PDF

Info

Publication number
CN109045297A
CN109045297A CN201810975019.6A CN201810975019A CN109045297A CN 109045297 A CN109045297 A CN 109045297A CN 201810975019 A CN201810975019 A CN 201810975019A CN 109045297 A CN109045297 A CN 109045297A
Authority
CN
China
Prior art keywords
lap
pda
pba
peg
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810975019.6A
Other languages
English (en)
Inventor
郭睿
刘梦雪
史向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810975019.6A priority Critical patent/CN109045297A/zh
Publication of CN109045297A publication Critical patent/CN109045297A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种苯硼酸‑聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法,包括:以共沉淀法合成负载四氧化三铁的锂皂石为模板材料,利用多巴胺在其表面聚合形成多巴胺聚合物膜,最后在复合颗粒表面修饰已枝接靶向分子苯硼酸的聚乙二醇PEG‑PBA,即得。本发明制备的纳米材料具备良好的胶体稳定性、优异的生物相容性、良好的体内外MR成像效果和光热治疗效果,实现肿瘤的靶向MR成像以及光热治疗,为发展一种新型的诊疗一体化纳米材料提供了良好的思路。

Description

一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化 三铁纳米颗粒的制备方法
技术领域
本发明属于MR成像与光热治疗的纳米材料领域,特别涉及一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法。
背景技术
近年来,磁性纳米材料发展非常迅速,尤其是磁性氧化铁(Fe3O4)纳米颗粒因其特殊的磁学性质及在生物医学方面的重要应用而备受关注,广泛地应用到了载药、催化、生物分离和核磁共振(MR)成像等领域。纳米尺寸的Fe3O4颗粒不仅可以作为造影剂用于肿瘤的MR成像,还可以利用其磁学特性及其在近红外区的吸收特性,实现肿瘤的光热和磁热治疗。但是由于Fe3O4纳米颗粒易于聚集难以稳定分散、对肿瘤组织缺乏特异性识别,因此通过在材料合成时加入稳定剂提高其稳定性和分散性,并且在表面修饰靶向分子使其具备特异性识别功能,将有望显著提高材料的性能、拓展其在肿瘤诊断与治疗中的应用。
锂皂石(Laponite,LAP)具有特殊的纳米盘状结构,不仅具有良好的生物相容性和药物负载性能,还能够作为稳定剂用于四氧化三铁纳米颗粒用于MR成像。LAP不仅能够提高磁性纳米颗粒的稳定性,还可以增加其弛豫率使其具有更好的MR成像效果。但是由于LAP颗粒表面难以修饰,因此材料仍然缺乏对肿瘤细胞的特异性识别功能(Ding,L.;Guo,R..;Shi,X.Y.;et a1.Biomater.Sci.,2016,4,474–482)。
多巴胺(dopamine,DA)可自聚形成复合薄层。利用该复合薄层可对材料进行包裹,形成稳定的核壳结构,增强材料的稳定性,同时可以赋予材料光热治疗的效果,并且聚多巴胺包裹后即可对膜进行进一步的表面修饰,实现膜的功能化。
苯硼酸(PBA)及其衍生物是一类非天然的人工合成的二醇类物质识别体,在水溶液中可以与具有邻二醇或间二醇结构的多羟基化合物可逆反应形成共价复合物,利用苯硼酸的特殊结构可以和癌细胞表面的唾液酸分子结合,对癌细胞进行主动靶向。因此,如果将靶向分子PBA链接到PEG末端得到PEG-PBA,然后再修饰到多巴胺表面,不仅可以利用PEG分子链的修饰提高材料的稳定性,降低毒性,延长纳米颗粒在体内的循环时间,减少材料在到达肿瘤部位之前的代谢消耗,还能够通过PBA分子与肿瘤细胞表面SA分子结合实现载体对肿瘤细胞的特异性识别与主动富集,实现肿瘤的靶向治疗。
查阅国内外相关文献或专利,PBA靶向的聚多巴胺包裹的LAP-Fe3O4纳米颗粒诊疗平台的制备方法目前未见报道。
发明内容
本发明所要解决的技术问题是提供一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法,该方法得到的纳米颗粒靶向表面富含SA的肝癌、乳腺癌细胞,实现了肿瘤的靶向MR成像以及光热治疗。
本发明提供了一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法,包括:
(1)将锂皂石悬浊液在氮气保护下加入Fe3+和Fe2+的盐酸混合物,搅拌后再加入NaOH水溶液反应,得到LAP-Fe3O4纳米颗粒;
(2)将LAP-Fe3O4纳米颗粒和无水乙醇混合后依次加入氨水和盐酸多巴胺单体DA·HCl溶液,避光反应,离心、清洗,得到LAP-Fe3O4@PDA纳米颗粒;
(3)向一端巯基、一端羧基的聚乙二醇SH-PEG-COOH溶液中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC·HCl溶液,室温下搅拌活化,然后加入N-羟基丁二酰亚胺NHS继续活化;将所得溶液滴加到PBA溶液中,室温下搅拌,透析,冷冻干燥,得到SH-PEG-PBA;
(4)将LAP-Fe3O4@PDA纳米颗粒和SH-PEG-PBA混合,加入磷酸三(2-氯乙基)酯TECP,置于氮气保护的缓冲液中反应,透析,得到LAP-Fe3O4@PDA-PEG-PBA靶向纳米颗粒,即苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒。
所述步骤(1)中的锂皂石悬浊液的浓度为10mg/mL;Fe3+和Fe2+的摩尔比为2-3:1;盐酸浓度为0.4M;NaOH水溶液浓度为1M。
所述步骤(2)中的LAP-Fe3O4纳米颗粒在无水乙醇中的浓度为6.0-8.0mg/mL。
所述步骤(2)中的LAP-Fe3O4与DA的质量比为1:2-4。
所述步骤(3)中的SH-PEG-COOH与EDC·HCl、NHS的摩尔比为1:10:10。
所述步骤(3)中的SH-PEG-COOH与PBA的摩尔比为1:1-2。
所述步骤(3)中加入NHS后的反应温度为30℃。
所述步骤(3)中的PBA溶液溶解于DMSO等有机溶剂中。
所述步骤(4)中的LAP-Fe3O4@PDA纳米颗粒和SH-PEG-PBA的质量比为1:1-3。
所述步骤(4)中的磷酸三(2-氯乙基)酯TECP的添加量为2-5mg/mL。
所述步骤(4)中的缓冲液为pH=8.5的Tris缓冲溶液。
所述步骤(4)中的反应温度为37-38℃,反应时间为24~30h。
所述步骤(3)、(4)中的透析具体为:用截留分子量为8000~14000的透析袋透析3天,第一天用PBS缓冲液透析,第二和第三天透析用蒸馏水,每次用量为2L,共换水9次。
本发明设计了锂皂石负载Fe3O4以提高其稳定性,聚多巴胺的包覆形成核壳结构在提高分散性和光热效果的同时为下一步修饰提供表面功能官能团,最后在聚多巴胺表面修饰枝接了苯硼酸靶向分子的聚乙二醇,为材料提供特异性识别功能。
本发明利用锂皂石的特殊盘状结构,用其作为稳定剂负载四氧化三铁纳米粒子,用于MR成像,为了增加四氧化三铁纳米颗粒的光热效果,采用聚多巴胺的包覆实现光热治疗的效果,然后将PBA-PEG-SH接枝在聚多巴胺表面既可以提高其生物相容性,延长血液循环时间,又使其具备对唾液酸分子靶向的功能,从而制备出一种基于苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒。
本发明使用核磁共振氢谱(1H NMR)、紫外可见吸收光谱(UV-Vis)、高分辨透射电子显微镜(TEM)、电感耦合等离子体发射光谱法(ICP-OES)、Zeta电势、水合粒径等方法表征材料的物理化学性质,然后通过Cell Counting Kit-8(CCK-8)法和荧光倒置显微镜来评价材料的细胞相容性,最后利用体内外MR成像和光热治疗对所合成的材料的诊疗一体化效果进行表征。
有益效果
(1)本发明制备方法简单,反应条件温和,成本低廉,易于操作,具有产业化实施的前景。
(2)本发明采用共沉淀法合成的磁性纳米颗粒具备良好的胶体稳定性、优异的生物相容性,不仅具有良好的体内外MR成像效果,并且能够进行光热治疗,可以作为一种新型的对正常组织伤害较小的诊疗一体化的光热治疗纳米材料。
(3)本发明的LAP-Fe3O4@PDA-PEG-PBA纳米材料中的苯硼酸分子可以与癌细胞表面富含的唾液酸分子(SA)结合达到主动靶向效果,因此对含有SA的癌细胞如肝癌和乳腺癌细胞具有靶向效果,同时具有MR成像和光热效果,是一种有潜力的诊疗一体化纳米材料。
附图说明
图1是本发明制备方法示意图;
图2a为LAP-Fe3O4@PDA-PEG-PBA、LAP-Fe3O4@PDA-mPEG和对照材料LAP-Fe3O4@PDA和LAP纳米颗粒的红外光谱图;
图2b为本发明制备的所有产物LAP、Fe3O4、LAP-Fe3O4、LAP-Fe3O4@PDA、LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA纳米颗粒的紫外吸收图谱(铁浓度为75μg/mL);
图3a为实施例1中LAP、Fe3O4和LAP-Fe3O4的X射线衍射图谱;
图3b为实施例1中LAP、LAP-Fe3O4、LAP-Fe3O4@PDA、LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA纳米颗粒的热重分析图;
图4a为LAP-Fe3O4@PDA-PEG-PBA与对照组LAP-Fe3O4@PDA-mPEG纳米颗粒在铁浓度为0.005-0.08mM的T2加权的MRI图;
图4b为T2弛豫时间倒数与铁浓度的线性关系图;
图5为实施例1中LAP-Fe3O4@PDA-PEG-PBA与对照组LAP-Fe3O4@PDA-mPEG纳米颗粒在808nm激光照射5分钟的光热成像图(a)和光热数据(b);
图6a为LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA与4T1细胞共孵育24小时后的细胞存活率;(*p<0.05,**p<0.005,***p<0.001)
图6b为PBS、LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA在激光照射前后的细胞存活率;(*p<0.05,**p<0.005,***p<0.001)
图6c为4T1细胞对不同浓度的LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA纳米颗粒的吞噬量。(*p<0.05,**p<0.005,***p<0.001);
图7为小白鼠尾静脉注射LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA纳米颗粒(Fe浓度为300μg/mL,200μL)后不同时间点,肿瘤处T2加权MR成像图片(a)和信噪比分析图(b)。(*p<0.05,**p<0.005,***p<0.001)。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将500mg的锂皂石LAP粉末分散在50mL超纯水中并剧烈搅拌过夜以获得均匀悬浮液,然后将悬浮液转入三颈圆底烧瓶,在氮气保护下,80℃磁力搅拌10min。随后将15mL(含0.089mL 37%的盐酸溶液)的FeCl3·6H2O(0.721g)和FeCl2·4H2O(0.265g)的混合溶液加入到LAP溶液中(N2保护,80℃下),搅拌10min后,将10mL的NaOH(2g)水溶液快速加到上述溶液中高速搅拌,在N2、80℃下反应2-3小时,反应结束得到黑色铁磁流体,磁分离3-5次后,得到稳定的LAP-Fe3O4纳米颗粒。
(2)将4.16mL的LAP-Fe3O4纳米颗粒用超纯水稀释至36mL,加入16mL无水乙醇进行催化,在30℃水浴锅中反应30min,再向上述溶液中加入1.2mL氨水,再将4mL配好的DA·HCl溶液滴加入上述混合液中,避光条件下反应12h,反应结束后用截留分子量为10000的超滤离心管进行提纯,离心条件是5500r/min,离心30min,用水或者乙醇清洗三次,取上层产物即得LAP-Fe3O4@PDA。
(3)向溶解在DMSO中的SH-PEG-COOH溶液中加入EDC·HCl进行活化,在室温下磁力搅拌15-30min,然后向其中加入NHS继续活化2-3h,最终得到活化好的SH-PEG-COOH,随后将上述溶液逐滴加入PBA溶液中,室温下磁力搅拌反应2-4天,反应结束后用磷酸盐缓冲溶液透析一天,用蒸馏水透析两天后冷冻干燥后即得SH-PEG-PBA。
(4)取(2)中合成好的LAP-Fe3O4@PDA纳米颗粒2mL置于N2环境中,并用10mM(pH=8.5)Tris缓冲溶液分散,向其中加入(3)中合成好的SH-PEG-PBA 20mg,最后加入10mg TECP以断开被氧化的巯基,反应保持在37.5℃,N2保护下磁力搅拌48h,反应结束后用磷酸盐缓冲溶液透析一天,用蒸馏水透析两天后即LAP-Fe3O4@PDA-PEG-PBA。
(5)取(2)中合成好的LAP-Fe3O4@PDA纳米颗粒2mL置于N2·环境中,并用10mM(pH=8.5)Tris缓冲溶液分散,向其中加入mPEG-SH 20mg。反应保持在37.5℃,N2保护下磁力搅拌48h,反应结束后用磷酸盐缓冲溶液透析一天,用蒸馏水透析两天后即LAP-Fe3O4@PDA-mPEG。
实施例2
取实施例1中(1)、(2)、(4)和(5)所得产品以及对照组LAP和Fe3O4纳米材料离心纯化后,经超纯水分散均匀后(0.5mg/mL),经紫外分光光度计测试其在300nm-1000nm间的紫外吸收,将(4)和(5)所得产品的纳米粒子溶于超纯水、PBS缓冲液、生理盐水和培养基溶液中(1mg/mL),经激光纳米粒度分析仪(DLS)测试纳米粒子的水合电势粒径,测定LAP-Fe3O4@PDA-PEG-PBA和LAP-Fe3O4@PDA-mPEG纳米材料在不同溶液中的稳定性。
修饰前后粒子的粒径以及表面电势均通过动态光散射进行测定,结果如表1所示。经锂皂石修饰后,Fe3O4的表面电势从22.7mV变到-26.2mV,这是由于Fe3O4带正电荷,修饰到LAP表面后可以屏蔽LAP表面的部分负电荷,导致了材料表面电势的变化。在表面进一步修饰了PDA之后,所得到的LAP-Fe3O4@PDA表面电势降低到-37.2±3.00mV。在修饰了PEG-PBA之后,表面电势进一步升高到-21.2±2.08mV。因此,通过修饰前后的电势变化也可以证明聚多巴胺表面已成功修饰了mPEG和PEG-PBA。另一方面,由于所修饰的mPEG和PEG-PBA具有良好的分散性能,得到的LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA的颗粒粒径分别为153.7±19.47nm和162.2±14.04nm,较LAP-Fe3O4@PDA(207.8±17.42nm)有了明显的降低,说明mPEG和PEG-PBA的成功修饰可以提高纳米颗粒的分散性和稳定性,对其在医药领域的应用具有重要意义。
表1五种材料的水合直径和表面电势
红外分析:
在图2a LAP、LAP-Fe3O4@PDA、LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA的FTIR谱图中,LAP在1007cm-1处出现Si-O-Si伸缩振动的红外特征吸收峰,其在3200-3500cm-1处的红外特征吸收峰归因于形成分子间氢键的-OH的伸缩振动。LAP-Fe3O4@PDA在1637cm-1处出现了-NH-的弯曲振动的红外特征峰,说明DA可自聚反应在LAP表面形成PDA,从而实现对LAP-Fe3O4的包裹。2883cm-1处的红外特征吸收峰来自于-CH2-的伸缩振动,对比发现PDA表面接上PEG后峰强度变强,在1343cm-1处出现了属于PBA上B-O的振动吸收峰。综合FTIR测试结果可知,靶向材料PEG-PBA成功枝接到聚多巴胺表面,且DA能够在实验给定的条件下自聚形成PDA,实现对LAP-Fe3O4的包裹,LAP-Fe3O4@PDA-PEG-PBA纳米微球已成功合成。
紫外-可见光谱测试:
图2b为LAP、Fe3O4、LAP-Fe3O4、LAP-Fe3O4@PDA、LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA的紫外-可见光谱图,由图中结果可以看出材料Fe3O4在近红外可见光区有一定的吸光度,且在聚多巴胺包裹后在近红外区的吸光度增强,因此材料具有一定的光热升温效果。
X射线衍射:
在图3a所示的结果中,通过XRD研究了在负载Fe3O4纳米颗粒之前和之后LAP的晶体结构。还将Fe3O4NP的XRD图谱作为对照。LAP-Fe3O4纳米颗粒的XRD图中,在2θ=34.9°,35.3°和43.0°处有明显衍射峰,其对应Fe3O4纳米颗粒的220、311和400晶面,与标准的Fe3O4纳米颗粒的衍射峰位点非常吻合,说明反应制得了晶型良好的四氧化三铁晶体。表明已经通过共沉淀法成功合成出LAP-Fe3O4纳米颗粒。
热重分析:
在图3b所示的热重测试结果中,分析图中从200℃到900℃重量损失可知,与LAP-Fe3O4@PDA损失了总质量的37.9%相比,LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA在升温过程中分别损失了总质量的41.85%和52.8%。这一结果证明mPEG和PEG-PBA均已成功修饰在LAP-Fe3O4@PDA表面,且mPEG和PEG-PBA分别接上了3.95%和14.9%。
实施例3
取实施例1中(4)和(5)所得产品以超纯水为溶剂,配制铁浓度为0.08M的母液,随后梯度稀释出0.04、0.02、0.01、0.005和0.0025M的样品用3T磁共振成像仪测定两种材料在各个Fe浓度下的T2弛豫时间,并依次对其进行扫描成像。我们选择在15-20g的小白鼠体内构建4T1肿瘤模型。将生长至对数期的4T1细胞收集悬浮在PBS缓冲液中(4.0×107/mL),用微量注射器注射100μL至小白鼠右后腿,2周左右,当肿瘤体积达到350mm3左右时,进行MR成像扫描。首先将2%戊巴比妥钠(40mg/kg)通过腹腔注射入荷瘤鼠体内将其麻醉,然后将其置于小动物成像线圈内进行MR扫描,作为空白对照。接着通过尾静脉注射LAP-Fe3O4@PDA-PEG-PBA和LAP-Fe3O4@PDA-mPEG纳米材料生理盐水溶液(300μg/mL,200μL)来评价体内肿瘤部位MR成像效果。用3T超导临床磁共振成像系统分别扫描注射后0、10、20、30、40、50和60分钟后的小鼠,最后通过软件测量不同时间点小鼠肿瘤部位的MRI信号值。
通过MR成像分析仪测定靶向组LAP-Fe3O4@PDA-PEG-PBA和非靶向组LAP-Fe3O4@PDA-mPEG纳米颗粒在不同Fe浓度下的T2加权MR成像。图4a显示,随着Fe浓度的增大,靶向组LAP-Fe3O4@PDA-PEG-PBA和非靶向组LAP-Fe3O4@PDA-mPEG纳米颗粒的成像图片逐渐变暗,并且靶向组LAP-Fe3O4@PDA-PEG-PBA比非靶向组LAP-Fe3O4@PDA-mPEG纳米颗粒的变暗趋势更加明显,表明所合成的材料均具有良好的成像效果。弛豫率反映纳米颗粒作为造影剂的效率,体现增强造影的能力。
分别对LAP-Fe3O4@PDA-PEG-PBA和LAP-Fe3O4@PDA-mPEG纳米颗粒的T2弛豫时间倒数与Fe浓度进行了线性拟合,图4b显示两种材料的弛豫时间倒数随着铁浓度的增加(在0.005~0.08mM浓度范围内)具有良好的线性关系。通过计算可得知靶向组LAP-Fe3O4@PDA-PEG-PBA的r2弛豫率高达266.1mM-1S-1,非靶向组LAP-Fe3O4@PDA-mPEG的r2弛豫率高达247.4mM-1S-1,与LAP-Fe3O4@PDA的r2弛豫率为299.4mM-1S-1相比均有所下降。这可能由于在聚多巴胺表面修饰PEG-PBA或者mPEG后改变了材料的亲水性,影响了材料的弛豫时间,但由结果看出r2弛豫率并未有大幅度下降,因此,所制备的靶向组LAP-Fe3O4@PDA-PEG-PBA和非靶向组LAP-Fe3O4@PDA-mPEG可以作为优良T2信号衰减造影剂。
实施例4
取实施例1中(4)和(5)所得产品LAP-Fe3O4@PDA-PEG-PBA和LAP-Fe3O4@PDA-mPEG配制成铁浓度为300μg/mL。将上述配好的梯度溶液取300μL用808nm,1.2W/cm2近红外激光照射5min(以超纯水作为空白对照),用动态的光热成像仪采集图像,并采集温度随时间变化的曲线,测定材料的光热升温能力;相同的取上述所得产品LAP-Fe3O4@PDA-PEG-PBA和LAP-Fe3O4@PDA-mPEG分别用无菌PBS缓冲液配制成铁浓度为1500μg/mL的母液,之后梯度稀释为500、750、1000、1250和1500μg/mL的材料。取培养好的4T1细胞种于96孔板中,按照0.8万细胞/孔的密度接种,每孔体积100μL。培养过夜后,加入上述各稀释梯度的材料,与细胞共培养12h。每个梯度培养液稀释10倍,即每孔终浓度分别为50、75、100、125和150μg/mL。每个梯度做5个平行孔,以PBS缓冲液和PBS缓冲液+激光作为空白对照。培养结束后用PBS缓冲液清洗3次,之后将4T1细胞分成两组(一组试验在808nm激光下照射5min,另一组试验不进行激光照射),接着,用生理盐水清洗2次,每孔加100μL无血清培养基和10μL CCK8溶液,37℃孵化3h,用酶标仪检测450nm处吸光度值。
近红外吸收的性质赋予了LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA纳米颗粒优异的光热转换性能。相同铁浓度(300μg/mL)的LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA溶液用808nm激光(功率1.2W/cm2)照射300s。由图5a可知,随着激光照射时间的增加,LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA溶液的温度越升越高,激光照射部位越来越亮。由图5b可知,LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA溶液的温度能达到63℃和69℃。相反,水的温度只增加了不到3℃。结果表明:LAP-Fe3O4@PDA-mPEG和LAP-Fe3O4@PDA-PEG-PBA均具有很好的光热升温效果,可以用于光热治疗。
实施例5
取实施例1中(4)所得产品用无菌PBS缓冲液配置成成铁浓度为1500μg/mL的母液。另以同样方案准备不含靶向分子PBA的对照材料实施例1中(5)所得LAP-Fe3O4@PDA-mPEG的样品溶液。取培养好的4T1细胞种于96孔板中,按照1万细胞/孔的密度接种,每孔体积100μL。培养过夜后,加入上述各稀释梯度的样品,与细胞共培养24小时。每个梯度用培养液稀释10倍,即每孔铁终浓度分别为50、75、100、125、150μg/mL。每个梯度做5个平行孔,以PBS缓冲液作为空白对照。随后用CCK-8法检测细胞活力,每孔加CCK-8溶液,37℃孵化2-4小时。之后用酶标仪检测450nm处吸光度。
对非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒进行细胞相容性的评价,通过进行CCK-8检测分析。图6a结果显示用非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒处理铁浓度50-150μg/mL的4T1(小鼠乳腺癌细胞)细胞,相比之下没有任何显著的差异,对照组用的是生理盐水处理,细胞活力较高,即使非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒的铁浓度为150μg/mL,细胞活力也能达到94%。这个就能证明非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒在研究的浓度范围内具有良好的细胞相容性。为了探索非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒被4T1细胞吞噬的情况,将细胞与纳米颗粒共同培养4小时,共培养结束后将细胞用胰酶消化下来用王水硝化,再用0.22μm的滤膜进行过滤,并通过ICP-OES测量溶液中铁含量。图6b的结果显示,靶向材料和非靶向材料在808nm的激光照射五分钟后,细胞活力明显下降,且随着材料中铁浓度的增加激光杀死细胞的效果越好,在铁浓度为150μg/mL时靶向材料的细胞活力下降至25%,非靶向材料的细胞活力下降至35%,与未激光照射的相应组别对比,有显著性差异。图6c的结果显示样品中的铁含量随着所加材料的浓度增加而增加,表明非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒能够被细胞吞噬,且靶向材料与非靶向材料相比具有显著性差异。
实施例6
取实施例1中(4)和(5)所得产品不同浓度的LAP-Fe3O4@PDA-PEG-PBA和LAP-Fe3O4@PDA-mPEG纳米材料(铁浓度分别为50、75、100、125、150μg/mL)与4T1细胞共培养6小时,以PBS缓冲液为对照。结束培养后,倒掉培养基,用PBS缓冲液清洗3次,加入1mL 2.5%的戊二醛,在4℃冰箱中固定15分钟。之后,用PBS再洗3次,加入1mL配好的普鲁士蓝染液(A1:A2=1:1),37℃静置避光染色30分钟,PBS缓冲液洗3次,加入0.5mL核固红染液复染30秒,最后用PBS缓冲液洗3遍,在相差显微镜下(200×)观察细胞吞噬情况。同样的取实施例1中(4)和(5)所得产品用无菌PBS缓冲液配制成浓度为150μg/mL的母液。取培养好的4T1细胞种于12孔板中,按照20万细胞/孔的密度接种,每孔体积为1mL。培养过夜后,加入上述各稀释梯度的材料,与细胞共培养4小时,培养结束后用PBS清洗3次,再胰酶消化离心后收集细胞,加入2mL王水消化24小时,然后通过ICP-OES检测细胞中Fe元素的吞噬量。
通过尾静脉注射非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒来评价肿瘤部位的MR成像效果(图7a)。与注射前相比较,在注射非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA的PBS缓冲液(Fe:300μg/mL,100μL)后1小时内,裸鼠肿瘤部位明显变暗,展示出非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒均具有明显的肿瘤和器官MR成像诊断效果。图7b是相应注射后时间点的肿瘤MR成像信号值变化,在注射后1小时内,注射非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒的裸鼠肿瘤的MR成像信号值明显降低很多,且在注射后40min时信号最低,这与图7a的结果一致。这些结果说明本实施例制备的非靶向组LAP-Fe3O4@PDA-mPEG和靶向组LAP-Fe3O4@PDA-PEG-PBA纳米颗粒具有很好的MR成像能力,通过靶向组与非靶向组的结果对比发现靶向组具有很好的肿瘤主动靶向能力,能成功应用于体内靶向肿瘤MR成像诊断。

Claims (9)

1.一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法,包括:
(1)将锂皂石悬浊液在氮气保护下加入Fe3+和Fe2+的盐酸混合物,搅拌后再加入NaOH水溶液反应,得到LAP-Fe3O4纳米颗粒;
(2)将LAP-Fe3O4纳米颗粒和无水乙醇混合后依次加入氨水和盐酸多巴胺单体DA·HCl溶液,避光反应,离心、清洗,得到LAP-Fe3O4@PDA纳米颗粒;
(3)向一端巯基、一端羧基的聚乙二醇SH-PEG-COOH溶液中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC·HCl溶液,室温下搅拌活化,然后加入N-羟基丁二酰亚胺NHS继续活化;将所得溶液滴加到PBA溶液中,室温下搅拌,透析,冷冻干燥,得到SH-PEG-PBA;
(4)将LAP-Fe3O4@PDA纳米颗粒和SH-PEG-PBA混合,加入磷酸三(2-氯乙基)酯TECP,置于氮气保护的缓冲液中反应,透析,得到LAP-Fe3O4@PDA-PEG-PBA靶向纳米颗粒,即苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒。
2.根据权利要求1所述的方法,其特征在于:所述步骤(1)中的锂皂石悬浊液的浓度为10mg/mL;Fe3+和Fe2+的摩尔比为2-3:1;盐酸浓度为0.4M;NaOH水溶液浓度为1M。
3.根据权利要求1所述的方法,其特征在于:所述步骤(2)中的LAP-Fe3O4纳米颗粒在无水乙醇中的浓度为6.0-8.0mg/mL。
4.根据权利要求1所述的方法,其特征在于:所述步骤(2)中的LAP-Fe3O4与DA的质量比为1:2-4。
5.根据权利要求1所述的方法,其特征在于:所述步骤(3)中的SH-PEG-COOH与PBA的摩尔比为1:1-2。
6.根据权利要求1所述的方法,其特征在于:所述步骤(4)中的LAP-Fe3O4@PDA纳米颗粒和SH-PEG-PBA的质量比为1:1-3。
7.根据权利要求1所述的方法,其特征在于:所述步骤(4)中的磷酸三(2-氯乙基)酯TECP的添加量为2-5mg/mL。
8.根据权利要求1所述的方法,其特征在于:所述步骤(4)中的缓冲液为pH=8.5的Tris缓冲溶液。
9.根据权利要求1所述的方法,其特征在于:所述步骤(4)中的反应温度为37-38℃,反应时间为24~30h。
CN201810975019.6A 2018-08-24 2018-08-24 一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法 Pending CN109045297A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810975019.6A CN109045297A (zh) 2018-08-24 2018-08-24 一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810975019.6A CN109045297A (zh) 2018-08-24 2018-08-24 一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN109045297A true CN109045297A (zh) 2018-12-21

Family

ID=64756570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810975019.6A Pending CN109045297A (zh) 2018-08-24 2018-08-24 一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN109045297A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111821469A (zh) * 2020-07-01 2020-10-27 四川大学 归巢靶向rsgrvsn肽修饰的聚乙二醇-聚多巴胺-普鲁士蓝复合纳米粒子及制备方法
CN112206325A (zh) * 2020-09-21 2021-01-12 温州医科大学附属眼视光医院 一种长眼表滞留人工泪液及其制备方法
CN112345112A (zh) * 2020-10-21 2021-02-09 厦门大学 一种温度敏感纳米探针的制备方法
CN112494666A (zh) * 2020-12-08 2021-03-16 南方科技大学 一种t1-t2双激活磁共振成像造影剂及其制备方法和应用
CN112755185A (zh) * 2020-12-03 2021-05-07 东华大学 一种聚多巴胺包裹的载药二硫化钼纳米片及其制备和应用
CN113274495A (zh) * 2021-04-16 2021-08-20 西北工业大学 一种光致释放一氧化氮抗生物被膜的纳米药物及制备使用方法
CN113667721A (zh) * 2021-07-29 2021-11-19 南昌大学 一种高灵敏即时检测miRNA的分析方法
CN115227828A (zh) * 2022-06-23 2022-10-25 中国药科大学 一种基于四氧化三铁的磁靶向蛋白递送纳米组装体的制备方法及应用
WO2024169525A1 (zh) * 2023-02-17 2024-08-22 成都纽瑞特医疗科技股份有限公司 含硼药物及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104208703A (zh) * 2014-08-29 2014-12-17 东华大学 一种聚乙二醇-乳糖酸修饰的氨基化锂皂石纳米颗粒及其制备和应用
CN104922701A (zh) * 2015-04-09 2015-09-23 东华大学 一种锂皂石负载磁性四氧化三铁纳米颗粒的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104208703A (zh) * 2014-08-29 2014-12-17 东华大学 一种聚乙二醇-乳糖酸修饰的氨基化锂皂石纳米颗粒及其制备和应用
CN104922701A (zh) * 2015-04-09 2015-09-23 东华大学 一种锂皂石负载磁性四氧化三铁纳米颗粒的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FANLI XU ET AL: ""Loading of Indocyanine Green within Polydopamine-Coated Laponite Nanodisks for Targeted Cancer Photothermal and Photodynamic Therapy"", 《NANOMATERIALS》 *
LEI ZHANG ET AL: ""Enzyme and Redox Dual-Triggered Intracellular Release from Actively Targeted Polymeric Micelles"", 《ACS APPL. MATER. INTERFACES》 *
LING DING ET AL: ""LAPONITEreg-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors"", 《BIOMATER. SCI》 *
MENGXUE LIU ET AL: ""A polydopamine-coated LAPONITEs-stabilized iron oxide nanoplatform for targeted multimodal imaging-guided photothermal cancer therapy"", 《J. MATER. CHEM. B》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111821469A (zh) * 2020-07-01 2020-10-27 四川大学 归巢靶向rsgrvsn肽修饰的聚乙二醇-聚多巴胺-普鲁士蓝复合纳米粒子及制备方法
CN112206325B (zh) * 2020-09-21 2022-11-18 温州医科大学附属眼视光医院 一种长眼表滞留人工泪液及其制备方法
CN112206325A (zh) * 2020-09-21 2021-01-12 温州医科大学附属眼视光医院 一种长眼表滞留人工泪液及其制备方法
CN112345112A (zh) * 2020-10-21 2021-02-09 厦门大学 一种温度敏感纳米探针的制备方法
CN112755185A (zh) * 2020-12-03 2021-05-07 东华大学 一种聚多巴胺包裹的载药二硫化钼纳米片及其制备和应用
CN112494666A (zh) * 2020-12-08 2021-03-16 南方科技大学 一种t1-t2双激活磁共振成像造影剂及其制备方法和应用
CN113274495B (zh) * 2021-04-16 2022-09-27 西北工业大学 一种光致释放一氧化氮抗生物被膜的纳米药物及制备使用方法
CN113274495A (zh) * 2021-04-16 2021-08-20 西北工业大学 一种光致释放一氧化氮抗生物被膜的纳米药物及制备使用方法
CN113667721A (zh) * 2021-07-29 2021-11-19 南昌大学 一种高灵敏即时检测miRNA的分析方法
CN113667721B (zh) * 2021-07-29 2024-02-09 南昌大学 一种高灵敏即时检测miRNA的分析方法
CN115227828A (zh) * 2022-06-23 2022-10-25 中国药科大学 一种基于四氧化三铁的磁靶向蛋白递送纳米组装体的制备方法及应用
CN115227828B (zh) * 2022-06-23 2024-02-27 中国药科大学 一种基于四氧化三铁的磁靶向蛋白递送纳米组装体的制备方法及应用
WO2024169525A1 (zh) * 2023-02-17 2024-08-22 成都纽瑞特医疗科技股份有限公司 含硼药物及其制备方法

Similar Documents

Publication Publication Date Title
CN109045297A (zh) 一种苯硼酸-聚乙二醇修饰的聚多巴胺包裹的锂皂石四氧化三铁纳米颗粒的制备方法
US10987435B2 (en) Ultrafine nanoparticles comprising a functionalized polyorganosiloxane matrix and including metal complexes; method for obtaining same and uses thereof in medical imaging and/or therapy
CN104826139B (zh) 一种rgd多肽靶向的超小四氧化三铁mri阳性纳米探针的制备方法
Li et al. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells
Hu et al. Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors
CN103143041B (zh) 基于叶酸修饰的四氧化三铁纳米颗粒的靶向mri造影剂的制备方法
CN103143043B (zh) 一种Fe3O4/Au复合纳米颗粒的制备方法
US8741615B2 (en) Magnetic nanoparticle with biocompatibility
CN104548142B (zh) 一种透明质酸修饰的超顺磁性氧化铁/金复合纳米探针的制备方法
Peng et al. Engineering of single magnetic particle carrier for living brain cell imaging: a tunable T1-/T2-/dual-modal contrast agent for magnetic resonance imaging application
Lee et al. Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging
CN104162174A (zh) 一种金包覆氧化铁星形核壳结构纳米颗粒的制备及其成像和热疗的应用
CN104758955A (zh) 一种拥有多重刺激药物释放以及mri造影能力的超分子胶囊的制备方法
CN104274842B (zh) 一种聚乙烯亚胺介导的多功能四氧化三锰纳米颗粒核磁共振造影剂的制备方法
CN111358964A (zh) 磁性八面体铂掺杂金纳米壳、其制备方法和应用
CN105999283A (zh) 一种负载阿霉素的聚乙烯亚胺-透明质酸修饰的锂皂石包裹金纳米颗粒的制备方法
CN110013559A (zh) 一种ha靶向的双金属氢氧化物-超小铁纳米材料及其制备和应用
CN103495185A (zh) 功能化聚乙烯亚胺修饰的多壁碳纳米管磁共振成像造影剂的制备
CN106421823A (zh) 一种两性离子修饰的超小氧化铁颗粒的制备方法
Yin et al. Fluorescent oligo (p-phenyleneethynylene) contained amphiphiles-encapsulated magnetic nanoparticles for targeted magnetic resonance and two-photon optical imaging in vitro and in vivo
CN109078196A (zh) 一种骨髓间充质干细胞介导的纳米水凝胶及其制备和应用
CN113082206B (zh) 一种大分子一氧化氮供体修饰的上转换纳米粒子、制备方法和应用
CN106729772B (zh) 一种基于磁性葡聚糖水凝胶微球的磁共振造影剂及制备方法
Du et al. Folic acid functionalized gadolinium-doped carbon dots as fluorescence/magnetic resonance imaging contrast agent for targeted imaging of liver cancer
CN101474414B (zh) 高分子包裹磁性纳米粒子造影剂的制备及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181221

RJ01 Rejection of invention patent application after publication