CN109023361B - 梯度涂层刀具及其制备方法 - Google Patents
梯度涂层刀具及其制备方法 Download PDFInfo
- Publication number
- CN109023361B CN109023361B CN201810706494.3A CN201810706494A CN109023361B CN 109023361 B CN109023361 B CN 109023361B CN 201810706494 A CN201810706494 A CN 201810706494A CN 109023361 B CN109023361 B CN 109023361B
- Authority
- CN
- China
- Prior art keywords
- hard alloy
- coating
- metal ceramic
- layer
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/324—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
- C23C24/103—Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/325—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/347—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
本发明公开一种梯度涂层刀具及其制备方法。该刀具基体材料为高速钢,基体表面具有梯度涂层,所述涂层从基体到表面依次为硬质合金层、金属陶瓷层和TiAlSiZrN层。该梯度涂层中硬质合金层和金属陶瓷层均采用电子束熔覆方法制备,TiAlSiZrN层采用多弧离子镀和中频磁控溅射方法制备。制备步骤包括:(1)熔覆硬质合金层;(2)熔覆金属陶瓷层;(3)沉积TiAlSiZrN涂层。本发明的刀具材料力学性能呈梯度变化,涂层硬度由内到外依次增加,可有效缓解残余热应力。刀具整体具有良好的韧性,表面涂层具有较高的硬度和耐磨性能;同时,涂层与基体间具有较强的结合强度。该梯度涂层刀具可广泛应用于干切削和难加工材料的切削加工。
Description
技术领域
本发明涉及机械切削刀具制造技术领域,尤其涉及一种梯度涂层刀具及其制备方法。
背景技术
由于切削液费用较高,且造成环境污染,干切削加工已成为绿色加工的一个研究热点。但高速干切削时,前刀面上刀-屑之间的摩擦异常剧烈,产生了大量的热,导致了刀具的磨损加剧,寿命降低。因此迫切需要研究开发高硬度、高耐磨性能的新型刀具,从而提高刀具寿命。目前国内外广泛使用的切削刀具材料主要有高速钢、硬质合金、陶瓷及金刚石刀具等。其中高速钢导热性能差、硬度低、耐磨性能差,不适合难加工材料的切削加工;硬质合金及陶瓷刀具等由于材料本身的脆性较大,制造过程中容易出现刃口断裂,进而导致刀具的寿命降低;而金刚石刀具的制造成本较高。目前,对刀具进行涂层处理是提高刀具性能的重要途径,但由于涂层较薄,界面结合强度较低使其寿命受限。
中国专利“申请号:201110214393.2”报道了一种梯度叠层涂层刀具及其制备方法,本发明的涂层采用电弧镀镀膜方法制备,涂层刀具兼顾ZrN和ZrTiN薄膜的优点,具有高硬度、高强度及良好耐磨性等特点;但通过该方法制备涂层厚度受到限制,且涂层与基体间结合强度较低。中国专利“申请号:200910014460.9”报道了一种氮化硅基纳米复合梯度功能陶瓷刀具材料及其制备方法,该陶瓷刀具材料具有五层对称梯度层次结构,使刀具材料的力学性能呈梯度变化;但陶瓷刀具本身存在脆性较大的缺点,刀具整体韧性不足。中国专利“申请号98122105.X”报道了一种陶瓷-硬质合金复合刀片,本发明以硬质合金为基体材料,通过热压烧结工艺在硬质合金层表面制备出陶瓷层,该方法制备的复合刀片韧性有待于进一步提高。
发明内容
发明目的:本发明的目的在于克服上述现有技术的不足,提供一种梯度涂层刀具及其制备方法。该刀具既具有良好的韧性,又具有较高的硬度和耐磨性能;刀具材料力学性能呈梯度变化,可有效缓解残余热应力。同时,涂层与基体间具有较强的结合强度。
技术方案:本发明的梯度涂层刀具,刀具基体材料为高速钢,刀具前刀面具有梯度涂层,所述涂层从基体到表面依次为硬质合金层、金属陶瓷层和TiAlSiZrN层。
该梯度涂层刀具的制备方法,其特征在于该梯度涂层中硬质合金层和金属陶瓷层均采用电子束熔覆方法制备,TiAlSiZrN层采用多弧离子镀和中频磁控溅射方法制备。
上述的梯度涂层刀具的制备方法,包括以下步骤:
(1)熔覆硬质合金层;
(2)熔覆金属陶瓷层;
(3)沉积TiAlSiZrN涂层,得到所述梯度涂层刀具。
上述的梯度涂层刀具的制备方法,其具体制备步骤如下:
(1)熔覆硬质合金层
(1-1)前处理:将刀具基体表面研磨后依次放在酒精和丙酮溶液中超声清洗各20-30min,进行去油污处理。
(1-2)预置硬质合金层:配置硬质合金混合粉料,各成分重量百分比为:65-75%WC、8-20%TiC、5-10%Co、2-3%TaC、2-3%NbC和1-3%ZrO2,0.1-1%Ni。将聚乙烯醇加入混合粉料中配置成稠状并预置于刀具基体前刀面,采用压强为1-3MPa冷等静压的方法保持5-10分钟,将配置的稠状混合粉体压实,其厚度为200-600μm,得到预置硬质合金层。
(1-3)熔覆硬质合金层:将步骤(1-2)中得到的预置硬质合金层试样放在电子束加工设备中,抽真空至真空度为6×10-3Pa;启动电子束,调整电子束加工参数为:电子束电压为5-10kV,电子束流为1.2-3A,束斑直径为1-5mm,速度为2-20mm/s,搭接率Φ=30-60%;采用电子束对预置硬质合金层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为50-500μm,得到硬质合金层。
(2)熔覆金属陶瓷层
(2-1)预置金属陶瓷层:配置金属陶瓷混合粉料,各成分重量百分比为:40-70%TiCN,6-15%WC,6-12%Ni,3-15%TiB2,3-12%B4C,3-8%ZrO2,2-6%Mo,1-6%Co,1-6%Ta。将聚乙烯醇加入混合粉料中配置成稠状并预置于步骤(1-3)中得到硬质合金层表面,采用压强为1-3MPa冷等静压的方法保持5-10分钟,将配置的稠状混合粉体压实,其厚度为200-600μm,得到预置金属陶瓷层。
(2-2)熔覆金属陶瓷层:将步骤(2-1)中得到的预置金属陶瓷层试样放在电子束加工设备中,抽真空至真空度为6×10-3Pa;启动电子束,调整电子束加工参数为:电子束电压为5-10kV,电子束流为1.2-3A,束斑直径为1-5mm,速度为2-20mm/s,搭接率Φ=30-60%;采用电子束对预置金属陶瓷层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为50-500μm;得到金属陶瓷层。
(3)沉积TiAlSiZrN层
(3-1)前处理:将步骤(2-2)中得到的刀具,依次放入酒精和丙酮中超声清洗各20-30min,去除表面油渍等污染物;采用真空干燥箱充分干燥后迅速放入镀膜机真空室,真空室本底真空为7.0×10-3Pa,加热至200-240℃,保温时间30-40min。
(3-2)离子清洗:通入Ar2,其压力为0.6-1.5Pa,开启偏压电源,电压800-900V,占空比0.2,辉光放电清洗10-30min;偏压降低至300-500V,开启离子源离子清洗10-30min,开启电弧源Ti靶,偏压500-700V,靶电流50-80A,离子轰击Ti靶1-2min。
(3-3)沉积TiAlSiZrN涂层:调整工作气压为0.5-0.7Pa,偏压降低至80-200V,Ti靶电流80-120A;开启N2,调整N2流量为150-250sccm;开启中频Si靶,电流调至20-40A;开启中频Zr靶,电流调至20-30A;开启电弧靶Al靶,电流调制60-90A,电弧镀+中频磁控溅射沉积TiAlSiZrN涂层50-70min,TiAlSiZrN涂层厚度为2-4μm,得到TiAlSiZrN涂层。
(3-4)后处理:关闭Ti靶、Al靶、Zr靶和Si靶,关闭偏压电源、离子源及气体源,保温30-60min,涂层结束;得到所述硬质合金+金属陶瓷+TiAlSiZrN梯度涂层刀具,其涂层总厚度为102-1004μm。
有益效果:1、本发明的刀具基体材料为高速钢,刀具表面涂层依次为硬质合金-金属陶瓷-TiAlSiZrN涂层,刀具材料力学性能呈梯度变化,涂层硬度由内到外依次增加,可有效缓解残余热应力;2、该刀具整体具有良好的韧性,又具有较高的硬度和耐磨性能;3、该刀具表面硬质合金和金属陶瓷涂层的制备方法中采用了电子束熔覆法,制备效率高,制备过程避免氧化,涂层与基体间具有较强的结合强度;同时,涂层可以达到很大的厚度;4、外层的TiAlSiZrN涂层采用多弧离子镀和中频磁控溅射方法制备,该涂层具有很高的强度和耐磨性能,能够显著提高刀具寿命;5、该刀具可广泛应用于干切削和难加工材料的切削加工,具有广阔的应用前景。
附图说明
图1为该发明的梯度涂层刀具结构示意图,其中:1为刀具基体材料,2为硬质合金层,3为金属陶瓷层,4为TiAlSiZrN层。
具体实施方式
实施例1
一种梯度涂层刀具及其制备方法,刀具基体1材料为高速钢,刀具前刀面具有梯度涂层,所述梯度涂层从基体到表面依次为硬质合金层2、金属陶瓷层3和TiAlSiZrN层4。
本发明的梯度涂层刀具中硬质合金层和金属陶瓷层均采用电子束熔覆方法制备,TiAlSiZrN层采用多弧离子镀和中频磁控溅射方法制备。其具体制备步骤为:
(1-1)前处理:将刀具基体表面研磨后依次放在酒精和丙酮溶液中超声清洗各20min,进行去油污处理。
(1-2)预置硬质合金层:配置硬质合金混合粉料,各成分重量百分比为:65%WC,20%TiC,5%Co,3%TaC,3%NbC,3%ZrO2,1%Ni。将聚乙烯醇加入混合粉料中配置成稠状并预置于刀具基体前刀面,采用压强为2MPa冷等静压的方法保持5分钟,将配置的稠状混合粉体压实,其厚度为200μm,得到预置硬质合金层。
(1-3)熔覆硬质合金层:将步骤(1-2)中得到的预置硬质合金层试样放在电子束加工设备中,抽真空至真空度为6×10-3Pa;启动电子束,调整电子束加工参数为:电子束电压为6kV,电子束流为1.5A,束斑直径为2mm,速度为5mm/s,搭接率Φ=30%;采用电子束对预置硬质合金层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为50μm,得到硬质合金层。
(2)熔覆金属陶瓷层
(2-1)预置金属陶瓷层:配置金属陶瓷混合粉料,各成分重量百分比为:50%TiCN,10%WC,8%Ni,10%TiB2,10%B4C,5%ZrO2,2%Mo,3%Co,2%Ta。将聚乙烯醇加入混合粉料中配置成稠状并预置于步骤(1-3)中得到硬质合金层表面,采用压强为2MPa冷等静压的方法保持5分钟,将配置的稠状混合粉体压实,其厚度为200μm,得到预置金属陶瓷层。
(2-2)熔覆金属陶瓷层:将步骤(2-1)中得到的预置金属陶瓷层试样放在电子束加工设备中,抽真空至真空度为6×10-3Pa;启动电子束,调整电子束加工参数为:电子束电压为6kV,电子束流为1.5A,束斑直径为2mm,速度为5mm/s,搭接率Φ=30%;采用电子束对预置金属陶瓷层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为50μm;得到金属陶瓷层。
(3)沉积TiAlSiZrN层
(3-1)前处理:将步骤(2-2)中得到的刀具,依次放入酒精和丙酮中超声清洗各20min,去除表面油渍等污染物;采用真空干燥箱充分干燥后迅速放入镀膜机真空室,真空室本底真空为7.0×10-3Pa,加热至200℃,保温时间300min。
(3-2)离子清洗:通入Ar2,其压力为0.8Pa,开启偏压电源,电压820V,占空比0.2,辉光放电清洗15min;偏压降低至300V,开启离子源离子清洗10min,开启电弧源Ti靶,偏压500V,靶电流60A,离子轰击Ti靶2min。
(3-3)沉积TiAlSiZrN涂层:调整工作气压为0.5Pa,偏压降低至120V,Ti靶电流80A;开启N2,调整N2流量为150sccm;开启中频Si靶,电流调至30A;开启中频Zr靶,电流调至20A;开启电弧靶Al靶,电流调制60A,电弧镀+中频磁控溅射沉积TiAlSiZrN涂层50min,TiAlSiZrN涂层厚度为2μm,得到TiAlSiZrN涂层。
(3-4)后处理:关闭Ti靶、Al靶、Zr靶和Si靶,关闭偏压电源、离子源及气体源,保温50min,涂层结束;得到所述硬质合金+金属陶瓷+TiAlSiZrN梯度涂层刀具,其涂层总厚度为102μm。
实施例2
一种梯度涂层刀具及其制备方法,刀具基体1材料为高速钢,刀具前刀面具有梯度涂层,所述梯度涂层从基体到表面依次为硬质合金层2、金属陶瓷层3和TiAlSiZrN层4。
本发明的梯度涂层刀具中硬质合金层和金属陶瓷层均采用电子束熔覆方法制备,TiAlSiZrN层采用多弧离子镀和中频磁控溅射方法制备。其具体制备步骤为:
(1-1)前处理:将刀具基体表面研磨后依次放在酒精和丙酮溶液中超声清洗各30min,进行去油污处理。
(1-2)预置硬质合金层:配置硬质合金混合粉料,各成分重量百分比为:75%WC,10%TiC,8%Co,2%TaC,2%NbC,2.5%ZrO2,0.5%Ni。将聚乙烯醇加入混合粉料中配置成稠状并预置于刀具基体前刀面,采用压强为3MPa冷等静压的方法保持10分钟,将配置的稠状混合粉体压实,其厚度为500μm,得到预置硬质合金层。
(1-3)熔覆硬质合金层:将步骤(1-2)中得到的预置硬质合金层试样放在电子束加工设备中,抽真空至真空度为6×10-3Pa;启动电子束,调整电子束加工参数为:电子束电压为8kV,电子束流为2A,束斑直径为4mm,速度为15mm/s,搭接率Φ=50%;采用电子束对预置硬质合金层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为400μm,得到硬质合金层。
(2)熔覆金属陶瓷层
(2-1)预置金属陶瓷层:配置金属陶瓷混合粉料,各成分重量百分比为:70%TiCN,6%WC,6%Ni,3%TiB2,5%B4C,3%ZrO2,3%Mo,1%Co,3%Ta。将聚乙烯醇加入混合粉料中配置成稠状并预置于步骤(1-3)中得到硬质合金层表面,采用压强为3MPa冷等静压的方法保持5分钟,将配置的稠状混合粉体压实,其厚度为500μm,得到预置金属陶瓷层。
(2-2)熔覆金属陶瓷层:将步骤(2-1)中得到的预置金属陶瓷层试样放在电子束加工设备中,抽真空至真空度为6×10-3Pa;启动电子束,调整电子束加工参数为:电子束电压为8kV,电子束流为2A,束斑直径为4mm,速度为15mm/s,搭接率Φ=50%;采用电子束对预置金属陶瓷层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为400μm;得到金属陶瓷层。
(3)沉积TiAlSiZrN层
(3-1)前处理:将步骤(2-2)中得到的刀具,依次放入酒精和丙酮中超声清洗各30min,去除表面油渍等污染物;采用真空干燥箱充分干燥后迅速放入镀膜机真空室,真空室本底真空为7.0×10-3Pa,加热至240℃,保温时间40min。
(3-2)离子清洗:通入Ar2,其压力为1.2Pa,开启偏压电源,电压900V,占空比0.2,辉光放电清洗30min;偏压降低至450V,开启离子源离子清洗30min,开启电弧源Ti靶,偏压600V,靶电流80A,离子轰击Ti靶1min。
(3-3)沉积TiAlSiZrN涂层:调整工作气压为0.7Pa,偏压降低至150V,Ti靶电流100A;开启N2,调整N2流量为200sccm;开启中频Si靶,电流调至40A;开启中频Zr靶,电流调至30A;开启电弧靶Al靶,电流调制80A,电弧镀+中频磁控溅射沉积TiAlSiZrN涂层60min,TiAlSiZrN涂层厚度为3μm。
(3-4)后处理:关闭Ti靶、Al靶、Zr靶和Si靶,关闭偏压电源、离子源及气体源,保温60min,涂层结束;得到所述硬质合金+金属陶瓷+TiAlSiZrN梯度涂层刀具,其涂层总厚度为803μm。
Claims (2)
1.一种梯度涂层刀具,刀具基体材料为高速钢,其特征在于:刀具前刀面具有梯度涂层,所述梯度涂层从基体到表面依次为硬质合金层、金属陶瓷层和TiAlSiZrN层;
其中,所述硬质合金层采用电子束熔覆方法制备,包括预置硬质合金层:配置硬质合金粉料,各成分重量百分比为:65-75% WC、8-20% TiC、5-10% Co、2-3% TaC、2-3% NbC、1-3%ZrO2和0.1-1% Ni;
所述金属陶瓷层采用电子束熔覆方法制备,包括预置金属陶瓷层:配置金属陶瓷混合粉料,各成分重量百分比为:40-70% TiCN,6-15% WC,6-12% Ni,3-15% TiB2,3-12% B4C,3-8% ZrO2,2-6% Mo,1-6% Co和1-6% Ta。
2.如权利要求1所述的梯度涂层刀具的制备方法,其特征在于:该梯度涂层中硬质合金层和金属陶瓷层均采用电子束熔覆方法制备,TiAlSiZrN层采用多弧离子镀和中频磁控溅射方法制备,具体制备步骤如下:
(1)熔覆硬质合金层
(1-1)前处理:将刀具基体表面研磨后依次放在酒精和丙酮溶液中超声清洗各20-30min,进行去油污处理;
(1-2)预置硬质合金层:配置硬质合金混合粉料,将聚乙烯醇加入混合粉料中配置成稠状并预置于刀具基体前刀面,采用压强为1-3 MPa冷等静压的方法保持5-10分钟,将配置的稠状混合粉体压实,其厚度为200-600 μm,得到预置硬质合金层;
(1-3)熔覆硬质合金层:将步骤(1-2)中得到的预置硬质合金层试样放在电子束加工设备中,抽真空至真空度为6×10-3 Pa;启动电子束,调整电子束加工参数为:电子束电压为5-10 kV,电子束流为1.2-3 A,束斑直径为1-5 mm,速度为2-20 mm/s,搭接率Φ=30-60%;采用电子束对预置硬质合金层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为50-500 μm,得到硬质合金层;
(2)熔覆金属陶瓷层
(2-1)预置金属陶瓷层:配置金属陶瓷混合粉料,将聚乙烯醇加入混合粉料中配置成稠状并预置于步骤(1-3)中得到硬质合金层表面,采用压强为1-3 MPa冷等静压的方法保持5-10分钟,将配置的稠状混合粉体压实,其厚度为200-600 μm,得到预置金属陶瓷层;
(2-2)熔覆金属陶瓷层:将步骤(2-1)中得到的预置金属陶瓷层试样放在电子束加工设备中,抽真空至真空度为6×10-3 Pa;启动电子束,调整电子束加工参数为:电子束电压为5-10 kV,电子束流为1.2-3 A,束斑直径为1-5 mm,速度为2-20 mm/s,搭接率Φ=30-60%;采用电子束对预置金属陶瓷层进行熔覆,熔覆完成后对其表面进行修整,使其厚度为50-500 μm,得到金属陶瓷层;
(3)沉积TiAlSiZrN层
(3-1)前处理:将步骤(2-2)中得到的刀具,依次放入酒精和丙酮中超声清洗各20-30min,去除表面油渍污染物;采用真空干燥箱充分干燥后迅速放入镀膜机真空室,真空室本底真空为7.0×10-3 Pa,加热至200-240℃,保温时间30-40 min;
(3-2)离子清洗:通入Ar2,其压力为0.6-1.5 Pa,开启偏压电源,电压800-900 V,占空比0.2,辉光放电清洗10-30 min;偏压降低至300-500 V,开启离子源离子清洗10-30 min,开启电弧源Ti靶,偏压500-700 V,靶电流50-80 A,离子轰击Ti靶1-2 min;
(3-3)沉积TiAlSiZrN涂层:调整工作气压为0.5-0.7 Pa,偏压降低至80-200 V,Ti 靶电流80-120 A;开启N2,调整N2流量为150-250 sccm;开启中频Si靶,电流调至20-40 A;开启中频Zr靶,电流调至20-30 A;开启电弧靶Al靶,电流调制60-90 A,电弧镀+中频磁控溅射沉积TiAlSiZrN涂层50-70 min,TiAlSiZrN涂层厚度为2-4 μm,得到TiAlSiZrN涂层;
(3-4)后处理:关闭Ti靶、Al靶、Zr靶和Si靶,关闭偏压电源、离子源及气体源,保温30-60 min,涂层结束;得到所述硬质合金+金属陶瓷+TiAlSiZrN梯度涂层刀具,其涂层总厚度为102-1004 μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810706494.3A CN109023361B (zh) | 2018-07-02 | 2018-07-02 | 梯度涂层刀具及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810706494.3A CN109023361B (zh) | 2018-07-02 | 2018-07-02 | 梯度涂层刀具及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109023361A CN109023361A (zh) | 2018-12-18 |
CN109023361B true CN109023361B (zh) | 2021-05-11 |
Family
ID=65521196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810706494.3A Active CN109023361B (zh) | 2018-07-02 | 2018-07-02 | 梯度涂层刀具及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109023361B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201908423D0 (en) * | 2019-06-12 | 2019-07-24 | C4 Carbides Ltd | Carbide material for cutting devices and associated method of manufacture |
CN110241347B (zh) * | 2019-06-13 | 2021-01-05 | 东南大学 | 一种超硬自润滑涂层刀具及其制备方法 |
CN111139426A (zh) * | 2020-02-20 | 2020-05-12 | 辽宁科技大学 | 一种超高强冷轧钢板切割刀具涂镀层及方法 |
CN111498387A (zh) * | 2020-04-21 | 2020-08-07 | 济南大学 | 一种刮板输送机中部槽耐磨、耐腐蚀的梯度涂层 |
CN113843424A (zh) * | 2021-09-09 | 2021-12-28 | 哈尔滨理工大学 | 一种多层涂层保护型切削刀具及其生产方法 |
CN115572974B (zh) * | 2022-10-17 | 2024-07-02 | 中国船舶集团有限公司第七一一研究所 | 复合涂层及其制备方法 |
CN116140661A (zh) * | 2023-01-28 | 2023-05-23 | 湘潭大学 | 一种残余应力增韧金属陶瓷刀具及其加工系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103737092A (zh) * | 2013-11-13 | 2014-04-23 | 厦门金鹭特种合金有限公司 | 一种pcb用pvd涂层微型铣刀及其制备方法 |
CN104060230B (zh) * | 2014-04-25 | 2017-06-06 | 湛江师范学院 | 一种TiZrAlSiON纳米复合超硬涂层刀具及其制备方法 |
CN108165988B (zh) * | 2018-01-26 | 2019-08-20 | 东南大学 | 梯度涂层刀具及其制备方法 |
-
2018
- 2018-07-02 CN CN201810706494.3A patent/CN109023361B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN109023361A (zh) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109023361B (zh) | 梯度涂层刀具及其制备方法 | |
CN110158044B (zh) | 一种多元复合梯度涂层刀具及其制备方法 | |
CN101698362B (zh) | 一种自润滑硬质纳米复合多层涂层及其制备方法 | |
CN107523790B (zh) | 一种AlCrSiCuN纳米多层涂层及其制备方法 | |
CN107829068B (zh) | Mo-Se-Ta+TiAlTaN软硬复合涂层刀具及其制备方法 | |
CN110129741B (zh) | 一种多元纳米叠层涂层刀具及其制备方法 | |
CN109023243B (zh) | 一种超强韧、低摩擦碳基刀具涂层及其制备方法 | |
CN103009697B (zh) | 一种自润滑梯度复合超硬膜及其制备方法 | |
CN106868450A (zh) | 一种利用调制高功率脉冲磁控溅射制备AlTiN硬质涂层的方法 | |
CN107177827B (zh) | SiNbC/SiNbCN叠层复合涂层刀具及其制备工艺 | |
CN111778485B (zh) | 一种涂层及其制备方法 | |
CN106893975B (zh) | AlC/AlCN叠层涂层刀具及其制备工艺 | |
CN110565063B (zh) | 一种锆钽硼涂层及其制备方法和应用 | |
CN110158046B (zh) | 复合涂层、自润滑复合涂层刀具及其制备方法 | |
CN112689688B (zh) | 一种钛合金和高温合金加工用的涂层刀具及其制备方法 | |
CN108018524A (zh) | 一种低应力wb2多层硬质涂层的制备方法 | |
CN108531869B (zh) | 一种制备超硬Cr-Al-N涂层的镀膜处理方法 | |
CN106835036A (zh) | 一种调制高功率脉冲磁控溅射制备AlCrN涂层的方法 | |
CN113667930B (zh) | AlCrSiBNiN纳米复合涂层及其制备方法和应用 | |
CN113913746A (zh) | 涂层及其制备方法和器具 | |
CN113913747A (zh) | 涂层及其制备方法和器具 | |
CN110938803A (zh) | 一种制备Ti-Mo-N润滑涂层的镀膜处理方法 | |
CN112695281A (zh) | 具有织构与自适应润滑涂层的切削刀具及其制备方法 | |
CN107740052B (zh) | 一种TiSiTaN涂层刀具及其制备方法 | |
CN113201719A (zh) | 一种利用调制高功率脉冲磁控溅射制得的AlCrBN硬质涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |