CN109022785A - 一种从铜电解液除铋的方法 - Google Patents

一种从铜电解液除铋的方法 Download PDF

Info

Publication number
CN109022785A
CN109022785A CN201811179648.4A CN201811179648A CN109022785A CN 109022785 A CN109022785 A CN 109022785A CN 201811179648 A CN201811179648 A CN 201811179648A CN 109022785 A CN109022785 A CN 109022785A
Authority
CN
China
Prior art keywords
bismuth
antimony
slag
chloride solution
except
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811179648.4A
Other languages
English (en)
Other versions
CN109022785B (zh
Inventor
曹才放
吴艳新
徐志峰
王拥军
杨亮
张喆秋
刘素红
夏胜文
赵体茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Henan Yuguang Gold and Lead Co Ltd
Original Assignee
Jiangxi University of Science and Technology
Henan Yuguang Gold and Lead Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology, Henan Yuguang Gold and Lead Co Ltd filed Critical Jiangxi University of Science and Technology
Priority to CN201811179648.4A priority Critical patent/CN109022785B/zh
Publication of CN109022785A publication Critical patent/CN109022785A/zh
Application granted granted Critical
Publication of CN109022785B publication Critical patent/CN109022785B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种从铜电解液除去铋的方法,具体步骤为将含锑化合物或锑渣与过氧化氢溶液搅拌混合进行活化处理操作,得到活性除铋剂,再将活性除铋剂与含铋铜电解液搅拌混合进行净化除铋操作,选择性脱除铜电解液中的铋,得到净化后液和锑铋渣。锑铋渣与酸性氯盐溶液搅拌混合进行氯盐脱铋操作,使锑铋渣中的铋选择性浸出,经固液分离后得到含铋酸性氯盐溶液和锑渣;对含铋酸性氯盐溶液进行中和沉铋后返回氯盐脱铋工序。本发明所述的方法可使铜电解液中铋的脱除率最高达95%以上,除铋后电解液铜、镍则几乎无损失,锑残留量未显著升高。铋以氯氧化铋的形态富集并排出电解系统,锑渣经过氧化氢活化处理后循环使用过程中仍然具有较好的除铋效果。

Description

一种从铜电解液除铋的方法
技术领域
本发明涉及一种溶液净化除杂方法,特别是一种从铜电解液除铋的方法。
背景技术
铋是铜矿物常见伴生元素。由于铋电位与铜相近,在阴极易与铜同时放电析出,还易与砷锑形成漂浮阳极泥粘附在阴极上,使其成为对电铜质量危害最大的杂质元素。目前,虽然有溶剂萃取法、离子交换法、自净化等除铋技术的研究,但铜冶炼企业仍然广泛采用电积法使砷、锑、铋与铜以黑铜的形式共析出。电积法虽可将砷、锑、铋开路出电解系统,但黑铜含铜达60%以上,造成了电解体系铜的损失。铋在电积过程中优先于砷和锑放电析出,对电铜质量的危害性尤为突出。当电解液铋含量达到0.6 g/L,电积过程铜浓度低于9 g/L时,铋放电析出明显,使后期所得电铜质量不达标。因此,针对高铋铜电解液开发快速高效的除铋技术,可增加电积脱铜过程合格铜的产率,提高经济效益。
发明内容
本发明的目的是提供一种从铜电解液除去铋的方法。该方法具有除杂速度快、能耗低、基本无铜镍损失等优点。
本发明的技术方案:一种从铜电解液除去铋的方法,包括以下步骤。
(1)将含锑化合物或步骤(3)所得锑渣与过氧化氢溶液搅拌混合进行活化处理操作,活化处理所得浆液即为活性除铋剂,用于铜电解液的净化。
所述的含锑化合物优选为五价含锑化合物,可以是锑酸钠、五氧化二锑、焦锑酸钾、锑酸中的一种或几种。所述的过氧化氢用量为含锑化合物中锑摩尔量的3~6倍。所述的活化处理操作的反应温度为50~95 ℃,反应时间为10~50 分钟。由于在步骤(3)氯盐脱铋阶段,三价锑将与三价铋同时浸出至溶液,造成锑渣的损失。若采用三价含锑化合物作为原料,在增加过氧化氢用量和延长活化处理时间的前提下,也可按上述活化处理操作制取活性除铋剂。
(2)将步骤(1)得到的活性除铋剂与含铋铜电解液搅拌混合进行净化除铋操作,选择性脱除铜电解液中的铋,经固液分离后得到净化后液和锑铋渣。
活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的5~10倍,所述的净化除铋操作的反应温度为60~100 ℃,反应时间为0.5~2 小时。
(3)将步骤(2)得到的锑铋渣与酸性氯盐溶液搅拌混合进行氯盐脱铋操作,使锑铋渣中的铋选择性浸出,经固液分离后得到含铋酸性氯盐溶液和锑渣。
所述的酸性氯盐溶液中氯化钠浓度为50~220 g/L,采用盐酸调节pH值为0.5~1.0之间。所述的氯盐脱铋操作的反应温度为60~90 ℃,反应时间为1~3小时。
(4)当步骤(3)所得含铋酸性氯盐溶液中铋浓度低于20 g/L,返回氯盐脱铋工序重复使用,使其中铋含量增加;当含铋酸性氯盐溶液中铋浓度累积达到20 g/L及以上时,可进行中和沉铋操作,即采用氢氧化钠、碳酸钠或碳酸氢钠将溶液pH值调节至3~5之间,使部分铋以氯氧化铋的形态沉淀,过滤得到的脱铋酸性氯盐溶液补加盐酸调节pH值至0.5~1.0之间可返回氯盐脱铋工序重复使用。
本发明的优点是:利用过氧化氢对锑的配位作用,使含锑化合物及锑渣转化为絮状水合氧化锑,以此浆液作为铜电解液的活性除铋剂,对于含铋0.5~2g/L的铜电解液,具有高效除杂能力,铋的脱除率最高可达95%以上,除铋后电解液铜、镍则几乎无损失,锑残留量未显著升高。铋以氯氧化铋的形态富集并排出电解系统,锑渣经过氧化氢活化处理后循环使用过程中仍然具有较好的除铋效果。
附图说明
图1为本发明所述的一种从铜电解液除铋的方法的工艺流程图。
具体实施方式
实施例1。
将五氧化二锑与过氧化氢溶液混合,过氧化氢用量为锑摩尔量的6倍。在搅拌条件下,于80 ℃下反应50 分钟,得到活性除铋剂浆液。取铋浓度为0.92 g/L的铜电解液4 L,搅拌加热至100 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的7倍,维持100 ℃搅拌反应2 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.15g/L。将锑铋渣与200 mL酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为0.5,氯化钠浓度为150 g/L,氯盐脱铋操作反应温度控制在80 ℃,反应时间为2 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
将上一周期获得的锑渣与过氧化氢溶液混合,过氧化氢用量为锑摩尔量的6倍。在搅拌条件下,于80 ℃下反应50 分钟,得到活性除铋剂浆液。取铋浓度为0.92 g/L的铜电解液4 L,搅拌加热至100 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的7 倍,维持100 ℃搅拌反应2 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.11 g/L。将锑铋渣与上一周期获得的含铋酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为0.5,氯盐脱铋操作反应温度控制在80 ℃,反应时间为2 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
通过两个周期的循环除铋,含铋酸性氯盐溶液铋含量超过20 g/L,可通过中和沉铋操作,将部分铋脱除,即采用氢氧化钠将氯盐溶液pH值调节至4.9左右,使部分铋以氯氧化铋的形态沉淀,溶液铋含量降低至0.63 g/L,过滤得到的脱铋酸性氯盐溶液再补加盐酸调节pH值至0.5~1.0之间可返回氯盐脱铋工序重复使用。酸碱中和产物氯化钠对氯盐脱铋过程有利。
实施例2。
将锑酸与过氧化氢溶液混合,过氧化氢用量为锑摩尔量的5倍。在搅拌条件下,于95 ℃下反应10 分钟,得到活性除铋剂浆液。取铋浓度为0.83 g/L的铜电解液4 L,搅拌加热至85 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的10 倍,维持85 ℃搅拌反应0.5 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.09g/L。将锑铋渣与200 mL酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为1.0,氯化钠浓度为218 g/L,氯盐脱铋操作反应温度控制在90 ℃,反应时间为1 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
将上一周期获得的锑渣与过氧化氢溶液混合,过氧化氢用量为锑摩尔量的4倍。在搅拌条件下,于70 ℃下反应30 分钟,得到活性除铋剂浆液。取铋浓度为0.83 g/L的铜电解液4 L,搅拌加热至80 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的10 倍,维持80 ℃搅拌反应1.5 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.11 g/L。将锑铋渣与上一周期获得的含铋酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为0.7,氯盐脱铋操作反应温度控制在60 ℃,反应时间为3 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
通过两个周期的循环除铋,含铋酸性氯盐溶液铋含量超过20 g/L,可通过中和沉铋操作,将一部分铋脱除,即采用碳酸钠将氯盐溶液pH值调节至3.1,使部分铋以氯氧化铋的形态沉淀,溶液铋含量降低至0.91 g/L,过滤得到的脱铋酸性氯盐溶液再补加盐酸调节pH值至0.8。
将上一周期获得的锑渣与过氧化氢溶液混合,过氧化氢用量为锑摩尔量的4倍。在搅拌条件下,于70 ℃下反应30 分钟,得到活性除铋剂浆液。取铋浓度为0.83 g/L的铜电解液4 L,搅拌加热至80 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的10 倍,维持80 ℃搅拌反应1.5 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.09 g/L。将锑铋渣与上一周期获得的含铋酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为0.8,氯盐脱铋操作反应温度控制在60 ℃,反应时间为3 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
实施例3。
将过氧化氢溶液加入至锑酸钠和焦锑酸钾的混合物中,过氧化氢用量为锑摩尔量的3倍。在搅拌条件下,于50 ℃下反应30 分钟,得到活性除铋剂浆液。取铋浓度为1.17 g/L的铜电解液4 L,搅拌加热至60 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的5 倍,维持60 ℃搅拌反应2 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.26 g/L。将锑铋渣与200 mL酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为0.5,氯化钠浓度为52 g/L,氯盐脱铋操作反应温度控制在60 ℃,反应时间为3 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
将焦锑酸钾和上一周期获得的锑渣与过氧化氢溶液混合,过氧化氢用量为锑总摩尔量的4倍。在搅拌条件下,于65 ℃下反应45 分钟,得到活性除铋剂浆液。取铋浓度为1.17g/L的铜电解液4 L,搅拌加热至90 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的10倍,维持90 ℃搅拌反应2 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.05 g/L。
实施例4。
由于在氯盐脱铋阶段,三价锑将与三价铋同时浸出至溶液,造成锑渣的损失。因此若采用三价含锑化合物为原料,必须将三价锑彻底氧化为五价锑,因此,需要加大过氧化氢用量。以氯氧化锑为原料,按过氧化氢用量为锑摩尔量的12倍,将氯氧化锑与过氧化氢溶液混合,在95℃下搅拌反应120 分钟,得到活性除铋剂浆液。取铋浓度为1.96 g/L的铜电解液4 L,搅拌加热至85 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的8 倍,维持85 ℃搅拌反应2 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.27 g/L。将锑铋渣与200 mL酸性氯盐溶液搅拌混合进行氯盐脱铋操作,酸性氯盐溶液pH值为0.6,氯化钠浓度为105 g/L,氯盐脱铋操作反应温度控制在90 ℃,反应时间为3 小时。过滤后得到含铋酸性氯盐溶液和锑渣。
将上一周期获得的锑渣与过氧化氢溶液混合,过氧化氢用量为锑总摩尔量的6倍。在搅拌条件下,于50 ℃下反应45 分钟,得到活性除铋剂浆液。取铋浓度为1.96 g/L的铜电解液4 L,搅拌加热至90 ℃,并加入活性除铋剂,活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的8倍,维持90 ℃搅拌反应2 小时。过滤得到锑铋渣和净化后液,净化后液铋含量降低至0.09 g/L。

Claims (10)

1.一种从铜电解液除去铋的方法,其特征在于,包括以下步骤:
(1)将含锑化合物或步骤(3)所得锑渣与过氧化氢溶液搅拌混合进行活化处理操作,活化处理所得浆液即为活性除铋剂;
(2)将步骤(1)得到的活性除铋剂与含铋铜电解液搅拌混合进行净化除铋操作,选择性脱除铜电解液中的铋,经固液分离后得到净化后液和锑铋渣;
(3)将步骤(2)得到的锑铋渣与酸性氯盐溶液搅拌混合进行氯盐脱铋操作,使锑铋渣中的铋选择性浸出,经固液分离后得到含铋酸性氯盐溶液和锑渣;
(4)当步骤(3)所得含铋酸性氯盐溶液中铋浓度低于20 g/L,返回氯盐脱铋工序重复使用,使其中铋含量增加;当含铋酸性氯盐溶液中铋浓度达到20 g/L及以上时,进行中和沉铋操作,过滤得到的脱铋酸性氯盐溶液再返回氯盐脱铋工序重复使用。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中的含锑化合物为五价锑化合物。
3.根据权利要求1所述的方法,其特征在于,所述步骤(1)中的含锑化合物为锑酸钠、五氧化二锑、焦锑酸钾、锑酸中的一种或几种。
4.根据权利要求1所述的方法,其特征在于,所述步骤(1)中过氧化氢用量为含锑化合物中锑摩尔量的3~6倍。
5.根据权利要求1所述的方法,其特征在于,所述步骤(1)中活化处理操作的反应温度为50~95 ℃,反应时间为10~50 分钟。
6.根据权利要求1所述的方法,其特征在于,所述步骤(2)中活性除铋剂中锑的摩尔量是铜电解液中铋摩尔量的5~10倍。
7.根据权利要求1所述的方法,其特征在于,所述步骤(2)中净化除铋操作的反应温度为60~100 ℃,反应时间为0.5~2 小时。
8.根据权利要求1所述的方法,其特征在于,所述步骤(3)中的酸性氯盐溶液中氯化钠浓度为50~220 g/L,采用盐酸调节pH值为0.5~1.0。
9.根据权利要求1所述的方法,其特征在于,所述步骤(3)中的氯盐脱铋操作的反应温度为60~90 ℃,反应时间为1~3小时。
10.根据权利要求1所述的方法,其特征在于,所述步骤(4)中的中和沉铋操作为采用氢氧化钠、碳酸钠或碳酸氢钠将溶液pH值调节至3~5,使部分铋以氯氧化铋的形态沉淀,过滤得到的脱铋酸性氯盐溶液补加盐酸调节pH值至0.5~1.0可返回氯盐脱铋工序重复使用。
CN201811179648.4A 2018-10-10 2018-10-10 一种从铜电解液除铋的方法 Expired - Fee Related CN109022785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811179648.4A CN109022785B (zh) 2018-10-10 2018-10-10 一种从铜电解液除铋的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811179648.4A CN109022785B (zh) 2018-10-10 2018-10-10 一种从铜电解液除铋的方法

Publications (2)

Publication Number Publication Date
CN109022785A true CN109022785A (zh) 2018-12-18
CN109022785B CN109022785B (zh) 2020-05-01

Family

ID=64616487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811179648.4A Expired - Fee Related CN109022785B (zh) 2018-10-10 2018-10-10 一种从铜电解液除铋的方法

Country Status (1)

Country Link
CN (1) CN109022785B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164785A (zh) * 2017-05-24 2017-09-15 江西理工大学 一种铜电解液沉淀脱杂及沉淀剂氯化再生的方法
CN107400904A (zh) * 2017-08-10 2017-11-28 阳谷祥光铜业有限公司 铜电解液脱杂剂的制备方法与铜电解液脱杂的方法
CN107419301A (zh) * 2017-08-17 2017-12-01 阳谷祥光铜业有限公司 一种络合沉淀剂的制备方法与一种铜电解液的净化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164785A (zh) * 2017-05-24 2017-09-15 江西理工大学 一种铜电解液沉淀脱杂及沉淀剂氯化再生的方法
CN107400904A (zh) * 2017-08-10 2017-11-28 阳谷祥光铜业有限公司 铜电解液脱杂剂的制备方法与铜电解液脱杂的方法
CN107419301A (zh) * 2017-08-17 2017-12-01 阳谷祥光铜业有限公司 一种络合沉淀剂的制备方法与一种铜电解液的净化方法

Also Published As

Publication number Publication date
CN109022785B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN1252293C (zh) 利用氯化物处理从复合硫化物精矿中制备氧化锌
JP4216307B2 (ja) 電解沈殿銅の処理方法
KR100979309B1 (ko) 스코로다이트의 제조 방법 및 스코로다이트 합성 후 액의리사이클 방법
CN110669932B (zh) 一种铜电解液净化资源综合利用的方法
CN108624759B (zh) 一种从白烟尘中综合回收有价金属的方法
CN104046785A (zh) 一种废旧铜铁基金刚石刀头的处理方法
CN106381399B (zh) 一种从高碲渣料中回收碲的方法
CN107002171A (zh) 锂离子电池废料的浸出方法、及来自于锂离子电池废料的金属的回收方法
JP5370777B2 (ja) 銅硫化物からの銅の回収方法
JPH11269570A (ja) インジウム含有物からインジウムを回収する方法
RO126480B1 (ro) Procedeu de obţinere a aurului şi argintului
JPH05255772A (ja) 電気的製鋼において発生する煙塵からの亜鉛・鉛の回収方法および精製金属の炉への再循環方法およびこの方法を実施するための装置
EP3172348A1 (en) Recovery of zinc and manganese from pyrometallurgy sludge or residues
CN113354164B (zh) 酸性湿法炼锑溶液的综合处理方法
CN110172583B (zh) 一种减量化高效处理含砷烟灰的方法
CN109971962B (zh) 一种铜冶炼铅滤饼中铜、汞、硒、铅和金银的处理工艺
JP4079018B2 (ja) コバルト水溶液の精製方法
KR102460255B1 (ko) 염화코발트 수용액의 정제 방법
CN106757147B (zh) 一种镍电解混酸体系中除砷的方法
JP5062111B2 (ja) 脱銅スライムからの高純度亜砒酸水溶液の製造方法
JP5200588B2 (ja) 高純度銀の製造方法
JP2008274382A (ja) 塩化コバルト水溶液から鉛の分離方法
CN107779606A (zh) 一种湿法处理高氟氯含锌铜烟灰的方法
CN109312423A (zh) 铋的提纯方法
CN109022785A (zh) 一种从铜电解液除铋的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200501

Termination date: 20201010

CF01 Termination of patent right due to non-payment of annual fee