CN109019964A - 一种基于环保的纳米陶瓷材料 - Google Patents

一种基于环保的纳米陶瓷材料 Download PDF

Info

Publication number
CN109019964A
CN109019964A CN201810938197.1A CN201810938197A CN109019964A CN 109019964 A CN109019964 A CN 109019964A CN 201810938197 A CN201810938197 A CN 201810938197A CN 109019964 A CN109019964 A CN 109019964A
Authority
CN
China
Prior art keywords
photocatalysis
pond
ceramic material
environmental protection
nano ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810938197.1A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shengshi Yao Lan (shenzhen) Technology Co Ltd
Original Assignee
Shengshi Yao Lan (shenzhen) Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengshi Yao Lan (shenzhen) Technology Co Ltd filed Critical Shengshi Yao Lan (shenzhen) Technology Co Ltd
Priority to CN201810938197.1A priority Critical patent/CN109019964A/zh
Publication of CN109019964A publication Critical patent/CN109019964A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种基于环保的纳米陶瓷材料,各原料的重量百分比为:硅藻土30‑50%、纳米贝壳粉10‑15%、复合光催化剂5‑10%、表面活性剂1‑3%、分散剂0.5‑2%、去离子水20‑35%;所述的纳米陶瓷材料应用于节能环保污水处理装置中,所述的节能环保污水处理装置包括沉污池、供氧池和光催化池,光催化池包括过滤镜、三菱镜和光催化体系,所述的光催化体系包括第一光催化机构、第二光催化机构和光源,第一光催化机构和第二光催化机构均由连接杆和光催化网组成,所述的光催化网由多孔基纳米陶瓷材料制成,复合光催化剂Zr‑BiVO4负载到活化的硅藻土和纳米贝壳粉上,增加了光催化剂的催化面积,大大提高了复合光催化剂Zr‑BiVO4的对污水中有机物的降解速率。

Description

一种基于环保的纳米陶瓷材料
技术领域
本发明属于污水处理技术领域,具体是一种基于环保的纳米陶瓷材料。
背景技术
水污染是现社会面临的严峻问题之一,水处理技术粗略分为两类:生物处理技术和物化处理技术。其中生物处理技术是废水净化的主要工艺。随着工业的不断发展,环境污染日益严重,人们对环境的要求不断提高,传统水处理工艺中的物理方法、生物方法往往不能得到满意的结果。
光催化氧化技术是近20年才出现的水处理新技术。光催化氧化法在环境保护上的应用已引起世界各国高度重视,我国在这方面也加强了投资力度。近几年来,光催化氧化法处理COD以成本低、无二次污染的突出优点,已得到人们的普遍认可。光催化氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子-空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基,生成强氧化性的羟基自由基将污染物氧化。
在污水处理过程中,由于污水中存在大量的颗粒状和絮状污泥,在光催化氧化过程中污泥易结块或沉淀于灯管上,从而导致光线遮挡,降低了光催化效果,不利于污水处理效率。
现有常用的光催化剂为TiO2,TiO2光催化剂存在自身的局限性,带隙能较大,为3.2eV,只有当波长小于387.5nm的紫外光照射到其表面时,其电子才能被激发,而太阳光中紫外部分低于5%,且对室内可见光利用率更低。另外,经过激发TiO2产生的光生电子和空穴很容易发生复合,导致激发的氧化活性较高的羟基自由基减少,这在一定程度上也限制了TiO2在光催化领域的应用。
发明内容
本发明的目的在于提供一种基于环保的纳米陶瓷材料,该纳米陶瓷材料应用于节能环保污水处理装置中,催化效果好,提高了污水的处理效率。
本发明需要解决的技术问题为:
(1)、如何提供一种具有高催化活性的纳米陶瓷材料;
(2)、污水处理装置中的沉淀池污泥易积累不便清楚,沉淀池中的过滤网易堵塞;
(3)、如何提高污水处理效率。
本发明的目的可以通过以下技术方案实现:
一种基于环保的纳米陶瓷材料,各原料的重量百分比为:硅藻土30-50%、纳米贝壳粉10-15%、复合光催化剂5-10%、表面活性剂1-3%、分散剂0.5-2%、去离子水20-35%;
所述的复合光催化剂为为Zr-BiVO4光催化剂,Zr-BiVO4光催化剂的制备方法为:
(1)将硝酸铋溶解在55-60%浓硝酸中,边搅拌边加水稀释至5-7mol/L,搅拌均匀后得到硝酸铋酸溶液;
(2)将偏钒酸钾溶解在5-7mol/L氢氧化钾溶液中,搅拌均匀后得到偏钒酸钾溶液;
(3)边搅拌硝酸铋酸溶液将偏钒酸钾溶液滴入其中,滴加完毕后,搅拌15-20min;
(4)将硝酸锆加入到步骤(3)的混合溶液中,搅拌溶解完全,加入稀硝酸或者稀氢氧化钾溶液调节溶液pH为中性,继续搅拌20-30min;
(5)将步骤(4)的混合溶液转移到有聚四氟乙烯内衬的不锈钢水热釜中密封反应,反应结束后,取出反应釜,冷却至室温,除去上层清液,离心,洗涤、干燥后得到了Zr-BiVO4光催化剂粉末,Zr-BiVO4光催化剂粉末的粒径为10-100nm。
进一步,所述的硝酸铋、偏钒酸钾和硝酸锆的摩尔比为1:1.1-1.3:0.01-0.015。
进一步,步骤(5)所述的密封反应条件为在160-165℃下反应5-7h。
进一步,所述的表面活性剂为脂肪醇聚氧乙烯醚硫酸铵;
所述的分散剂为硬脂酸锌。
进一步,该纳米陶瓷材料的制备方法为:
S1、硅藻土的活化:将硅藻土加入到球磨机中研磨粉碎,采用10%的硝酸浸泡2-5h,过滤,洗涤至中性,烘干,接着放入马弗炉进行梯度煅烧,具体的煅烧步骤为:(a)在300℃下进行煅烧1-1.5h;(b)以10-15℃/min的升温速率升温到700℃,并在该温度下保温煅烧40-60min;(c)以6-8℃/min的升温速率升温到1000℃,并在该温度下保温煅烧20-30min,煅烧结束后,自然冷却至室温,研磨过筛即得到了活化的硅藻土,活化硅藻土的粒径为7-80nm;
S2、贝壳粉的制备:将贝壳用清水洗净,干燥后放入球磨机粉碎至0.1-0.6mm的贝壳粗微粉;将贝壳粗微粉采用10%的硝酸浸泡2-5h,过滤,洗涤至中性,烘干,接着放入马弗炉进行梯度煅烧,具体的煅烧步骤为:(a)在300℃下进行煅烧1-1.5h;(b)以10-15℃/min的升温速率升温到700℃,并在该温度下保温煅烧40-60min;(c)以5-7℃/min的升温速率升温到1000℃,并在该温度下保温煅烧20-30min,煅烧结束后,自然冷却至室温;将煅烧后的贝壳粉进行研磨粉碎,即得到了活化的纳米贝壳粉,活化的纳米贝壳粉的粒径为8-75nm;
S3、纳米陶瓷材料的制备:将复合光催化剂和去离子水加入到球磨机中混合均匀,加入步骤S1制备的活化的硅藻土和S2制备的纳米贝壳粉,机械混合2-3.5h,使得复合光催化剂充分吸附到硅藻土的层格间,加入表面活性剂和分散剂,充分混合均匀,蒸发除去水,放入马弗炉中在400-550℃下进行煅烧3-5h,研磨后即得到了复合光催化剂固定负载的多孔基纳米陶瓷材料,多孔基纳米陶瓷材料的粒径为11-120nm。
进一步,所述的纳米陶瓷材料应用于节能环保污水处理装置中,所述的节能环保污水处理装置包括沉污池、供氧池和光催化池,由下到上沉污池、供氧池和光催化池依次连接;
所述的沉污池的内部连接有过滤网,沉污池的外部连接有进水机构和排污机构,所述的进水机构包括供水泵和供水管,供水泵和供水管连接,供水管上连接有供水阀;所述的排污机构包括排污泵和排污管,排污泵和排污管连接,排污管上连接有排污阀;
所述的沉污池和供氧池之间设有供气机构,所述的供气机构包括空气发生器、供气主管、供气支管和内支管,空气发生器、供气主管、供气支管位于节能环保污水处理装置的外部,内支管位于节能环保污水处理装置的内部,供气主管的一端与空气发生器连接,供气主管的另一端与供气支管连接,供气主管上连接有供气阀,供气支管和内支管螺接连接,内支管上开有供气孔;
所述的供氧池包括两个对称设置的搅拌机构,搅拌机构包括微型电机和搅拌轴,微型电机连接在供氧池的外壁上,搅拌轴与微型电机连接,搅拌轴分布有两层搅拌刀;
所述的光催化池包括过滤镜、三菱镜和光催化体系,滤镜位于供氧池和光催化池之间,滤镜上均匀分布有过滤孔和六棱镜,六棱镜位于滤镜的上表面,所述的三菱镜连接在光催化池的两侧;
所述的光催化体系包括第一光催化机构、第二光催化机构和光源,第一光催化机构和第二光催化机构均由连接杆和光催化网组成,所述的光催化网由多孔基纳米陶瓷材料制成,第一光催化机构位于第二光催化机构的下方,第一光催化机构和第二光催化机构交错设置;所述的光源包括紫外灯和滤光片,紫外灯均匀的连接在光催化池顶端内壁上,滤光片位于紫外灯的下方。
进一步,所述的过滤网为斗笠形。
进一步,所述的沉污池的底部设有倾斜底座,该倾斜底座的横截面为三角形,倾斜底座的高端口平面与供水管的下端切面在同一平面,倾斜底座的低端口平面与排污管的下端切面在同一平面。
进一步,所述滤光片将波长小于400nm的紫外光滤去。
进一步,所述的光催化池的顶部连接有出水管,出水管位于滤光片的下方。
本发明的有益效果:
(1)采用水热法将Zr掺杂到BiVO4中进行改性处理,提高了BiVO4的可见光范围,减少其光生电子-空穴复合,大大提高其光催化性能,水热法因其制备温度相对较低、晶粒结晶度好、分散性好、粒径分布窄,控制反应温度为178-182℃和硝酸钌的加入量,制得的复合光催化剂Zr-BiVO4为正交晶型,光催化性能较佳,再将复合光催化剂Zr-BiVO4负载到活化的硅藻土和纳米贝壳粉上,增加了光催化剂的催化面积,大大提高了复合光催化剂Zr-BiVO4的对污水中有机物的降解速率;
(2)所述的节能环保污水处理装置包括沉污池、供氧池和光催化池,由下到上沉污池、供氧池和光催化池依次连接;沉污池的底部设有倾斜底座,该倾斜底座的横截面为三角形,倾斜底座的高端口平面与供水管的下端切面在同一平面,倾斜底座的低端口平面与排污管的下端切面在同一平面,倾斜底座有效的防止了污泥在沉污池的积累,沉污池的内部连接有过滤网,过滤网用于过滤污水中污泥和大颗粒物,过滤网为斗笠形,斗笠形的过滤网由于大颗粒物重力的作用不利于其粘附,有效的防止了过滤网的堵塞问题;
(3)所述的光催化池包括过滤镜、三菱镜和光催化体系,所述的光催化体系包括第一光催化机构、第二光催化机构和光源,第一光催化机构和第二光催化机构均由连接杆和光催化网组成,所述的光催化网由多孔基纳米陶瓷材料制成,滤镜上均匀分布有过滤孔和六棱镜,过滤孔可以均匀的分散含氧污水,同时减缓水流,延长含氧污水的光催化反应时间,六棱镜位于滤镜的上表面,用于光线的反射,充分的利用光源;所述的三菱镜连接在光催化池的两侧,同时是用于光线的反射,充分的利用光源;这样紫外灯均匀的连接在光催化池顶端内壁上,无需在整个光催化池中安装紫外灯,节约能源,滤光片位于紫外灯的下方,所述滤光片可将波长小于400nm的紫外光滤去,保留可见光,利用可见光照射到多孔基纳米陶瓷材料上,供气机构用于节能环保污水处理装置的空气持续供应,替换了氧气瓶,充分的利用空气,节约能源,多孔基纳米陶瓷材料与含氧污水作用从而实现对污水的快速处理,降解污水中的有机物,提高了对污水的处理速率,排出合格的水,维护水源,有利于水源的环保。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种节能环保污水处理装置的结构示意图;
图2为过滤镜的结构示意图;
图3为图1中A-A面的剖视图;
图4为供气机构的结构示意图;
附图标注:
1-沉污池,11-倾斜底座,12-进水机构,121-供水泵,122-供水管,123-供水阀,13-排污机构,131-排污泵,132-排污管,133-排污阀,14-过滤网;2-供氧池,21-微型电机,22-搅拌轴,23-搅拌刀;3-光催化池,31-过滤镜,311-过滤孔,312-六棱镜,32-三菱镜,33-第一光催化机构,331-连接杆,332-光催化网,34-第二光催化机构,35-紫外灯,36-滤光片,37-出水管;4-供气机构,41-空气发生器,42-供气主管,43-供气支管,44-内支管,441-供气孔,45-供气阀。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本发明为一种基于环保的纳米陶瓷材料,各原料的重量百分比为:各原料的重量百分比为:硅藻土45%、纳米贝壳粉10%、复合光催化剂8%、表面活性剂2%、分散剂1%、去离子水34%;
所述的复合光催化剂为为Zr-BiVO4光催化剂,Zr-BiVO4光催化剂的制备方法为:
(1)将10mol硝酸铋溶解在60%浓硝酸中,边搅拌边加水稀释至5mol/L,搅拌均匀后得到硝酸铋酸溶液;
(2)将11mol偏钒酸钾溶解在5mol/L氢氧化钾溶液中,搅拌均匀后得到偏钒酸钾溶液;
(3)边搅拌硝酸铋酸溶液将偏钒酸钾溶液滴入其中,滴加完毕后,搅拌15-20min;
(4)将0.12mol硝酸锆加入到步骤(3)的混合溶液中,搅拌溶解完全,加入稀硝酸或者稀氢氧化钾溶液调节溶液pH为中性,继续搅拌25min;
(5)将步骤(4)的混合溶液转移到有聚四氟乙烯内衬的不锈钢水热釜中密封反应,反应结束后,取出反应釜,冷却至室温,除去上层清液,离心,洗涤、干燥后得到了Zr-BiVO4光催化剂粉末,Zr-BiVO4光催化剂粉末的粒径为10-100nm;
所述的表面活性剂为脂肪醇聚氧乙烯醚硫酸铵;
所述的分散剂为硬脂酸锌;
该纳米陶瓷材料的制备方法为:
S1、硅藻土的活化:将硅藻土加入到球磨机中研磨粉碎,采用10%的硝酸浸泡3h,过滤,洗涤至中性,烘干,接着放入马弗炉进行梯度煅烧,具体的煅烧步骤为:(a)在300℃下进行煅烧1h;(b)以12℃/min的升温速率升温到700℃,并在该温度下保温煅烧50min;(c)以6℃/min的升温速率升温到1000℃,并在该温度下保温煅烧25min,煅烧结束后,自然冷却至室温,研磨过筛即得到了活化的硅藻土,活化硅藻土的粒径为7-80nm;
S2、贝壳粉的制备:将贝壳用清水洗净,干燥后放入球磨机粉碎至0.1-0.6mm的贝壳粗微粉;将贝壳粗微粉采用10%的硝酸浸泡4h,过滤,洗涤至中性,烘干,接着放入马弗炉进行梯度煅烧,具体的煅烧步骤为:(a)在300℃下进行煅烧1h;(b)以10℃/min的升温速率升温到700℃,并在该温度下保温煅烧50min;(c)以6℃/min的升温速率升温到1000℃,并在该温度下保温煅烧20min,煅烧结束后,自然冷却至室温;将煅烧后的贝壳粉进行研磨粉碎,即得到了活化的纳米贝壳粉,活化的纳米贝壳粉的粒径为8-75nm。
S3、纳米陶瓷材料的制备:将复合光催化剂和去离子水加入到球磨机中混合均匀,加入步骤S1制备的活化的硅藻土和S2制备的纳米贝壳粉,机械混合2-3.5h,使得复合光催化剂充分吸附到硅藻土的层格间,加入表面活性剂和分散剂,充分混合均匀,蒸发除去水,放入马弗炉中在400℃下进行煅烧4h,研磨后即得到了复合光催化剂固定负载的多孔基纳米陶瓷材料,多孔基纳米陶瓷材料的粒径为11-120nm。
请参阅图1-4所示,所述的多孔基纳米陶瓷材料应用于节能环保污水处理装置中,所述的节能环保污水处理装置包括沉污池1、供氧池2和光催化池3,由下到上沉污池1、供氧池2和光催化池3依次连接;
所述的沉污池1的内部连接有过滤网14,过滤网14用于过滤污水中污泥和大颗粒物,过滤网14为斗笠形,斗笠形的过滤网14由于大颗粒物重力的作用不利于其粘附,有效的防止了过滤网14的堵塞问题;沉污池1的外部连接有进水机构12和排污机构13,所述的进水机构12包括供水泵121和供水管122,供水泵121和供水管122连接,供水管122上连接有供水阀123;所述的排污机构13包括排污泵131和排污管132,排污泵131和排污管132连接,排污管132上连接有排污阀133;沉污池1的底部设有倾斜底座11,该倾斜底座11的横截面为三角形,倾斜底座11的高端口平面与供水管122的下端切面在同一平面,倾斜底座11的低端口平面与排污管132的下端切面在同一平面;
所述的沉污池1和供氧池2之间设有供气机构4,所述的供气机构4包括空气发生器41、供气主管42、供气支管43和内支管44,空气发生器41、供气主管42、供气支管43位于节能环保污水处理装置的外部,内支管44位于节能环保污水处理装置的内部,供气主管42的一端与空气发生器41连接,供气主管42的另一端与供气支管43连接,供气主管42上连接有供气阀45,供气支管43和内支管44螺接连接,内支管44上开有供气孔441;供气机构4用于节能环保污水处理装置的空气持续供应,替换了氧气瓶,充分的利用空气,节约能源;
所述的供氧池2包括两个对称设置的搅拌机构,搅拌机构包括微型电机21和搅拌轴22,微型电机21连接在供氧池2的外壁上,搅拌轴22与微型电机21连接,搅拌轴22分布有两层搅拌刀23,搅拌机构可更加均匀的搅拌污水和供气机构4供给的空气,便于氧气的溶解,提高光催化池3的催化效率;
所述的光催化池3包括过滤镜31、三菱镜32和光催化体系,滤镜31位于供氧池2和光催化池3之间,滤镜31上均匀分布有过滤孔311和六棱镜312,过滤孔311可以均匀的分散含氧污水,同时减缓水流,延长含氧污水的光催化反应时间,六棱镜312位于滤镜31的上表面,用于光线的反射,充分的利用光源;所述的三菱镜32连接在光催化池3的两侧,同时是用于光线的反射,充分的利用光源;
所述的光催化体系包括第一光催化机构33、第二光催化机构34和光源,第一光催化机构33和第二光催化机构34均由连接杆331和光催化网332组成,所述的光催化网332由多孔基纳米陶瓷材料制成,第一光催化机构33位于第二光催化机构34的下方,第一光催化机构33和第二光催化机构34交错设置;所述的光源包括紫外灯35和滤光片36,紫外灯35均匀的连接在光催化池3顶端内壁上,无需在整个光催化池3中安装紫外灯,节约能源,滤光片36位于紫外灯35的下方,所述滤光片36可将波长小于400nm的紫外光滤去,保留可见光,利用可见光照射到多孔基纳米陶瓷材料上,多孔基纳米陶瓷材料与污水作用从而实现对污水的处理,降解污水中的有机物,排出合格的水,维护水源,有利于水源的环保。
所述的光催化池3的顶部连接有出水管37,出水管37位于滤光片36的下方。
实施例2
节能环保污水处理装置的工作效果实验:
选用水A:
表1.选用排污水
COD(ppm) 氨氮(ppm) Cl-(ppm) SS(ppm)
排污水A 1500 400 130 100
表2.水质标准
COD(ppm) 氨氮(ppm) Cl-(ppm) SS(ppm)
出水 350 20 150 20
分别将1t污水A从进水机构12进入沉污池1,污泥和大颗粒物下沉,污泥顺着倾斜底座11经排污机构13排出,污水经过过滤网14,进入到供氧池2,空气发生器41开启,打开供气阀45,空气通过供气孔44进入到污水中,开启搅拌机构,空气中的氧气溶解在污水中,溶氧的污水经过过滤镜31,过滤孔311将溶氧的污水均匀的分散,同时减缓水流,紫外灯35开启照射3h,光线经滤光片36分别照射到第一光催化机构33、第二光催化机构34、过滤镜31和三菱镜32上,含氧污水在光照下,多孔基纳米陶瓷材料催化氧化污水中的有机物,最后经出水管37排出;经检测排出水的COD含量为65ppm,氨氮、Cl-和SS均达标。
实施例3
节能环保污水处理装置的工作效果实验:
选用水B:
表2.选用排污水B
COD(ppm) 氨氮(ppm) Cl-(ppm) SS(ppm)
排污水B 1400 450 350 120
表2.水质标准
COD(ppm) 氨氮(ppm) Cl-(ppm) SS(ppm)
出水 350 20 150 20
分别将1t污水B从进水机构12进入沉污池1,污泥和大颗粒物下沉,污泥顺着倾斜底座11经排污机构13排出,污水经过过滤网14,进入到供氧池2,空气发生器41开启,打开供气阀45,空气通过供气孔44进入到污水中,空气中的氧气溶解在污水中,溶氧的污水经过过滤镜31,过滤孔311将溶氧的污水均匀的分散,同时减缓水流,紫外灯35开启4h,光线经滤光片36分别照射到第一光催化机构33、第二光催化机构34、过滤镜31和三菱镜32上,含氧污水在光照下,多孔基纳米陶瓷材料催化氧化污水中的有机物,最后经出水管37排出,经检测排出水的COD含量为50ppm,氨氮、Cl-和SS均达标。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (10)

1.一种基于环保的纳米陶瓷材料,其特征在于:各原料的重量百分比为:硅藻土30-50%、纳米贝壳粉10-15%、复合光催化剂5-10%、表面活性剂1-3%、分散剂0.5-2%、去离子水20-35%;
所述的复合光催化剂为为Zr-BiVO4光催化剂,Zr-BiVO4光催化剂的制备方法为:
(1)将硝酸铋溶解在55-60%浓硝酸中,边搅拌边加水稀释至5-7mol/L,搅拌均匀后得到硝酸铋酸溶液;
(2)将偏钒酸钾溶解在5-7mol/L氢氧化钾溶液中,搅拌均匀后得到偏钒酸钾溶液;
(3)边搅拌硝酸铋酸溶液将偏钒酸钾溶液滴入其中,滴加完毕后,搅拌15-20min;
(4)将硝酸锆加入到步骤(3)的混合溶液中,搅拌溶解完全,加入稀硝酸或者稀氢氧化钾溶液调节溶液pH为中性,继续搅拌20-30min;
(5)将步骤(4)的混合溶液转移到有聚四氟乙烯内衬的不锈钢水热釜中密封反应,反应结束后,取出反应釜,冷却至室温,除去上层清液,离心,洗涤、干燥后得到了Zr-BiVO4光催化剂粉末,Zr-BiVO4光催化剂粉末的粒径为10-100nm。
2.根据权利要求1所述的一种基于环保的纳米陶瓷材料,其特征在于:所述的硝酸铋、偏钒酸钾和硝酸锆的摩尔比为1:1.1-1.3:0.01-0.015。
3.根据权利要求1所述的一种基于环保的纳米陶瓷材料,其特征在于:步骤(5)所述的密封反应条件为在160-165℃下反应5-7h。
4.根据权利要求1所述的一种基于环保的纳米陶瓷材料,其特征在于:所述的表面活性剂为脂肪醇聚氧乙烯醚硫酸铵;
所述的分散剂为硬脂酸锌。
5.根据权利要求1所述的一种基于环保的纳米陶瓷材料,其特征在于:该纳米陶瓷材料的制备方法为:
S1、硅藻土的活化:将硅藻土加入到球磨机中研磨粉碎,采用10%的硝酸浸泡2-5h,过滤,洗涤至中性,烘干,接着放入马弗炉进行梯度煅烧,具体的煅烧步骤为:(a)在300℃下进行煅烧1-1.5h;(b)以10-15℃/min的升温速率升温到700℃,并在该温度下保温煅烧40-60min;(c)以6-8℃/min的升温速率升温到1000℃,并在该温度下保温煅烧20-30min,煅烧结束后,自然冷却至室温,研磨过筛即得到了活化的硅藻土,活化硅藻土的粒径为7-80nm;
S2、贝壳粉的制备:将贝壳用清水洗净,干燥后放入球磨机粉碎至0.1-0.6mm的贝壳粗微粉;将贝壳粗微粉采用10%的硝酸浸泡2-5h,过滤,洗涤至中性,烘干,接着放入马弗炉进行梯度煅烧,具体的煅烧步骤为:(a)在300℃下进行煅烧1-1.5h;(b)以10-15℃/min的升温速率升温到700℃,并在该温度下保温煅烧40-60min;(c)以5-7℃/min的升温速率升温到1000℃,并在该温度下保温煅烧20-30min,煅烧结束后,自然冷却至室温;将煅烧后的贝壳粉进行研磨粉碎,即得到了活化的纳米贝壳粉,活化的纳米贝壳粉的粒径为8-75nm;
S3、纳米陶瓷材料的制备:将复合光催化剂和去离子水加入到球磨机中混合均匀,加入步骤S1制备的活化的硅藻土和S2制备的纳米贝壳粉,机械混合2-3.5h,使得复合光催化剂充分吸附到硅藻土的层格间,加入表面活性剂和分散剂,充分混合均匀,蒸发除去水,放入马弗炉中在400-550℃下进行煅烧3-5h,研磨后即得到了复合光催化剂固定负载的多孔基纳米陶瓷材料,多孔基纳米陶瓷材料的粒径为11-120nm。
6.根据权利要求1所述的一种基于环保的纳米陶瓷材料,其特征在于:所述的纳米陶瓷材料应用于节能环保污水处理装置中,所述的节能环保污水处理装置包括沉污池(1)、供氧池(2)和光催化池(3),由下到上沉污池(1)、供氧池(2)和光催化池(3)依次连接;
所述的沉污池(1)的内部连接有过滤网(14),沉污池(1)的外部连接有进水机构(12)和排污机构(13),所述的进水机构(12)包括供水泵(121)和供水管(122),供水泵(121)和供水管(122)连接,供水管(122)上连接有供水阀(123);所述的排污机构(13)包括排污泵(131)和排污管(132),排污泵(131)和排污管(132)连接,排污管(132)上连接有排污阀(133);
所述的沉污池(1)和供氧池(2)之间设有供气机构(4),所述的供气机构(4)包括空气发生器(41)、供气主管(42)、供气支管(43)和内支管(44),空气发生器(41)、供气主管(42)、供气支管(43)位于节能环保污水处理装置的外部,内支管(44)位于节能环保污水处理装置的内部,供气主管(42)的一端与空气发生器(41)连接,供气主管(42)的另一端与供气支管(43)连接,供气主管(42)上连接有供气阀(45),供气支管(43)和内支管(44)螺接连接,内支管(44)上开有供气孔(441);
所述的供氧池(2)包括两个对称设置的搅拌机构,搅拌机构包括微型电机(21)和搅拌轴(22),微型电机(21)连接在供氧池(2)的外壁上,搅拌轴(22)与微型电机(21)连接,搅拌轴(22)分布有两层搅拌刀(23);
所述的光催化池(3)包括过滤镜(31)、三菱镜(32)和光催化体系,滤镜(31)位于供氧池(2)和光催化池(3)之间,滤镜(31)上均匀分布有过滤孔(311)和六棱镜(312),六棱镜(312)位于滤镜(31)的上表面,所述的三菱镜(32)连接在光催化池(3)的两侧;
所述的光催化体系包括第一光催化机构(33)、第二光催化机构(34)和光源,第一光催化机构(33)和第二光催化机构(34)均由连接杆(331)和光催化网(332)组成,所述的光催化网(332)由多孔基纳米陶瓷材料制成,第一光催化机构(33)位于第二光催化机构(34)的下方,第一光催化机构(33)和第二光催化机构(34)交错设置;所述的光源包括紫外灯(35)和滤光片(36),紫外灯(35)均匀的连接在光催化池(3)顶端内壁上,滤光片(36)位于紫外灯(35)的下方。
7.根据权利要求6所述的一种基于环保的纳米陶瓷材料,其特征在于:所述的过滤网(14)为斗笠形。
8.根据权利要求6所述的一种基于环保的纳米陶瓷材料,其特征在于:所述的沉污池(1)的底部设有倾斜底座(11),该倾斜底座(11)的横截面为三角形,倾斜底座(11)的高端口平面与供水管(122)的下端切面在同一平面,倾斜底座(11)的低端口平面与排污管(132)的下端切面在同一平面。
9.根据权利要求6所述的一种基于环保的纳米陶瓷材料,其特征在于:所述滤光片(36)将波长小于400nm的紫外光滤去。
10.根据权利要求6所述的一种基于环保的纳米陶瓷材料,其特征在于:所述的光催化池(3)的顶部连接有出水管(37),出水管(37)位于滤光片(36)的下方。
CN201810938197.1A 2018-08-17 2018-08-17 一种基于环保的纳米陶瓷材料 Withdrawn CN109019964A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810938197.1A CN109019964A (zh) 2018-08-17 2018-08-17 一种基于环保的纳米陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810938197.1A CN109019964A (zh) 2018-08-17 2018-08-17 一种基于环保的纳米陶瓷材料

Publications (1)

Publication Number Publication Date
CN109019964A true CN109019964A (zh) 2018-12-18

Family

ID=64630744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810938197.1A Withdrawn CN109019964A (zh) 2018-08-17 2018-08-17 一种基于环保的纳米陶瓷材料

Country Status (1)

Country Link
CN (1) CN109019964A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099918A (zh) * 2019-12-25 2020-05-05 李雯 一种纳米光催化陶瓷材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326126A (zh) * 2005-10-11 2008-12-17 有限会社K2R 光催化反应水生成装置
KR20100118666A (ko) * 2009-04-29 2010-11-08 진혜경 에코경량토
CN101885620A (zh) * 2009-05-12 2010-11-17 程丽 多级孔道结构的陶瓷材料及其制造方法
CN103382128A (zh) * 2013-06-26 2013-11-06 蚌埠德美过滤技术有限公司 一种含有椰壳活性炭的陶器滤芯及其制备方法
CN104844264A (zh) * 2015-04-13 2015-08-19 山东理工大学 一种生物质催化液化用多孔陶瓷负载催化剂及制备方法
CN107434409A (zh) * 2016-05-27 2017-12-05 黄庆禄 一种纳米功能陶瓷球的配制及工艺
CN207294458U (zh) * 2017-07-31 2018-05-01 南京圆点环境清洁技术有限公司 光催化污水处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326126A (zh) * 2005-10-11 2008-12-17 有限会社K2R 光催化反应水生成装置
KR20100118666A (ko) * 2009-04-29 2010-11-08 진혜경 에코경량토
CN101885620A (zh) * 2009-05-12 2010-11-17 程丽 多级孔道结构的陶瓷材料及其制造方法
CN103382128A (zh) * 2013-06-26 2013-11-06 蚌埠德美过滤技术有限公司 一种含有椰壳活性炭的陶器滤芯及其制备方法
CN104844264A (zh) * 2015-04-13 2015-08-19 山东理工大学 一种生物质催化液化用多孔陶瓷负载催化剂及制备方法
CN107434409A (zh) * 2016-05-27 2017-12-05 黄庆禄 一种纳米功能陶瓷球的配制及工艺
CN207294458U (zh) * 2017-07-31 2018-05-01 南京圆点环境清洁技术有限公司 光催化污水处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGERU IKEDA ET AL.: "Effects of zirconium doping into a monoclinic scheelite BiVO4 crystal on its structural, photocatalytic, and photoelectrochemical properties", 《FRONTIERS IN CHEMISTRY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099918A (zh) * 2019-12-25 2020-05-05 李雯 一种纳米光催化陶瓷材料

Similar Documents

Publication Publication Date Title
CN104016511B (zh) 用于废水深度处理的臭氧/光催化氧化‑膜分离集成方法及集成装置
CN105363433B (zh) 石墨烯基钨酸铋复合光催化剂及其制备方法和应用
CN108529712B (zh) 一种光催化水处理装置
CN207659245U (zh) 一种芬顿-光催化膜反应器废水处理装置
CN102874994A (zh) 一种光催化与好氧生物结合的双重内循环水处理器及其工作方法
CN102936080B (zh) 一种光催化与好氧生物法结合的水处理器及其工作方法
CN106732497A (zh) 负载改性TiO2薄膜多孔陶粒的制备方法及光催化污水处理装置
CN103230802A (zh) 一种可见光响应的复合光催化剂的制备方法及其除砷方法
CN105344379B (zh) 一种水滑石负载酞菁铁可见光‑芬顿催化剂及其制备方法和应用
CN108786808A (zh) 一种Ag/BiO2-x/Bi2O3/Bi2O2.75复合光催化剂及制备方法和应用
CN109019964A (zh) 一种基于环保的纳米陶瓷材料
CN106964338A (zh) 一种wo3/钛酸盐复合光催化剂及其制备方法和应用
CN202849150U (zh) 一种光催化与好氧生物结合的双重内循环水处理器
CN107915309A (zh) 一种催化氧化处理污水过程中粉末催化剂高效分离并自动循环的方法
CN106111105B (zh) 一种用于处理抗生素废水的复合催化剂及其制备方法和应用
CN208964714U (zh) 一种新型外置式悬浮光催化膜净水器
CN108906073A (zh) 一种用于工业废水脱色的催化剂、脱色装置及其脱色方法
CN1123542C (zh) 可连续均相光氧化净化含有机污染物废水的方法及设备
CN113135631B (zh) 基于多维催化氧化工艺的低污泥产率的废水处理方法
CN106277176A (zh) 用于处理高浓度有机废水的二氧化钛薄膜光催化系统
CN1962478A (zh) 用氧化铋薄膜光催化降解含罗丹明b污水的方法
CN209618940U (zh) 一种降解高碱度高氧化性含氯废水的系统
CN208151019U (zh) 一种旋转式高效污水处理装置
CN206828280U (zh) 一种邻氨基苯甲酸废水处理装置
CN203007092U (zh) 一种光催化后置的内循环厌氧流化膜生物反应器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181218

WW01 Invention patent application withdrawn after publication