CN108976628B - 一种采用超临界二氧化碳工艺生产的eps抗压板 - Google Patents

一种采用超临界二氧化碳工艺生产的eps抗压板 Download PDF

Info

Publication number
CN108976628B
CN108976628B CN201810697608.2A CN201810697608A CN108976628B CN 108976628 B CN108976628 B CN 108976628B CN 201810697608 A CN201810697608 A CN 201810697608A CN 108976628 B CN108976628 B CN 108976628B
Authority
CN
China
Prior art keywords
parts
eps
pressure
carbon dioxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810697608.2A
Other languages
English (en)
Other versions
CN108976628A (zh
Inventor
彭其周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jingqiao New Materials Technology Co ltd
Original Assignee
Wuhu New Jingqiao Packaging Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu New Jingqiao Packaging Technology Co ltd filed Critical Wuhu New Jingqiao Packaging Technology Co ltd
Priority to CN201810697608.2A priority Critical patent/CN108976628B/zh
Publication of CN108976628A publication Critical patent/CN108976628A/zh
Application granted granted Critical
Publication of CN108976628B publication Critical patent/CN108976628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种采用超临界二氧化碳工艺生产的EPS抗压板,涉及塑料发泡技术领域。所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40‑50份、溴化环氧树脂10‑12份、聚碳酸酯4‑6份、硬脂酸钠1‑2份、氧化锌2‑3份、苯基硅油1‑3份、成核剂2‑3份、抗氧化剂0.8‑1.4份。其制作方法主要包括连续升温发泡、高压蒸汽定型和高温喷涂等步骤。本发明克服了现有技术的不足,提高了传统EPS板材的孔隙密度,增加其抗压和回弹能力,并且加强了材质的韧性,有效提升板材的减压抗震效果,同时使板材具有耐磨、抗老化、阻燃等优点。

Description

一种采用超临界二氧化碳工艺生产的EPS抗压板
技术领域
本发明涉及塑料发泡技术领域,具体涉及一种采用超临界二氧化碳工艺生产的EPS抗压板。
背景技术
二氧化碳在温度高于临界温度Tc=31.26℃,压力高于临界压力Pc=72.9atm的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。
超临界二氧化碳发泡技术,是以超临界二氧化碳为发泡剂的一种新型物理发泡技术,它是通过快速泄压或者快速升温的方法使超临界二氧化碳饱和的聚合物体系进入热力学不稳定状态,诱导大量气核在聚合物基体中同时形成微孔结构,并迅速降温得到的高孔隙率的聚合物泡沫材料。这种聚合物泡沫材料具有较小的泡孔尺寸(0.1~10μm)和较高的泡孔密度(108~1012cells/cm3),因此具有较高的强度和稳定性。
EPS板材,由于其经过发泡处理,内部具有连续的闭孔空间,能抵消掉一部分的冲击力,起到抗压的作用,并且EPS板材由于其孔隙密度较高,并且材质较轻,具有一定的回弹能力,起到减压防震的效果,但是此类效果在一众泡沫材料中并不突出,严重限制EPS板材的应用范围。
发明内容
针对现有技术不足,本发明提供一种采用超临界二氧化碳工艺生产的EPS抗压板,提高了传统EPS板材的孔隙密度,增加其抗压和回弹能力,并且加强了材质的韧性,有效提升板材的减压抗震效果,同时使板材具有耐磨、抗老化、阻燃等优点。
为实现以上目的,本发明的技术方案通过以下技术方案予以实现:
一种采用超临界二氧化碳工艺生产的EPS抗压板,所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40-50份、溴化环氧树脂10-12份、聚碳酸酯4-6份、硬脂酸钠1-2份、氧化锌2-3份、苯基硅油1-3份、成核剂2-3份、抗氧化剂0.8-1.4份。
优选的,一种采用超临界二氧化碳工艺生产的EPS抗压板,所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40-50份、溴化环氧树脂10-12份、聚碳酸酯4-6份、硬脂酸钠1-2份、氧化锌2-3份、苯基硅油1-3份、成核剂2-3份、抗氧化剂0.8-1.4份。
优选的,所述成核剂为滑石粉、石墨和云母质量比1∶1∶2的混合物。
所述EPS抗压板的制备方法包括以下步骤:
(1)将聚苯乙烯树脂和聚碳酸酯混合粉碎后加入反应釜中,升温至180-200℃,混合搅拌均匀,得混合树脂备用;
(2)将上述反应釜内混合树脂进行降温和加压处理,并通入超临界二氧化碳,混合搅拌1-2h,后缓慢升温发泡处理;
(3)将上述步骤(2)反应釜内的温度降低至70-80℃,加入硬脂酸钠、苯基硅油、成核剂和抗氧化剂,保温搅拌均匀;
(4)将上述步骤(3)反应釜内继续通入超临界二氧化碳,在保温1-2h后,迅速升温至160-200℃,发泡处理5-10min,得发泡物料备用;
(5)将溴化环氧树脂与氧化锌混合置于反应釜中,升温至350-400℃搅拌均匀,保温静置40-50min,得混合浆料备用;
(6)将步骤(4)中的发泡物料置于模具中,高压蒸汽挤压成型,后将上述步骤(5)中的混合浆料均匀喷涂于成型的板材上,冷却定型后得本发明EPS抗压板。
优选的,步骤(1)中混合树脂于反应釜中需保温搅拌20-30min。
优选的,步骤(2)中降温加压后的温度为40-60℃,压强为12-14MPa,缓慢升温的速度为2℃/s,升温至140-160℃后,保温10-15min。
优选的,步骤(6)中高压蒸汽模压成型的温度为180-200℃,压强为0.5-0.7MPa,将成型板材冷却至120-160℃后,再喷涂混合浆料。
本发明提供一种采用超临界二氧化碳工艺生产的EPS抗压板,与现有技术相比优点在于:
(1)本发明采用超临界二氧化碳代替发泡剂,并且采用连续升温法对物料进行发泡,在第一次升温时,控制升温的速度,使材料形成细密的小孔,第二次采用快速升温法,使物料形成的孔隙较大,有利于泡沫在内部存储空气,两次升温后所得到的材料具有细密且连续的闭孔,能有效的缓冲外部的冲击力,达到高效抗压减震的效果。
(2)本法明使用溴化环氧树脂和氧化锌混合后喷涂于发泡材料表面,能有效增强材料的耐磨性能,并且喷涂过后可在板材表面形成一层相对坚硬但不连续的膜,能有效提升泡沫板材的抗压能力。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种采用超临界二氧化碳工艺生产的EPS抗压板,所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40份、溴化环氧树脂10份、聚碳酸酯4份、硬脂酸钠1份、氧化锌2份、苯基硅油1份、成核剂2份、抗氧化剂0.8份。
所述成核剂为滑石粉、石墨和云母质量比1∶1∶2的混合物。
所述EPS抗压板的制备方法包括以下步骤:
(1)将聚苯乙烯树脂和聚碳酸酯混合粉碎后加入反应釜中,升温至180-200℃,混合搅拌均匀,得混合树脂备用;
(2)将上述反应釜内混合树脂进行降温和加压处理,并通入超临界二氧化碳,混合搅拌1-2h,后缓慢升温发泡处理;
(3)将上述步骤(2)反应釜内的温度降低至70-80℃,加入硬脂酸钠、苯基硅油、成核剂和抗氧化剂,保温搅拌均匀;
(4)将上述步骤(3)反应釜内继续通入超临界二氧化碳,在保温1-2h后,迅速升温至160-200℃,发泡处理5-10min,得发泡物料备用;
(5)将溴化环氧树脂与氧化锌混合置于反应釜中,升温至350-400℃搅拌均匀,保温静置40-50min,得混合浆料备用;
(6)将步骤(4)中的发泡物料置于模具中,高压蒸汽挤压成型,后将上述步骤(5)中的混合浆料均匀喷涂于成型的板材上,冷却定型后得本发明EPS抗压板。
步骤(1)中混合树脂于反应釜中需保温搅拌20-30min;步骤(2)中降温加压后的温度为40-60℃,压强为12-14MPa,缓慢升温的速度为2℃/s,升温至140-160℃后,保温10-15min;步骤(6)中高压蒸汽模压成型的温度为180-200℃,压强为0.5-0.7MPa,将成型板材冷却至120-160℃后,再喷涂混合浆料。
实施例2:
一种采用超临界二氧化碳工艺生产的EPS抗压板,所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40-50份、溴化环氧树脂12份、聚碳酸酯6份、硬脂酸钠2份、氧化锌3份、苯基硅油3份、成核剂3份、抗氧化剂1.4份。
所述成核剂为滑石粉、石墨和云母质量比1∶1∶2的混合物。
所述EPS抗压板的制备方法包括以下步骤:
(1)将聚苯乙烯树脂和聚碳酸酯混合粉碎后加入反应釜中,升温至180-200℃,混合搅拌均匀,得混合树脂备用;
(2)将上述反应釜内混合树脂进行降温和加压处理,并通入超临界二氧化碳,混合搅拌1-2h,后缓慢升温发泡处理;
(3)将上述步骤(2)反应釜内的温度降低至70-80℃,加入硬脂酸钠、苯基硅油、成核剂和抗氧化剂,保温搅拌均匀;
(4)将上述步骤(3)反应釜内继续通入超临界二氧化碳,在保温1-2h后,迅速升温至160-200℃,发泡处理5-10min,得发泡物料备用;
(5)将溴化环氧树脂与氧化锌混合置于反应釜中,升温至350-400℃搅拌均匀,保温静置40-50min,得混合浆料备用;
(6)将步骤(4)中的发泡物料置于模具中,高压蒸汽挤压成型,后将上述步骤(5)中的混合浆料均匀喷涂于成型的板材上,冷却定型后得本发明EPS抗压板。
步骤(1)中混合树脂于反应釜中需保温搅拌20-30min;步骤(2)中降温加压后的温度为40-60℃,压强为12-14MPa,缓慢升温的速度为2℃/s,升温至140-160℃后,保温10-15min;步骤(6)中高压蒸汽模压成型的温度为180-200℃,压强为0.5-0.7MPa,将成型板材冷却至120-160℃后,再喷涂混合浆料。
实施例3:
一种采用超临界二氧化碳工艺生产的EPS抗压板,所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40-50份、溴化环氧树脂10-12份、聚碳酸酯4-6份、硬脂酸钠1-2份、氧化锌2-3份、苯基硅油1-3份、成核剂2-3份、抗氧化剂0.8-1.4份。
所述成核剂为滑石粉、石墨和云母质量比1∶1∶2的混合物。
所述EPS抗压板的制备方法包括以下步骤:
(1)将聚苯乙烯树脂和聚碳酸酯混合粉碎后加入反应釜中,升温至180-200℃,混合搅拌均匀,得混合树脂备用;
(2)将上述反应釜内混合树脂进行降温和加压处理,并通入超临界二氧化碳,混合搅拌1-2h,后缓慢升温发泡处理;
(3)将上述步骤(2)反应釜内的温度降低至70-80℃,加入硬脂酸钠、苯基硅油、成核剂和抗氧化剂,保温搅拌均匀;
(4)将上述步骤(3)反应釜内继续通入超临界二氧化碳,在保温1-2h后,迅速升温至160-200℃,发泡处理5-10min,得发泡物料备用;
(5)将溴化环氧树脂与氧化锌混合置于反应釜中,升温至350-400℃搅拌均匀,保温静置40-50min,得混合浆料备用;
(6)将步骤(4)中的发泡物料置于模具中,高压蒸汽挤压成型,后将上述步骤(5)中的混合浆料均匀喷涂于成型的板材上,冷却定型后得本发明EPS抗压板。
步骤(1)中混合树脂于反应釜中需保温搅拌20-30min;步骤(2)中降温加压后的温度为40-60℃,压强为12-14MPa,缓慢升温的速度为2℃/s,升温至140-160℃后,保温10-15min;步骤(6)中高压蒸汽模压成型的温度为180-200℃,压强为0.5-0.7MPa,将成型板材冷却至120-160℃后,再喷涂混合浆料。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种采用超临界二氧化碳工艺生产的EPS抗压板,其特征在于,所述EPS抗压板由以下重量份的原料制成:聚苯乙烯树脂40-50份、溴化环氧树脂10-12份、聚碳酸酯4-6份、硬脂酸钠1-2份、氧化锌2-3份、苯基硅油1-3份、成核剂2-3份、抗氧化剂0.8-1.4份;
所述EPS抗压板的制备方法包括以下步骤:
(1)将聚苯乙烯树脂和聚碳酸酯混合粉碎后加入反应釜中,升温至180-200℃,混合搅拌均匀,得混合树脂备用;
(2)将上述反应釜内混合树脂进行降温和加压处理,并通入超临界二氧化碳,混合搅拌1-2h,后缓慢升温发泡处理;
(3)将上述步骤(2)反应釜内的温度降低至70-80℃,加入硬脂酸钠、苯基硅油、成核剂和抗氧化剂,保温搅拌均匀;
(4)将上述步骤(3)反应釜内继续通入超临界二氧化碳,在保温1-2h后,迅速升温至160-200℃,发泡处理5-10min,得发泡物料备用;
(5)将溴化环氧树脂与氧化锌混合置于反应釜中,升温至350-400℃搅拌均匀,保温静置40-50min,得混合浆料备用;
(6)将步骤(4)中的发泡物料置于模具中,高压蒸汽挤压成型,后将上述步骤(5)中的混合浆料均匀喷涂于成型的板材上,冷却定型后得本发明EPS抗压板。
2.根据权利要求1所述的一种采用超临界二氧化碳工艺生产的EPS抗压板,其特征在于:所述成核剂为滑石粉、石墨和云母质量比1∶1∶2的混合物。
3.根据权利要求1所述的一种采用超临界二氧化碳工艺生产的EPS抗压板,其特征在于:步骤(1)中混合树脂于反应釜中需保温搅拌20-30min。
4.根据权利要求1所述的一种采用超临界二氧化碳工艺生产的EPS抗压板,其特征在于:步骤(2)中降温加压后的温度为40-60℃,压强为12-14MPa,缓慢升温的速度为2℃/s,升温至140-160℃后,保温10-15min。
5.根据权利要求1所述的一种采用超临界二氧化碳工艺生产的EPS抗压板,其特征在于:步骤(6)中高压蒸汽模压成型的温度为180-200℃,压强为0.5-0.7MPa,将成型板材冷却至120-160℃后,再喷涂混合浆料。
CN201810697608.2A 2018-06-29 2018-06-29 一种采用超临界二氧化碳工艺生产的eps抗压板 Active CN108976628B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810697608.2A CN108976628B (zh) 2018-06-29 2018-06-29 一种采用超临界二氧化碳工艺生产的eps抗压板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810697608.2A CN108976628B (zh) 2018-06-29 2018-06-29 一种采用超临界二氧化碳工艺生产的eps抗压板

Publications (2)

Publication Number Publication Date
CN108976628A CN108976628A (zh) 2018-12-11
CN108976628B true CN108976628B (zh) 2020-11-24

Family

ID=64539121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810697608.2A Active CN108976628B (zh) 2018-06-29 2018-06-29 一种采用超临界二氧化碳工艺生产的eps抗压板

Country Status (1)

Country Link
CN (1) CN108976628B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138773A (zh) * 2019-08-01 2020-05-12 华东理工大学 一种具有小孔径的轻量聚苯乙烯发泡材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167840A (zh) * 2011-04-12 2011-08-31 姜修磊 超临界模压发泡制备聚合物微孔发泡材料的方法
CN107227099A (zh) * 2017-07-25 2017-10-03 合肥欧仕嘉机电设备有限公司 一种空气压缩机用耐磨耐火涂料及其制备方法
CN107619496A (zh) * 2017-07-05 2018-01-23 四川大学 双峰闭孔结构的发泡聚合物复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167840A (zh) * 2011-04-12 2011-08-31 姜修磊 超临界模压发泡制备聚合物微孔发泡材料的方法
CN107619496A (zh) * 2017-07-05 2018-01-23 四川大学 双峰闭孔结构的发泡聚合物复合材料及其制备方法
CN107227099A (zh) * 2017-07-25 2017-10-03 合肥欧仕嘉机电设备有限公司 一种空气压缩机用耐磨耐火涂料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双峰泡孔结构聚苯乙烯材料的制备;许琳琼等;《高分子学报》;20131120(第11期);第1357-1362 *

Also Published As

Publication number Publication date
CN108976628A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN102229707B (zh) 生物可降解的聚己二酸-对苯二甲酸-丁二醇酯高发泡倍率微孔发泡粒子及其制备方法
CN105218850B (zh) 一种高弹热塑性聚氨酯发泡粒子及其成型体的制备方法
CN110498945B (zh) 一种聚丙烯材料的超临界流体发泡方法
CN109096464B (zh) 透气鞋垫及其制备方法
RU2012143158A (ru) Нанопористый пенополимер, характеризующийся высокой алотностью ячеек в отсутствие нанонаполнителя
CN108976628B (zh) 一种采用超临界二氧化碳工艺生产的eps抗压板
CN103509273A (zh) 一种改性硬质交联聚氯乙烯泡沫及其制备方法
CN105694253A (zh) 一种具有阻燃功能的泡沫保温板
CN109485993B (zh) 一种真实微孔注塑成型聚丙烯泡沫材料及其制备方法
JPS61268737A (ja) ポリアミド系予備発泡粒子及び発泡体並びにその製法
CN102295821A (zh) 一种酚醛泡沫墙体保温材料的生产方法
US10106665B2 (en) Method for producing polymer nanofoam
CN109929135A (zh) 聚合物双峰泡孔材料及其制备方法
CN109912978B (zh) 橡胶发泡珠粒与橡胶泡沫制品的制备方法
CN115772292A (zh) 一种聚烯烃开孔发泡材料的制备方法
JP2008239728A (ja) ポリ乳酸系発泡成形体の製造方法
CN111574744B (zh) 一种清洁环保型聚偏氟乙烯发泡片材的制备方法
CN103980597A (zh) 一种聚乙烯泡沫塑料及其制备方法
CN109679028B (zh) 高熔体强度聚丙烯及其制备方法与聚丙烯发泡珠粒及其制备方法
CN114479048A (zh) 聚合物基硬泡聚醚多元醇的制备方法
US2383110A (en) Sponge rubber products
CN109135084A (zh) 一种采用超临界二氧化碳工艺生产的eps保温板
JP2008214423A (ja) ポリ乳酸系発泡成形体の製造方法
CN113088010A (zh) 一种eps泡沫制品的制备方法
CN112297322A (zh) 一种稳定eps熟化密度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: EPS compression plate produced by supercritical carbon dioxide process

Effective date of registration: 20221125

Granted publication date: 20201124

Pledgee: Wuhu Tianmenshan sub branch of Huishang Bank Co.,Ltd.

Pledgor: WUHU NEW JINGQIAO PACKAGING TECHNOLOGY Co.,Ltd.

Registration number: Y2022980023590

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20201124

Pledgee: Wuhu Tianmenshan sub branch of Huishang Bank Co.,Ltd.

Pledgor: WUHU NEW JINGQIAO PACKAGING TECHNOLOGY Co.,Ltd.

Registration number: Y2022980023590

PC01 Cancellation of the registration of the contract for pledge of patent right
CP03 Change of name, title or address

Address after: 241000 West of Huaihai Road, Economic and Technological Development Zone, Wuhu City, Anhui Province

Patentee after: Anhui Jingqiao New Materials Technology Co.,Ltd.

Country or region after: China

Address before: 241000 West of Huaihai Road, Economic and Technological Development Zone, Wuhu City, Anhui Province

Patentee before: WUHU NEW JINGQIAO PACKAGING TECHNOLOGY Co.,Ltd.

Country or region before: China