CN108963214B - 一种锂离子电池负极材料的制备方法 - Google Patents

一种锂离子电池负极材料的制备方法 Download PDF

Info

Publication number
CN108963214B
CN108963214B CN201810696268.1A CN201810696268A CN108963214B CN 108963214 B CN108963214 B CN 108963214B CN 201810696268 A CN201810696268 A CN 201810696268A CN 108963214 B CN108963214 B CN 108963214B
Authority
CN
China
Prior art keywords
carbon cloth
solution
preparation
zno
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810696268.1A
Other languages
English (en)
Other versions
CN108963214A (zh
Inventor
张永光
王加义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Original Assignee
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing South China Normal University Optoelectronics Industry Research Institute filed Critical Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority to CN201810696268.1A priority Critical patent/CN108963214B/zh
Publication of CN108963214A publication Critical patent/CN108963214A/zh
Application granted granted Critical
Publication of CN108963214B publication Critical patent/CN108963214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于材料化学领域,涉及一种高比容量的锂离子电池负极材料的制备方法。该方法经过碳布‑ZnO纳米棒复合材料的制备和碳布‑ZnO‑ZnS核壳结构纳米棒复合材料的制备两个步骤,成功地将氧化锌硫化锌核壳结构复合棒状材料引入到了碳布上作为负极活性物质,该复合棒状材料并直接生长在碳布表面,得到了具有较高的充放电比容量和较好的循环性能的电极材料,其首次充放电容量即达到965.4 mAh g‑1,经过二百圈循环后仍具有542.6 mAh g‑1的可逆容量。

Description

一种锂离子电池负极材料的制备方法
技术领域
本发明的技术方案涉及一种高比容量的锂离子电池负极材料的制备方法,特别涉及一种在碳布表面直接生长氧化锌硫化锌核壳结构复合棒状材料的方法,属于材料化学领域。
背景技术
锂离子电池是伴随着金属锂二次电池发展起来的新一代二次电池,具有开路电压高、能量密度大、使用寿命长、无记忆效应、无污染以及自放电率小等优点,自从20世纪90年代初商品化以来,发展十分迅速,已被广泛应用于各类便携式电子设备,也是电动汽车的理想能源之一。可以预言,锂离子电池将成为21世纪高科技产品和日常交通工具的重要化学电源之一。因此,开发出具有自主知识产权的新型电池材料和技术,不仅具有良好的经济和社会效益,更具有重要的战略意义。
锂离子电池负极材料方面,石墨类碳材料由于其良好的循环稳定性,理想的充放电平台和目前最高的性价比,仍是未来一段时间内锂离子电池的首选负极材料。但碳材料的充放电比容量较低,体积比容量更是没有优势,因此需要开发新型负极材料,来满足对电池高容量化的要求。在新型非碳负极材料的研究中,Zn基材料一直以来都显示出较好的循环性能,加上我国丰富的锌储量,使得这一材料成为极有前景的负极材料之一。与此同时,对硫化物的研究表明S元素的存在可以缓冲金属与Li在合金化过程中产生的体积效应,进一步加强结构的稳定性,因此,ZnS是一种极具开发潜力的锂离子电池负极材料。ZnS材料资源丰富、制备工艺简单、比容量高,为962.3mAh g-1,且循环稳定性好,是极有潜力的锂离子电池负极材料。关于ZnS作为负极材料研究的现有技术也有报道:CN201510866117.2报道了一种硫化锌-石墨烯复合材料的制备方法及其作为锂电池负极材料的应用。它是通过原位合成、离心、干燥得到ZnS-RGO复合材料作为新型锂离子电池负极。然而,该材料体积膨胀效应明显,快速充放电能力差,影响了其实际应用。
发明内容
本发明的目的为针对当前技术存在的不足,提供一种锂电池负极材料的制备方法。该方法引入氧化锌硫化锌核壳结构复合棒状材料作为负极活性物质,并直接生长在碳布表面,得到了具有较高的充放电比容量和较好的循环性能的电极材料。
本发明解决该技术问题所采用的技术方案包括以下步骤:
(1)碳布-ZnO纳米棒复合材料的制备
取50~100ml的0.5~1molZn(NO3)2·6H2O,50~100ml聚乙烯吡咯烷酮水溶液(0.1wt%),50~100ml去离子水混合搅拌均匀,记为溶液A,同时配置质量分数为0.1%的乌洛托品溶液,记为溶液B,将溶液A和B按照体积比1:1混合并将碳布置入其中,加热至80~100℃,而后恒温搅拌12~24h,之后取出碳布并依次用去离子水和乙醇洗涤三次,最后将碳布在50~80℃的真空烘箱中干燥6~12h,得到碳布-ZnO纳米棒复合材料;
(2)碳布-ZnO-ZnS核壳结构纳米棒复合材料的制备
将上一步处理过后的碳布置于10~20ml乙二醇(95wt%)溶液中,搅拌10~30min后,加入10~20ml去离子水,然后,将10~20ml硫代乙酰胺溶液(1.5wt%)滴加到混合溶液中,在室温下搅拌10~30min后将混合物转移到聚四氟乙烯内衬的反应釜中,将反应釜在100~130℃加热12~24h,冷却至室温后收集碳布,用无水乙醇洗涤数次后在60~80℃的烘箱中干燥6~12h,即得所需产物。
上述一种锂电池负极材料的制备方法,所涉及的原材料均通过商购获得,纯度均为化学纯。
本发明的有益效果如下:
1、本发明充分考虑了锂电池负极材料的结构问题,将ZnS和ZnO有机地结合起来,有效的形成了ZnO-ZnS的核壳纳米棒结构,通过对负极材料微观结构的调控保证了电极的优异电化学性能,ZnS和ZnO二者共同作用,使制备得到的复合负极材料有效抑制了充放电过程中的体积膨胀效应,且循环性能较好。在嵌锂过程中ZnS/ZnO首先与Li发生置换反应,生成Zn和Li2S/Li2O,生成的Zn再与锂反应形成Li-Zn合金;在脱锂过程中,锂从Li-Zn合金中脱出,Li2S/Li2O分解并与Zn重新生成ZnS/ZnO。
2、本发明直接在碳布表面生长ZnO-ZnS核壳纳米棒,碳布既作为ZnO-ZnS核壳纳米棒的生长基体,又在后续应用于锂电池时扮演集流体的作用,不仅简化了锂电池的生产工序,同时由于碳布良好的导电性,克服了ZnS与ZnO导电性不好的弊端,且碳布具有的疏松结构也对锂电池充放电过程中活性物质的体积膨胀问题具有很好的缓解作用。
3、本发明制备的在集流体表面直接生长硫化锌氧化锌核壳结构复合棒状材料在应用于锂电池负极材料时,其首次充放电容量即达到965.4mAh g-1,经过二百圈循环后仍具有542.6mAh g-1的可逆容量。
附图说明
图1为实施例1所制得的ZnO-ZnS核壳纳米棒的X射线衍射图。
图2为实施例1所制得的碳布-ZnO-ZnS核壳纳米棒的扫描电子显微镜照片。
图3为实施例1所制得的ZnO-ZnS核壳纳米棒的透射电子显微镜照片。
图4为实施例1所制得的碳布-ZnO-ZnS核壳纳米棒作为锂电池负极材料时在0.1C放电条件下的电化学充放电曲线。
具体实施方式
下面结合附图和实施例对本发明进一步说明:
实施例1:
(1)碳布-ZnO纳米棒复合材料的制备
取100ml的1molZn(NO3)2·6H2O,100ml聚乙烯吡咯烷酮水溶液(0.1wt%),100ml去离子水混合搅拌均匀,记为溶液A,同时配置质量分数为0.1%的乌洛托品溶液,记为溶液B,将溶液A和B按照体积比1:1混合并将碳布置入其中,加热至100℃,而后恒温搅拌24h,之后取出碳布并依次用去离子水和乙醇洗涤三次,最后将碳布在80℃的真空烘箱中干燥12h,得到碳布-ZnO纳米棒复合材料。
(2)碳布-ZnO-ZnS核壳结构纳米棒复合材料的制备
将上一步处理过后的碳布置于20ml乙二醇(95wt%)溶液中,搅拌30min后,加入20ml去离子水。然后,将20ml硫代乙酰胺溶液(1.5wt%)滴加到混合溶液中,在室温下搅拌30min后将混合物转移到聚四氟乙烯内衬的反应釜中,将反应釜在130℃加热24h。冷却至室温后收集碳布,用无水乙醇洗涤数次后在80℃的烘箱中干燥12h,即得所需产物,并同时收集溶液中产生的ZnO-ZnS粉末进行表征以更加清晰地说明碳布表面生长的ZnO-ZnS纳米棒的结构。
图1为所收集的ZnO-ZnS粉末的XRD检测结果,从该图中可见,ZnS与ZnO的特征峰都非常明显,很好的与二者的特征峰位置相吻合,而且衍射图谱中没有其他明显的杂质峰出现,这说明所制得的样品纯度较高。
图2为所收集的ZnO-ZnS粉末的SEM扫描图,从图中可以看出,碳布表面生长出明显的ZnO-ZnS核壳纳米棒,三维结构特征明显。
图3为所收集的ZnO-ZnS粉末的TEM扫描图,ZnO-ZnS的核壳结构清晰可见,其中外层为ZnS,核心为ZnO。
图4为实施例1所制得的碳布-ZnO-ZnS核壳纳米棒作为锂电池负极材料时在0.1C放电条件下的电化学充放电曲线。由该图可见,在0.1C电流密度下,该锂电池负极材料在第一次循环中放电比容量高达965.4mAh g-1,随着循环的不断进行,电池比容量不断下降,循环200圈之后仍有542.6mAh g-1,反应出该负极材料具有卓越的电化学循环性能。
实施例2:
(1)碳布-ZnO纳米棒复合材料的制备
去50ml的0.5molZn(NO3)2·6H2O,50ml聚乙烯吡咯烷酮水溶液(0.1wt%),50ml去离子水混合搅拌均匀,记为溶液A,同时配置质量分数为0.1%的乌洛托品溶液,记为溶液B,将溶液A和B按照体积比1:1混合并将碳布置入其中,加热至80℃,而后恒温搅拌12h,之后取出碳布并依次用去离子水和乙醇洗涤三次,最后将碳布在50℃的真空烘箱中干燥6h,得到碳布-ZnO纳米棒复合材料。
(2)碳布-ZnO-ZnS核壳结构纳米棒复合材料的制备
将上一步处理过后的碳布置于10ml乙二醇(95wt%)溶液中,搅拌10min后,加入10ml去离子水。然后,将10ml硫代乙酰胺溶液(1.5wt%)滴加到混合溶液中,在室温下搅拌10min后将混合物转移到聚四氟乙烯内衬的反应釜中,将反应釜在100℃加热12h。冷却至室温后收集碳布,用无水乙醇洗涤数次后在60℃的烘箱中干燥6h,即得所需产物。
实施例3:
1)碳布-ZnO纳米棒复合材料的制备
去80ml的0.8molZn(NO3)2·6H2O,80ml聚乙烯吡咯烷酮水溶液(0.1wt%),80ml去离子水混合搅拌均匀,记为溶液A,同时配置质量分数为0.1%的乌洛托品溶液,记为溶液B,将溶液A和B按照体积比1:1混合并将碳布置入其中,加热至90℃,而后恒温搅拌18h,之后取出碳布并依次用去离子水和乙醇洗涤三次,最后将碳布在70℃的真空烘箱中干燥8h,得到碳布-ZnO纳米棒复合材料。
(2)碳布-ZnO-ZnS核壳结构纳米棒复合材料的制备
将上一步处理过后的碳布置于15ml乙二醇(95wt%)溶液中,搅拌20min后,加入15ml去离子水。然后,将15ml硫代乙酰胺溶液(1.5wt%)滴加到混合溶液中,在室温下搅拌20min后将混合物转移到聚四氟乙烯内衬的反应釜中,将反应釜在120℃加热18h。冷却至室温后收集碳布,用无水乙醇洗涤数次后在70℃的烘箱中干燥8h,即得所需产物。

Claims (2)

1.一种锂离子电池负极材料的制备方法,其特征在于,包括(1)碳布-ZnO纳米棒复合材料的制备和(2)碳布-ZnO-ZnS核壳结构纳米棒复合材料的制备两个步骤;
所述的(1)碳布-ZnO纳米棒复合材料的制备的方法为:将0.5~1mol Zn(NO3)2·6H2O、0.1wt%的聚乙烯吡咯烷酮水溶液和去离子水混合并搅拌均匀,记为溶液A,同时配置质量分数为0.1%的乌洛托品溶液,记为溶液B,将溶液A和B按照体积比1:1混合并将碳布置入其中,加热至80~100℃,而后恒温搅拌12~24h,之后取出碳布并依次用去离子水和乙醇洗涤三次,最后将碳布在50~80℃的真空烘箱中干燥6~12h,得到碳布-ZnO纳米棒复合材料;
所述的Zn(NO3)2·6H2O、聚乙烯吡咯烷酮水溶液和去离子水的用量分别为50~100ml;
所述的步骤(2)碳布-ZnO-ZnS核壳结构纳米棒复合材料的制备方法为:将步骤(1)处理后的碳布置于10~20ml乙二醇溶液中,搅拌10~30min后,加入10~20ml去离子水,然后,将10~20ml硫代乙酰胺溶液滴加到混合溶液中,在室温下搅拌10~30min后将混合物转移到聚四氟乙烯内衬的反应釜中,将反应釜在100~130℃加热12~24h,冷却至室温后收集碳布,用无水乙醇洗涤数次后在60~80℃的烘箱中干燥6~12h。
2.根据权利要求1所述的锂离子电池负极材料的制备方法,其特征在于,所述的乙二醇溶液浓度为95wt%,硫代乙酰胺溶液浓度为1.5wt%。
CN201810696268.1A 2018-06-28 2018-06-28 一种锂离子电池负极材料的制备方法 Active CN108963214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810696268.1A CN108963214B (zh) 2018-06-28 2018-06-28 一种锂离子电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810696268.1A CN108963214B (zh) 2018-06-28 2018-06-28 一种锂离子电池负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN108963214A CN108963214A (zh) 2018-12-07
CN108963214B true CN108963214B (zh) 2021-01-15

Family

ID=64487979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810696268.1A Active CN108963214B (zh) 2018-06-28 2018-06-28 一种锂离子电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN108963214B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706321B (zh) * 2019-02-28 2021-07-09 江南大学 一种从盐湖卤水中选择性电吸附锂离子的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490875A (zh) * 2006-07-19 2009-07-22 株式会社Lg化学 具有有机/无机复合物的电极以及包含该电极的电化学装置
EP2230702A1 (en) * 2009-03-19 2010-09-22 Ecole Polytechnique Fédérale de Lausanne (EPFL) Modified surface

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876153B (zh) * 2015-12-13 2018-09-28 中国科学院大连化学物理研究所 一种自支撑结构的电极及其制备和应用
CN107983272A (zh) * 2016-10-26 2018-05-04 中国科学院化学研究所 硫化物包覆型颗粒及其制备方法与应用
CN107946560B (zh) * 2017-11-10 2020-09-08 武汉理工大学 碳限域金属或金属氧化物复合纳米结构材料及其制备方法和应用
CN107887592B (zh) * 2017-11-17 2020-09-01 武汉理工大学 碳包覆ZnO纳米线及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490875A (zh) * 2006-07-19 2009-07-22 株式会社Lg化学 具有有机/无机复合物的电极以及包含该电极的电化学装置
EP2230702A1 (en) * 2009-03-19 2010-09-22 Ecole Polytechnique Fédérale de Lausanne (EPFL) Modified surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
不同参数溅射的ZnO薄膜硫化后的特性;张仁刚等;《物理学报》;20050512(第05期);第2389-2393页 *
硫化氧化两步法提高(110)取向ZnO纳米片比表面及其光电极应用;魏玉龙等;《物理化学学报》;20130915(第09期);第1975-1980页 *

Also Published As

Publication number Publication date
CN108963214A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN108658119B (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN107275639B (zh) 纳米颗粒组装的CoP/C分级纳米线及其制备方法和应用
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN108807912B (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用
CN105280897A (zh) 一种锂离子电池负极材料C/ZnO/Cu复合材料的制备方法
CN110734097A (zh) 含zif67衍生复合碳材料锂硫电池正极材料及制备方法、含其的正极极片和锂硫电池
CN108862238A (zh) 一种生物质废料菱角壳基硬炭及其制备方法和应用
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
CN103400980A (zh) 三氧化二铁/氧化镍核壳纳米棒阵列薄膜及其制备方法和应用
CN108539158B (zh) 一种rGO/WS2复合材料的制备方法及其在锂硫电池正极材料中的应用
CN107742710B (zh) 一种铬基锂离子电池复合负极材料的制备方法
CN111463406B (zh) 锂离子电池用钴掺杂锌基金属硒化物复合电极的制备方法
CN107317019B (zh) 一种钠离子电池负极用碳酸亚铁/石墨烯复合材料及其制备方法与应用
CN113161527A (zh) 一种MOFs衍生硫化钴颗粒复合碳材料的制备方法及其应用
CN108963214B (zh) 一种锂离子电池负极材料的制备方法
CN110931780B (zh) 一种锂离子电池负极材料用ZnFe2O4纳米立方体的制备方法
CN109037640B (zh) 一种锂离子电池负极材料的制备方法
CN104701531B (zh) 原位碳包覆六边形K0.7[Fe0.5Mn0.5]O2纳米材料及其制备方法和应用
CN113735180B (zh) 一种利用ldh基前驱体得到钴铁硫化物制备钠离子电池负极材料的方法
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN115621432A (zh) 一种水系锌离子二次电池正极材料及其制备方法和应用
CN114242972A (zh) 富镍高压钠离子电池正极材料及其制备方法和应用
CN114243007A (zh) 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用
CN113130905A (zh) 一种超小硫化钴纳米片/碳布复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant