CN108906027A - 一种钛酸铅光催化剂用于增强光催化反应的方法 - Google Patents

一种钛酸铅光催化剂用于增强光催化反应的方法 Download PDF

Info

Publication number
CN108906027A
CN108906027A CN201810563016.1A CN201810563016A CN108906027A CN 108906027 A CN108906027 A CN 108906027A CN 201810563016 A CN201810563016 A CN 201810563016A CN 108906027 A CN108906027 A CN 108906027A
Authority
CN
China
Prior art keywords
lead titanates
catalyzed reaction
photochemical catalyst
lead
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810563016.1A
Other languages
English (en)
Inventor
卞振锋
冯亚伟
曹锋雷
李魏
李和兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou Zhili Plastic Plastic Technology Co Ltd
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Huzhou Zhili Plastic Plastic Technology Co Ltd
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou Zhili Plastic Plastic Technology Co Ltd, Shanghai Normal University filed Critical Huzhou Zhili Plastic Plastic Technology Co Ltd
Priority to CN201810563016.1A priority Critical patent/CN108906027A/zh
Publication of CN108906027A publication Critical patent/CN108906027A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)

Abstract

本发明涉及一种钛酸铅光催化剂用于增强光催化反应的方法,将钛酸铅光催化剂用于光催化反应的液相反应体系中,调控该液相反应体系的搅拌速率,通过利用流体机械能诱导压电极化,加上钛酸铅光催化剂本身固有的铁电极化,使钛酸铅光催化剂表观上形成宏观极化电场,以增强光催化反应速率。本发明通过引入耦合铁电极化和压电极化耦合的宏观极化,以此极化晶面选择性的提升光催化反应,将助催化剂选择性的沉积在最优位置,实现高效的光催化反应,在环境治理、光解水产氢、光电材料等方面有着潜在的应用价值。

Description

一种钛酸铅光催化剂用于增强光催化反应的方法
技术领域
本发明涉及光催化剂技术领域,具体涉及一种钛酸铅光催化剂用于增强光催化反应的方法。
背景技术
半导体光催化是一种很有前景的解决环境污染和能源短缺的技术,然而该技术的发展和实际应用严重受限于光生电子-空穴的严重复合所致的催化效率和光量子效率低等问题。传统的提升光催化反应的方法有提升半导体的结晶度、比表面积或暴露晶面、电子结构以及光电催化复合、半导体异质结复合,实验数据表明,通过铁电半导体调制的能带结构可以有效促进广生电子-空穴的分离、提升光催化反应表现,然而由于光激发所注入的载流子能够退极化铁电半导体所固有的铁电极化,因而铁电性促进的光催化反应仅能得到一定幅度的提升。
发明内容
本发明的目的就是为了解决上述问题而提供一种钛酸铅光催化剂用于增强光催化反应的方法,通过利用耦合铁电性与压电性的晶面选择性增强光催化反应。
本发明的目的通过以下技术方案实现:
一种钛酸铅光催化剂用于增强光催化反应的方法,将钛酸铅光催化剂用于光催化反应的液相反应体系中,调控该液相反应体系的搅拌速率,通过利用流体机械能诱导压电极化,加上钛酸铅光催化剂本身固有的铁电极化,使钛酸铅光催化剂表观上形成宏观极化电场,以增强光催化反应速率。
进一步地,所述钛酸铅光催化剂通过以下方法制备得到:将钛源分散在碱液中陈化,再加入铅源,用去离子水稀释后,经水热反应后得到具有圆滑切角的单晶钛酸铅。
进一步地,所述钛源为纳米氧化钛,所述铅源为醋酸铅或硝酸铅,所述铅源与钛源的摩尔比为1:1-1.25。
进一步地,所述碱液为浓度为8M的氢氧化钾溶液。
进一步地,水热反应的温度为180-220℃,反应时间为18-22h。
进一步地,所述单晶钛酸铅上沉积助催化剂,所述助催化剂为Au纳米颗粒、Pt纳米颗粒或Pd纳米颗粒,具体制备方法为:将金属前驱体水溶液分散在去离子水、无水乙醇以及单晶钛酸铅的分散液中,用氙灯辐照,即得到沉积助催化剂的单晶钛酸铅。
进一步地,氙灯的功率为300W,辐照时间为0.5h。
进一步地,利用外置数显磁力搅拌器施加不同的搅拌速率,利用流体机械能在钛酸铅催化剂表面施加压应力,以诱导压电极化形成强度受磁力搅拌转速调制的压电场。
进一步地,磁力搅拌器搅拌的转速为200-1200rpm。
进一步地,光催化反应在光功率密度为10-20mW·cm-2的紫外光辐照下进行。
单晶结构本身具有统一的原子结构,因而铁电单晶体是具有压电性的。考虑到已经受铁电性影响的载流子分离程度已经达到极限,引入压电极化增强的宏观极化可以进一步促进载流子的分离程度,因而光催化反应速率可以得以再次提升,并且通过引入不同程度的压电极化,光催化反应的速率可以得到受控的提升。
本发明利用外置的数显磁力搅拌器施加不同的搅拌速率,以此利用流体机械能在单晶钛酸铅表面施加不同程度的压应力,以此诱导不同强度的压电极化形成强度受磁力搅拌转速调制的压电场,加上钛酸铅本身固有的铁电极化,表观上形成宏观极化电场,流体机械能诱导不同强度的压电极化,因而宏观极化的强度也会随着压电极化的强度的增强也增强,表现出越来越明显的宏观极化电场,通过磁力搅拌转速的提升,光催化降解有机物和光催化析氢的速率得以明显的提升,这种利用耦合铁电性和压电性的晶面选择性提升光催化反应的方法在光催化环境治理和光解水产氢等方面有着潜在的应用价值。
本发明的优点是:
1、本发明提供了一种全新的提升光催化反应的思路,催化剂制备过程简便、提升光催化反应效果明显,仅需要引入适当的压电极化,不需要引入半导体异质结或其他元素掺杂。
2、通过受到调制的宏观极化可使助催化剂金、铂、钯纳米颗粒选择性沉积在正极化晶面,从而进一步加速光催化还原反应速率。
附图说明
图1为实施例1中制备的单晶钛酸铅的TEM图和SAED图;
图2为实施例1中不同磁力搅拌转速下的光催化降解有机物罗丹明B的活性图;
图3为实施例6所得到的沉积铂纳米颗粒的钛酸铅的FESEM图;
图4为实施例6中不同磁力搅拌转速下的光催化析氢的活性图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
将0.4g纳米氧化钛分散在12.5mL 8M的氢氧化钾溶液中,室温下陈化2h,加入适量的醋酸铅,铅元素与钛元素的摩尔比例为1:1.25,再用12.5mL去离子水稀释后,将上述混合分散液200℃水热反应20h即可得到具有尺寸为圆滑切角的钛酸铅单晶。附图1为所得到的钛酸铅的TEM图,可以从选区电子衍射图中的斑点的分布看出,纳米片具有四方相结构的单晶体。附图2给出了本案例中所得的2g/L钛酸铅单晶分散液在15mW·cm-2的紫外光辐照下、不同程度下光催化降解10mg/L罗丹明B染料的活性示意图,表明随重复着搅拌速率增大所诱导的增强的宏观极化更有利于光催化反应。
实施例2
重复实施例1的操作步骤,不同之处在于光催化降解对象为5mg/L罗丹明B染料,结果和实施例1类似,光催化降解速率随着搅拌强度增大得以明显的提升。
实施例3
重复实施例1的操作步骤,不同之处在于光催化降解对象为10mg/L亚甲基蓝染料,结果和实施例1类似,光催化降解速率随着搅拌强度增大得以明显的提升。
实施例4
重复实施例1的操作步骤,不同之处在于光催化降解对象为5mg/L亚甲基蓝染料,结果和实施例1类似,光催化降解速率随着搅拌强度增大得以明显的提升。
实施例5
将有1mg/mL的金的氯金酸溶液分散在80mL去离子水和20mL无水乙醇且含有500mg实施例1中所制备单晶钛酸铅的分散液中,用功率为300W的氙灯辐照0.5h,即可将单晶钛酸铅的正极化晶面上选择性沉积助催化剂金纳米颗粒。将上述粉末按照实施例1中的光催化活性检测方法,光催化降解10mg/L罗丹明B染料,结果和实施例1类似,光催化降解速率随着搅拌强度增大得以明显的提升。
实施例6
将有1mg/mL的铂的氯铂酸溶液分散在80mL去离子水和20mL无水乙醇且含有500mg实施例1中所制备单晶钛酸铅的分散液中,用功率为300W的氙灯辐照0.5h,即可将单晶钛酸铅的正极化晶面上选择性沉积助催化剂铂纳米颗粒。附图3为所得到的正极化面选择性沉积铂纳米颗粒的钛酸铅的FESEM图,可以看出铂纳米颗粒均沉积在单晶的单侧晶面,其镜像位置没有任何铂纳米颗粒沉积。将20mg上述催化剂分散在20mL体积分数为20%酒精的水中进行光催化产氢测试,附图4为在磁力搅拌转速为200rpm时的光催化产氢测试结果,上述光催化剂的光催化产氢速率相对于直接利用硼氢化钠还原的催化剂大幅度提升。
实施例7
重复实施例6中催化剂的制备操作步骤,不同之处在调变不同的磁力搅拌。结果和实施例1中的光催化降解速率加快类似,光催化析氢的速率随着搅拌速率的提升以明显的增快。
实施例8
将有1mg/mL的钯的氯钯酸溶液分散在80mL去离子水和20mL无水乙醇且含有500mg实施例1中所制备单晶钛酸铅的分散液中,用功率为300W的氙灯辐照0.5h,即可将单晶钛酸铅的正极化晶面上选择性沉积助催化剂铂纳米颗粒。将上述粉末按照实施例1中的光催化活性检测方法,光催化降解10mg/L罗丹明B染料,结果和实施例1类似,光催化降解速率随着搅拌强度增大得以明显的提升。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (10)

1.一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,将钛酸铅光催化剂用于光催化反应的液相反应体系中,调控该液相反应体系的搅拌速率,通过利用流体机械能诱导压电极化,加上钛酸铅光催化剂本身固有的铁电极化,使钛酸铅光催化剂表观上形成宏观极化电场,以增强光催化反应速率。
2.根据权利要求1所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,所述钛酸铅光催化剂通过以下方法制备得到:将钛源分散在碱液中陈化,再加入铅源,用去离子水稀释后,经水热反应后得到具有圆滑切角的单晶钛酸铅。
3.根据权利要求2所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,所述钛源为纳米氧化钛,所述铅源为醋酸铅或硝酸铅,所述铅源与钛源的摩尔比为1:1-1.25。
4.根据权利要求2所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,所述碱液为浓度为8M的氢氧化钾溶液。
5.根据权利要求2所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,水热反应的温度为180-220℃,反应时间为18-22h。
6.根据权利要求2所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,所述单晶钛酸铅上沉积助催化剂,所述助催化剂为Au纳米颗粒、Pt纳米颗粒或Pd纳米颗粒,具体制备方法为:将金属前驱体水溶液分散在去离子水、无水乙醇以及单晶钛酸铅的分散液中,用氙灯辐照,即得到沉积助催化剂的单晶钛酸铅。
7.根据权利要求6所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,氙灯的功率为300W,辐照时间为0.5h。
8.根据权利要求1所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,利用外置数显磁力搅拌器施加不同的搅拌速率,利用流体机械能在钛酸铅催化剂表面施加压应力,以诱导压电极化形成强度受磁力搅拌转速调制的压电场。
9.根据权利要求8所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,磁力搅拌器搅拌的转速为200-1200rpm。
10.根据权利要求1所述的一种钛酸铅光催化剂用于增强光催化反应的方法,其特征在于,其特征在于,光催化反应在光功率密度为10-20mW·cm-2的紫外光辐照下进行。
CN201810563016.1A 2018-06-04 2018-06-04 一种钛酸铅光催化剂用于增强光催化反应的方法 Pending CN108906027A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810563016.1A CN108906027A (zh) 2018-06-04 2018-06-04 一种钛酸铅光催化剂用于增强光催化反应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810563016.1A CN108906027A (zh) 2018-06-04 2018-06-04 一种钛酸铅光催化剂用于增强光催化反应的方法

Publications (1)

Publication Number Publication Date
CN108906027A true CN108906027A (zh) 2018-11-30

Family

ID=64418176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810563016.1A Pending CN108906027A (zh) 2018-06-04 2018-06-04 一种钛酸铅光催化剂用于增强光催化反应的方法

Country Status (1)

Country Link
CN (1) CN108906027A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529807A (zh) * 2018-12-23 2019-03-29 上海师范大学 增强光催化降解反应的压电-光催化剂及其制法和应用
CN113426403A (zh) * 2021-06-21 2021-09-24 浙江理工大学 一种PbTiO3微米片-CdS纳米颗粒复合材料、制备方法及应用
CN113499765A (zh) * 2021-07-05 2021-10-15 南方科技大学 一种可涂敷于磁性微型机器人表面的复合压电光催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925980A (zh) * 2012-11-14 2013-02-13 浙江大学 一种四方钙钛矿结构钛酸铅陶瓷单晶纳米片的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925980A (zh) * 2012-11-14 2013-02-13 浙江大学 一种四方钙钛矿结构钛酸铅陶瓷单晶纳米片的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YONGYU LI ET AL.: "Effects of pH and temperature on photocatalytic activity of PbTiO3 synthesized by hydrothermal method", 《SOLID STATE SCIENCES》 *
崔玉民等: "《二氧化钛光催化技术》", 31 December 2010, 北京:中国书籍出版社 *
黄晓强: "钙钛矿结构钛酸铅二维纳米结构的水热合成及其在CO催化氧化上的应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529807A (zh) * 2018-12-23 2019-03-29 上海师范大学 增强光催化降解反应的压电-光催化剂及其制法和应用
CN113426403A (zh) * 2021-06-21 2021-09-24 浙江理工大学 一种PbTiO3微米片-CdS纳米颗粒复合材料、制备方法及应用
CN113499765A (zh) * 2021-07-05 2021-10-15 南方科技大学 一种可涂敷于磁性微型机器人表面的复合压电光催化剂及其制备方法和应用
CN113499765B (zh) * 2021-07-05 2024-02-06 南方科技大学 一种可涂敷于磁性微型机器人表面的复合压电光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhang et al. Generalized synthetic strategy for transition-metal-doped brookite-phase TiO2 nanorods
Khan et al. Hydrothermally stabilized Fe (III) doped titania active under visible light for water splitting reaction
Ahmad et al. Fabrication and photocatalytic applications of perovskite materials with special emphasis on alkali-metal-based niobates and tantalates
Zeng et al. Phase transformation synthesis of strontium tantalum oxynitride-based heterojunction for improved visible light-driven hydrogen evolution
Guo et al. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value‐Added Chemicals
Xu et al. Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water
Wan et al. Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation
CN108906027A (zh) 一种钛酸铅光催化剂用于增强光催化反应的方法
Sun et al. Toward a rational photocatalyst design: a new formation strategy of co-catalyst/semiconductor heterostructures via in situ exsolution
CN101734615B (zh) γ-辐照低温制备金属/二氧化钛复合纳米材料的方法
CN105056963B (zh) 一种三氧化二铁掺杂氧化铈纳米棒复合材料的制备方法
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
Kanazawa et al. Cobalt aluminate spinel as a cocatalyst for photocatalytic oxidation of water: significant hole-trapping effect
CN103691433A (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
CN113649075B (zh) 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法
CN103551146B (zh) 一种贵金属-二氧化钛纳米复合粒子的制备方法
Fang et al. Effect of surface self-heterojunction existed in Bi x Y1–x VO4 on photocatalytic overall water splitting
CN111589447A (zh) 一种异质结纳米颗粒及其制备方法和应用
CN102389836B (zh) 聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法
Meng et al. Piezoelectric effect enhanced plasmonic photocatalysis in the Pt/BaTiO3 heterojunctions
Li et al. A novel visible-light-driven photo-Fenton system composed of Fe-doped CdIn2S4/g-C3N4 heterojunction and H2O2 to remove methyl orange
CN106622198B (zh) 一种复合纳米结构二氧化钛光催化剂及其制备方法
Saito et al. Lepidocrocite-type layered titanate nanoparticles as photocatalysts for H2 production
He et al. In situ synthesis of the mesoporous C–TiO2 microspheres derived from partial hydrolysis tetrabutyl titanate for enhanced photocatalytic degradation under visible light
Zhu et al. Photochemical deposition of amorphous MoS x on one-dimensional NaNbO 3–CdS heterojunction photocatalysts for highly efficient visible-light-driven hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130

RJ01 Rejection of invention patent application after publication