CN108892423A - 一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法 - Google Patents

一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法 Download PDF

Info

Publication number
CN108892423A
CN108892423A CN201810788533.9A CN201810788533A CN108892423A CN 108892423 A CN108892423 A CN 108892423A CN 201810788533 A CN201810788533 A CN 201810788533A CN 108892423 A CN108892423 A CN 108892423A
Authority
CN
China
Prior art keywords
composite heat
preparation
aluminum oxide
insulated material
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810788533.9A
Other languages
English (en)
Inventor
何飞
周粮
李文洁
张鑫
李明伟
赫晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810788533.9A priority Critical patent/CN108892423A/zh
Publication of CN108892423A publication Critical patent/CN108892423A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/005Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing gelatineous or gel forming binders, e.g. gelatineous Al(OH)3, sol-gel binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5036Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5042Zirconium oxides or zirconates; Hafnium oxides or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors

Abstract

一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,涉及一种复合隔热材料的制备方法。本发明是要解决现有的有序孔氧化铝模板的隔热性能和力学性能较差,且SiO2气凝胶的易于碎裂,难以成型的技术问题。本发明:一、制备Al2O3溶胶;二、制备陶瓷浆料;三、定向冷冻;四、浸渍;五、冷冻干燥。本发明所制备的复合隔热材料具有良好的纳米级微孔结构,降低了Al2O3模板热导率,提高了复合隔热材料的隔热性能和力学性能。复合隔热材料沿着模板的冰晶生长方向的强度与模量都有所提高,且保持了复合隔热材料的各向异性性能,复合隔热材料沿着冰晶生长方向与垂直于其生长方向的隔热性能、力学性能都有所差别。

Description

一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制 备方法
技术领域
本发明涉及一种复合隔热材料的制备方法。
背景技术
气凝胶材料是一种由纳米颗粒堆积形成的具有三维空间网状结构的轻质材料,同时还有高比表面积、高孔隙率、低热导率、光学透过性高、折射率低、热导率低等优秀的特征,广泛应用于隔热、隔音、绝缘、吸附、催化等领域。即便氧化硅气凝胶材料具有多种优异性能,但是这种材料同时还具有不易成型,成品易于碎裂的特征。这些在力学性能上的缺点限制了气凝胶材料的应用与发展。
采用冰模板法(采用冷冻注模法)制备的有序孔氧化铝模板,是一种具定向介孔结构的新型材料。该方法是将配置的低温冷冻凝胶或陶瓷浆料,在低压下排除固化的液体介质,从而直接获得多孔材料的成型方法。这种材料具有以下特征:(1)制备所得到的材料密度小,重量轻;(2)制备工艺简单;(3)通过合理控制孔隙大小,能够更加充分发挥多孔材料的潜力;(4)定向的孔结构使具有较高的比强度和优良的机械性能;(5)大部分条件下使用水作为溶剂,造孔成本较低。但是现有的冷冻注模法制备的有序孔氧化铝模板材料的隔热性能和力学性能较差,无法满足隔热的需求。
发明内容
本发明是要解决现有的有序孔氧化铝模板的隔热性能和力学性能较差,且SiO2气凝胶的易于碎裂,难以成型的技术问题,而提供一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法。
本发明的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法是按以下步骤进行的:
一、制备Al2O3溶胶:将仲丁醇铝或异丙醇铝溶解在水中,得到混合溶液,在90℃~95℃水浴和搅拌条件下回流1h~1.5h,然后加入硝酸,继续在90℃~95℃水浴和搅拌条件下回流9h~12h,自然冷却至室温,得到Al2O3溶胶;所述的混合溶液中仲丁醇铝或异丙醇铝与水的摩尔比为1:(60~120);所述的硝酸的质量浓度为65%~68%;所述的硝酸与混合溶液的体积比为1:(50~55);
二、制备陶瓷浆料:将步骤一制备的Al2O3溶胶在50℃条件下回流10min~30min,加入粘结剂,在50℃条件下搅拌回流5min~20mim,再加入分散剂,在50℃条件下搅拌回流5min~20mim,再加入Al2O3粉末,然后在50℃水浴和搅拌条件下回流2h~4h,自然冷却至室温,得到Al2O3浆料;所述的Al2O3浆料中Al2O3的质量分数为10%~30%;所述的粘结剂的质量与步骤一制备的Al2O3溶胶和步骤二中加入的Al2O3粉末的总质量的比为1:(65~70);所述的分散剂与Al2O3浆料中Al2O3的质量比为1:(20~25);
三、定向冷冻:将步骤二制备的Al2O3浆料放入聚四氟乙烯模具当中,用定向冷冻设备在零下40~零下80℃进行定向冷冻,然后放入冷冻干燥机中,在真空和温度为零下50℃~零下70℃的条件下进行干燥处理48h~75h,得到具有定向孔结构的Al2O3模板;
四、浸渍:采用真空浸渍的方法将无机溶胶浸渍到步骤三制备的具有定向孔结构的Al2O3模板中,然后在90℃~95℃的水浴在加热1h~2h,最后在去离子水中浸泡20h~24h,放入冰箱在零下10℃~零下18℃冷冻1h~4h,得到无机凝胶填充有序孔氧化铝模板材料;
五、冷冻干燥,将步骤四制备的无机凝胶填充有序孔氧化铝模板材料放入冷冻干燥机中进行真空冷冻干燥,得到无机气凝胶填充有序孔氧化铝模板的复合隔热材料;所述的真空冷冻干燥的温度是零下50℃~零下70℃,冷冻干燥时间为48h~75h。本发明的所制备的复合隔热材料的平均孔径为31.7nm,具有良好的纳米级微孔结构;本发明降低了Al2O3模板热导率,提高了复合隔热材料的隔热性能;本发明提高复合隔热材料的力学性能,复合隔热材料沿着模板的冰晶生长方向的强度与模量都有所提高;本发明保持了复合隔热材料的各向异性性能,复合隔热材料沿着冰晶生长方向与垂直于其生长方向的隔热性能、力学性能都有所差别。
本发明采用真空浸渍法完成了一种具有纳米级微孔结构的,具有各向异性的隔热材料。实验证明,本发明的所制备的复合隔热材料中沿着冰晶生长方向的热导率更低,模量、强度更高。
本发明制备的具有各向异性能的多孔复合隔热材料,通过红外通过氮气吸附测试得到SiO2良好的填充了Al2O3模板。通过氮气吸附测试得到复合材料比表面积为231.5m2/g,孔体积为1.862cm3/g,平均孔径为31.7nm。
通过瞬态平面热源法对于气凝胶填充有序孔Al2O3模板样品的热导率进行测试,沿着冰晶生长方向热导率为0.05210W/(m·K),垂直于冰晶生长方向热导率为0.04191W/(m·K)。
附图说明
图1为本试验步骤三制备的具有定向孔结构的Al2O3的截面的SEM扫描照片;
图2为具体实施方式六中真空浸渍的方法的装置示意图;
图3为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的SEM照片;
图4为图3中区域A的放大图;
图5为FT-IR曲线;
图6为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的氮气吸附-脱附曲线;
图7为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的孔径分布曲线;
图8为沿冰晶生长方向的应力-应变曲线;
图9为沿垂直冰晶生长方向的应力-应变曲线。
具体实施方式
具体实施方式一:本实施方式为一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,具体是按以下步骤进行的:
一、制备Al2O3溶胶:将仲丁醇铝或异丙醇铝溶解在水中,得到混合溶液,在90℃~95℃水浴和搅拌条件下回流1h~1.5h,然后加入硝酸,继续在90℃~95℃水浴和搅拌条件下回流9h~12h,自然冷却至室温,得到Al2O3溶胶;所述的混合溶液中仲丁醇铝或异丙醇铝与水的摩尔比为1:(60~120);所述的硝酸的质量浓度为65%~68%;所述的硝酸与混合溶液的体积比为1:(50~55);
二、制备陶瓷浆料:将步骤一制备的Al2O3溶胶在50℃条件下回流10min~30min,加入粘结剂,在50℃条件下搅拌回流5min~20mim,再加入分散剂,在50℃条件下搅拌回流5min~20mim,再加入Al2O3粉末,然后在50℃水浴和搅拌条件下回流2h~4h,自然冷却至室温,得到Al2O3浆料;所述的Al2O3浆料中Al2O3的质量分数为10%~30%;所述的粘结剂的质量与步骤一制备的Al2O3溶胶和步骤二中加入的Al2O3粉末的总质量的比为1:(65~70);所述的分散剂与Al2O3浆料中Al2O3的质量比为1:(20~25);
三、定向冷冻:将步骤二制备的Al2O3浆料放入聚四氟乙烯模具当中,用定向冷冻设备在零下40~零下80℃进行定向冷冻,然后放入冷冻干燥机中,在真空和温度为零下50℃~零下70℃的条件下进行干燥处理48h~75h,得到具有定向孔结构的Al2O3模板;
四、浸渍:采用真空浸渍的方法将无机溶胶浸渍到步骤三制备的具有定向孔结构的Al2O3模板中,然后在90℃~95℃的水浴在加热1h~2h,最后在去离子水中浸泡20h~24h,放入冰箱在零下10℃~零下18℃冷冻1h~4h,得到无机凝胶填充有序孔氧化铝模板材料;
五、冷冻干燥,将步骤四制备的无机凝胶填充有序孔氧化铝模板材料放入冷冻干燥机中进行真空冷冻干燥,得到无机气凝胶填充有序孔氧化铝模板的复合隔热材料;所述的真空冷冻干燥的温度是零下50℃~零下70℃,冷冻干燥时间为48h~75h。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤二中所述的粘结剂为羟乙基纤维素。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二中所述的分散剂为十六烷基三甲基溴化铵。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤四中所述的无机溶胶为氧化硅溶胶、氧化钛溶胶、氧化锆溶胶、氧化钙溶胶、四氧化三铁溶胶、五氧化二钒溶胶中的一种或几种的混合物。其他与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式四不同的是:所述的氧化硅溶胶的制备方法为:将TEOS溶解在无水乙醇中,再加入水,得到TEOS溶液,然后在40℃~50℃的恒温水浴条件下搅拌10min~20min,滴入盐酸乙醇溶液,在40℃~50℃的水浴中继续搅拌1h~2h,加入尿素搅拌至尿素完全溶解,得到氧化硅溶胶;所述的TEOS溶液中TEOS、乙醇和水的摩尔比为1:(4~10):4;所述的盐酸乙醇溶液中氯化氢的浓度是2%;所述的盐酸乙醇溶液中氯化氢与TEOS物质的量的比为(5~7):10000;所述的尿素的物质的量是TEOS物质的量的0.833%。其他与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤四中采用真空浸渍的方法将无机溶胶浸渍到步骤三制备的具有定向孔结构的Al2O3模板中的方法为:如图2所示,具有定向孔结构的Al2O3模板2放置在烧杯8中,烧杯8放置在真空室1内,真空室1与真空泵3的抽气口连通,真空室1设置有泄压阀6,连通管7的一端进入到真空室1内并伸入到烧杯8中,且连通管7与真空室1密封连接,连通管7的另一端进入到无机溶胶4中,连通管7上设置阀门5,无机溶胶4在真空室1的外部;
真空浸渍时,将阀门5和泄压阀6均关闭,打开真空泵3抽真空至真空室1内的气压小于500Pa,打开阀门5使无机溶胶4通过连通管7浸入真空室1内装有具有定向孔结构的Al2O3模板2的烧杯8中至无机溶胶4完全淹没具有定向孔结构的Al2O3模板2,关闭阀门5使无机溶胶4不再进入真空室1中,同时打开泄压阀6泄压至真空室1的内气压大于90KPa,关闭真空泵3,即可取出浸渍好的样品。其他与具体实施方式一至五之一相同。
用以下试验对本发明进行验证:
试验一:本试验为一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,具体是按以下步骤进行的:
一、制备Al2O3溶胶:将仲丁醇铝溶解在水中,得到混合溶液,在90℃水浴和搅拌条件下回流1h,然后加入硝酸,继续在90℃水浴和搅拌条件下回流9h,自然冷却至室温,得到Al2O3溶胶;所述的混合溶液中仲丁醇铝与水的摩尔比为1:60;所述的硝酸的质量浓度为65%~68%;所述的硝酸与混合溶液的体积比为1:50;
二、制备陶瓷浆料:将步骤一制备的Al2O3溶胶在50℃条件下回流10min,加入粘结剂,在50℃条件下搅拌回流5min,再加入分散剂,在50℃条件下搅拌回流5min,再加入Al2O3粉末,然后在50℃水浴和搅拌条件下回流2h,自然冷却至室温,得到Al2O3浆料;所述的Al2O3浆料中Al2O3的质量分数为15%;所述的粘结剂的质量与步骤一制备的Al2O3溶胶和步骤二中加入的Al2O3粉末的总质量的比为1:66.7;所述的分散剂与Al2O3浆料中Al2O3的质量比为1:20;步骤二中所述的粘结剂为羟乙基纤维素;步骤二中所述的分散剂为十六烷基三甲基溴化铵;
三、定向冷冻:将步骤二制备的Al2O3浆料放入聚四氟乙烯模具当中,用定向冷冻设备在零下70℃进行定向冷冻,然后放入冷冻干燥机中,在真空和温度为零下60℃的条件下进行干燥处理72h,得到具有定向孔结构的Al2O3模板;
四、浸渍:采用真空浸渍的方法将无机溶胶浸渍到步骤三制备的具有定向孔结构的Al2O3模板中,然后在90℃的水浴在加热1h,最后在去离子水中浸泡24h,放入冰箱在零下10℃~零下18℃冷冻4h,得到无机凝胶填充有序孔氧化铝模板材料;所述的无机溶胶为氧化硅溶胶;
五、冷冻干燥,将步骤四制备的无机凝胶填充有序孔氧化铝模板材料放入冷冻干燥机中进行真空冷冻干燥,得到无机气凝胶填充有序孔氧化铝模板的复合隔热材料;所述的真空冷冻干燥的温度是零下60℃,冷冻干燥时间为72h。
图1为本试验步骤三制备的具有定向孔结构的Al2O3的截面的SEM扫描照片,从图中能观察到氧化铝模板的定向多孔结构,并初步得到模板的孔径约为50μm。
图3为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的SEM照片,从图中可以看到,SiO2溶胶已经浸入Al2O3模板的骨架中,并完全填充了有序孔。图4为图3中区域A的放大图,这是Al2O3模板骨架内SiO2凝胶颗粒的放大照片,从图中可以看到,浸入的SiO2凝胶呈现出气凝胶典型的纳米多孔网络结构,颗粒尺度约为50nm。
对本试验步骤三制备的具有定向孔结构的Al2O3模板和无机气凝胶填充有序孔氧化铝模板的复合隔热材料分别进行热导率的测试,分别从Al2O3模板的沿冰晶生长方向和垂直冰晶生长方向进行了热导率测试。测试结果表明,具有定向孔结构的Al2O3模板沿着冰晶生长方向的热导率为0.0941W/(m·K),垂直于冰晶生长方向的热导率为0.07691W/(m·K);无机气凝胶填充有序孔氧化铝模板的复合隔热材料沿着冰晶生长方向的热导率为0.0521W/(m·K),垂直于冰晶生长方向的热导率为0.04191W/(m·K),较未填充的具有定向孔结构的Al2O3模板有较大的降低。
为研究SiO2气凝胶浸渍Al2O3模板官能团的分布,并比较浸渍前后的变化情况,对复合材料进行了FT-IR分析。图5为FT-IR曲线,曲线a为步骤三制备的具有定向孔结构的Al2O3模板,曲线b为无机气凝胶填充有序孔氧化铝模板的复合隔热材料,对比这两个样品的FT-IR曲线可以发现,浸渍后的样品在保持中勃姆石相关吸收峰的基础上,浸渍SiO2后,在474cm-1、569cm-1和783cm-1新增三个吸收峰位,分别对应着Si-O-Si弯曲振动、伸缩振动和对称伸缩振动;945cm-1吸收峰代表Si–OH的反伸缩振动;1082cm-1和1159cm-1两处强而宽的吸收带是Si-O-Si的反伸缩振动吸收峰。这说明浸渍后Al2O3模板孔隙中的填充物质为SiO2。同时,两个样品相近的吸收峰峰位均得以加强,如632cm-1和474cm-1等位置,这说明吸收峰峰位接近的某些Si-O基团和Al-O基团吸收峰可相互叠加。通过上述分析可知,Al2O3模板浸渍SiO2后,复合气凝胶中模板依旧是水合Al2O3γ-AlOOH的状态,浸渍前后模板的官能团并未发生变化。除此以外,1658cm-1和3336cm-1分别对应水中H-O-H的弯曲振动吸收峰和结构水中-OH反伸缩振动吸收峰,说明复合气凝胶中有结合水存在。对比蛋白石的红外图谱发现,二者官能团分布情况一致,因此推断复合气凝胶中的SiO2主要以SiO2·H2O的形式存在。根据以上分析可知,浸渍后模板中的勃姆石相和SiO2不发生反应,浸渍的SiO2主要以蛋白石状态存在于孔隙中。
图6为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的氮气吸附-脱附曲线,图7为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料的孔径分布曲线。从图中可以看出,吸附-脱附曲线的中高压位置出现H3类滞后环,属于IV型等温吸附曲线,说明引入的SiO2凝胶是典型的介孔结构。由于浸渍SiO2溶胶后,有序微米孔洞被纳米凝胶颗粒填充,因此,氮气吸附-脱附的测试结果主要反映孔内填充的SiO2凝胶的孔结构特征。基于脱附曲线,计算得到浸渍后的复合材料比表面积为231.5m2/g,孔体积为1.862cm3/g,平均孔径为31.7nm,呈现纳米多孔材料的结构特征。
SiO2溶胶浸渍Al2O3气凝胶模板后,由于SiO2溶胶填充了模板孔隙,因此,获得的Al2O3-SiO2气凝胶复合材料力学性能将发生改变。为探究浸渍前后力学行为的变化,对样品分别进行了沿冰晶生长方向和垂直冰晶生长方向的单轴压缩实验。图8为沿冰晶生长方向的应力-应变曲线,曲线1为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料,曲线2为本试验步骤三制备的具有定向孔结构的Al2O3模板,从图中可以看出沿冰晶生长方向施加压应力,浸渍前后样品的应力-应变曲线变化趋势一致,说明浸渍后的复合材料仍然具有一定的脆性。经测定,复合材料的抗压强度为0.7922±0.2198MPa,压缩模量为9.2770±1.4712MPa。与Al2O3模板相比,其抗压强度和压缩模量均有所增加,这说明SiO2溶胶浸渍后显著提高了该方向的抗压缩能力。在Al2O3模板压缩应力-应变曲线中还可以看到,当应变量超过约7.4%之后,应力有明显下降,这说明样品此时已经发生明显的脆性断裂。
图9为沿垂直冰晶生长方向的应力-应变曲线,曲线1为本试验制备的无机气凝胶填充有序孔氧化铝模板的复合隔热材料,曲线2为本试验步骤三制备的具有定向孔结构的Al2O3模板,从图中可以看出沿垂直冰晶生长方向施加压应力,浸渍后的样品呈现出明显的脆性断裂特征。经测定,浸渍后的样品的抗压强度为0.0913±0.0369MPa,压缩模量0.7689±0.3361MPa。由于Al2O3模板的“桥联”结构很弱,SiO2溶胶浸渍后,主要的承载材料为SiO2凝胶,因此也呈现明显的脆性特征。当应变量超过约16.4%之后,应力存在一定程度的下降,这说明样品此时已经发生脆性断裂,且此时的断裂主要反映在SiO2凝胶的破坏上。随后,在较长变形范围内,其应力值持续微弱下降,这说明材料发生了坍塌。应变量接近约70%后的明显上升与材料被压实有关。
浸渍后的复合材料的力学性能仍然具有各向异性的特征,这说明决定其强度的主体是沿冰晶生长方向的大尺寸孔壁,也就是浸渍前的Al2O3模板。浸渍后,虽然SiO2凝胶填充了多孔结构,但是定向的Al2O3模板骨架并没有发生较大变化,对承载起到一定作用。沿垂直方向施加载荷,微弱的“桥联”结构和脆性的SiO2凝胶均对材料力学性能贡献不大,呈现出脆性特征。

Claims (5)

1.一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,其特征在于无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法是按以下步骤进行的:
一、制备Al2O3溶胶:将仲丁醇铝或异丙醇铝溶解在水中,得到混合溶液,在90℃~95℃水浴和搅拌条件下回流1h~1.5h,然后加入硝酸,继续在90℃~95℃水浴和搅拌条件下回流9h~12h,自然冷却至室温,得到Al2O3溶胶;所述的混合溶液中仲丁醇铝或异丙醇铝与水的摩尔比为1:(60~120);所述的硝酸的质量浓度为65%~68%;所述的硝酸与混合溶液的体积比为1:(50~55);
二、制备陶瓷浆料:将步骤一制备的Al2O3溶胶在50℃条件下回流10min~30min,加入粘结剂,在50℃条件下搅拌回流5min~20mim,再加入分散剂,在50℃条件下搅拌回流5min~20mim,再加入Al2O3粉末,然后在50℃水浴和搅拌条件下回流2h~4h,自然冷却至室温,得到Al2O3浆料;所述的Al2O3浆料中Al2O3的质量分数为10%~30%;所述的粘结剂的质量与步骤一制备的Al2O3溶胶和步骤二中加入的Al2O3粉末的总质量的比为1:(65~70);所述的分散剂与Al2O3浆料中Al2O3的质量比为1:(20~25);
三、定向冷冻:将步骤二制备的Al2O3浆料放入聚四氟乙烯模具当中,用定向冷冻设备在零下40~零下80℃进行定向冷冻,然后放入冷冻干燥机中,在真空和温度为零下50℃~零下70℃的条件下进行干燥处理48h~75h,得到具有定向孔结构的Al2O3模板;
四、浸渍:采用真空浸渍的方法将无机溶胶浸渍到步骤三制备的具有定向孔结构的Al2O3模板中,然后在90℃~95℃的水浴在加热1h~2h,最后在去离子水中浸泡20h~24h,放入冰箱在零下10℃~零下18℃冷冻1h~4h,得到无机凝胶填充有序孔氧化铝模板材料;
五、冷冻干燥,将步骤四制备的无机凝胶填充有序孔氧化铝模板材料放入冷冻干燥机中进行真空冷冻干燥,得到无机气凝胶填充有序孔氧化铝模板的复合隔热材料;所述的真空冷冻干燥的温度是零下50℃~零下70℃,冷冻干燥时间为48h~75h。
2.根据权利要求1所述的一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,其特征在于步骤二中所述的粘结剂为羟乙基纤维素。
3.根据权利要求1所述的一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,其特征在于步骤二中所述的分散剂为十六烷基三甲基溴化铵。
4.根据权利要求1所述的一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,其特征在于步骤四中所述的无机溶胶为氧化硅溶胶、氧化钛溶胶、氧化锆溶胶、氧化钙溶胶、四氧化三铁溶胶、五氧化二钒溶胶中的一种或几种的混合物。
5.根据权利要求4所述的一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法,其特征在于所述的氧化硅溶胶的制备方法为:将TEOS溶解在无水乙醇中,再加入水,得到TEOS溶液,然后在40℃~50℃的恒温水浴条件下搅拌10min~30min,滴入盐酸乙醇溶液,在40℃~50℃的水浴中继续搅拌0.5h~1h,加入尿素搅拌至尿素完全溶解,得到氧化硅溶胶;所述的TEOS溶液中TEOS、乙醇和水的摩尔比为1:(4~10):4;所述的盐酸乙醇溶液中氯化氢的浓度是2%;所述的盐酸乙醇溶液中氯化氢与TEOS物质的量的比为(5~7):10000;所述的尿素的物质的量是TEOS物质的量的0.833%。
CN201810788533.9A 2018-07-17 2018-07-17 一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法 Pending CN108892423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810788533.9A CN108892423A (zh) 2018-07-17 2018-07-17 一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810788533.9A CN108892423A (zh) 2018-07-17 2018-07-17 一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法

Publications (1)

Publication Number Publication Date
CN108892423A true CN108892423A (zh) 2018-11-27

Family

ID=64351041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810788533.9A Pending CN108892423A (zh) 2018-07-17 2018-07-17 一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法

Country Status (1)

Country Link
CN (1) CN108892423A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467207A (zh) * 2019-09-02 2019-11-19 哈尔滨工业大学 一种勃姆石纳米棒气凝胶的制备方法
CN110512310A (zh) * 2019-09-03 2019-11-29 哈尔滨工业大学 一种微米级氧化铝纤维的制备方法
CN114603938A (zh) * 2022-03-24 2022-06-10 哈尔滨工业大学 一种层状聚酰亚胺/氧化铝复合气凝胶的制备方法
CN116375446A (zh) * 2023-04-10 2023-07-04 兰州大学 一种仿生高强韧三维石墨烯基硅酸盐复合材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962547A (zh) * 2006-12-06 2007-05-16 中国科学院上海硅酸盐研究所 溶胶凝胶-冷冻干燥工艺制备氧化铝多孔陶瓷的方法
CN105541369A (zh) * 2015-12-14 2016-05-04 西北工业大学 一种基于冰模板法制备多孔陶瓷的定向凝固装置及方法
CN107043224A (zh) * 2017-03-29 2017-08-15 南京工业大学 一种泡沫玻璃‑SiO2气凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962547A (zh) * 2006-12-06 2007-05-16 中国科学院上海硅酸盐研究所 溶胶凝胶-冷冻干燥工艺制备氧化铝多孔陶瓷的方法
CN105541369A (zh) * 2015-12-14 2016-05-04 西北工业大学 一种基于冰模板法制备多孔陶瓷的定向凝固装置及方法
CN107043224A (zh) * 2017-03-29 2017-08-15 南京工业大学 一种泡沫玻璃‑SiO2气凝胶的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467207A (zh) * 2019-09-02 2019-11-19 哈尔滨工业大学 一种勃姆石纳米棒气凝胶的制备方法
CN110467207B (zh) * 2019-09-02 2021-11-09 哈尔滨工业大学 一种勃姆石纳米棒气凝胶的制备方法
CN110512310A (zh) * 2019-09-03 2019-11-29 哈尔滨工业大学 一种微米级氧化铝纤维的制备方法
CN110512310B (zh) * 2019-09-03 2021-12-21 哈尔滨工业大学 一种微米级氧化铝纤维的制备方法
CN114603938A (zh) * 2022-03-24 2022-06-10 哈尔滨工业大学 一种层状聚酰亚胺/氧化铝复合气凝胶的制备方法
CN114603938B (zh) * 2022-03-24 2023-03-28 哈尔滨工业大学 一种层状聚酰亚胺/氧化铝复合气凝胶的制备方法
CN116375446A (zh) * 2023-04-10 2023-07-04 兰州大学 一种仿生高强韧三维石墨烯基硅酸盐复合材料
CN116375446B (zh) * 2023-04-10 2024-02-06 兰州大学 一种仿生高强韧三维石墨烯基硅酸盐复合材料

Similar Documents

Publication Publication Date Title
CN108892423A (zh) 一种无机气凝胶填充有序孔氧化铝模板的复合隔热材料的制备方法
Zhang et al. Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite–zirconia composites produced using sol-gel impregnation
Yun et al. Ambient-pressure drying synthesis of large resorcinol–formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity
Huang et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels
CN101955350B (zh) 一种改性氧化铝气凝胶复合材料及其制备方法
CN101698592B (zh) 一种硅铝气凝胶复合材料及其制备方法
CN101948296B (zh) 一种高性能隔热材料及其制备方法
CN105967728A (zh) 一种纤维增强Al2O3-SiO2气凝胶高效隔热复合材料及其制备方法
CN110172185A (zh) 一种各向异性纳米纤维素气凝胶及其制备方法和装置
CN106007803B (zh) 耐高温多孔陶瓷/氧化铝气凝胶隔热材料
Fei et al. Preparation and characterization of glass fiber/polyimide/SiO 2 composite aerogels with high specific surface area
PT107101A (pt) Painéis flexíveis de aerogel hidrofóbico reforçado com feltro de fibras
CN106084274B (zh) 一种轻质高强保温泡沫复合材料的制备方法
Xu et al. Facile synthesis, mechanical toughening, low thermal conductivity and fire-retardant of lightweight quartz fiber reinforced polymer nanocomposites
CN112920449B (zh) 一种具有极低收缩率的低密高强酚醛树脂气凝胶常压干燥制备方法
Tian et al. Mechanical and thermal-insulating performance of silica aerogel enhanced jointly with glass fiber and fumed silica by a facile compressing technique
CN109081673A (zh) 一种纤维增强氧化铝气凝胶复合材料及其制备方法
Fei et al. Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 4, 4′-oxydianiline
CN109095883B (zh) 一种纤维增强氧化铝-氧化硅二元气凝胶复合材料及其制备方法
CN108610086B (zh) 一种三维网络状多孔纤维质隔热材料的制备方法
Yang et al. Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the sol–gel method via ambient pressure drying
CN105131221B (zh) 一种间苯二酚‑甲醛/二氧化硅气凝胶的制备方法
CN109701494A (zh) 气凝胶复合材料及其制备方法
CN106854086A (zh) 一种耐高温的莫来石型气凝胶复合材料及其制备方法
Kraiwattanawong et al. Low-cost production of mesoporous carbon/carbon composite cryogels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181127