CN108866412B - 三维多孔复合材料的制备方法 - Google Patents

三维多孔复合材料的制备方法 Download PDF

Info

Publication number
CN108866412B
CN108866412B CN201710317874.3A CN201710317874A CN108866412B CN 108866412 B CN108866412 B CN 108866412B CN 201710317874 A CN201710317874 A CN 201710317874A CN 108866412 B CN108866412 B CN 108866412B
Authority
CN
China
Prior art keywords
carbon nanotube
carbon
metal
composite material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710317874.3A
Other languages
English (en)
Other versions
CN108866412A (zh
Inventor
付红颖
李文珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201710317874.3A priority Critical patent/CN108866412B/zh
Priority to TW106118969A priority patent/TWI652375B/zh
Priority to US15/792,791 priority patent/US10253423B2/en
Priority to JP2018088667A priority patent/JP6634468B2/ja
Publication of CN108866412A publication Critical patent/CN108866412A/zh
Application granted granted Critical
Publication of CN108866412B publication Critical patent/CN108866412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种三维多孔复合材料的制备方法,包括以下步骤:提供一惰性金属的盐溶液及一活泼金属的盐溶液;提供一基板,在该基板的表面电镀所述惰性金属的盐溶液形成镀膜M;在所述镀膜M的表面设置一个碳纳米管结构;在所述碳纳米管结构的表面电镀所述活泼金属的盐溶液形成一镀膜N,剥离所述基板,得到复合结构;对所述复合结构进行高温退火,使所述复合结构中的活泼金属和惰性金属形成合金,得到一预制体;对所述预制体进行腐蚀形成多孔结构,得到三维多孔复合材料。

Description

三维多孔复合材料的制备方法
技术领域
本发明涉及一种三维多孔复合材料的制备方法,尤其涉及一种基于碳纳米管的三维多孔复合材料的制备方法。
背景技术
目前,由于纳米多孔金属材料具有高比表面积、比模量等特性,同时还兼具金属材料的高导热率、高导电率等优异性能,从而在催化、能量存储与转化、生物传感、分子检测、消音吸振、屏蔽、热交换、电化学等领域中有着广阔的应用前景。
然而,在应用过程中,现有技术一般都是将纳米多孔金属材料本身与其他结构通过简单组合的方式结合得到纳米多孔金属复合材料,例如器件中的电极传统组装方式是通过纳米材料的合成,与粘结剂混合,再涂布于集流体上。虽然纳米多孔金属材料单元具有优越的物理化学性能,但经过这种传统组装的宏观尺寸电极通常具有较大的内阻,从而抑制了纳米活性材料的高服役性能;且由于纳米多孔金属复合材料本身非常易碎,不具备自支持的性能,使得到的纳米多孔金属复合材料仍然存在稳定性差、电导率低以及强度差的问题,从而影响其应用。
发明内容
有鉴于此,确有必要提供一种具有较强稳定性、较高强度及良好导电性的三维多孔复合材料的制备方法。
一种三维多孔复合材料的制备方法,包括以下步骤:
步骤S10,提供一惰性金属的盐溶液及一活泼金属的盐溶液;
步骤S20,提供一基板,在该基板的表面电镀所述惰性金属的盐溶液形成镀膜M;
步骤S30,在所述镀膜M的表面设置一个碳纳米管结构;
步骤S40,在所述碳纳米管结构的表面电镀所述活泼金属的盐溶液形成一镀膜N,剥离所述基板,得到复合结构;
步骤S50,对所述复合结构进行高温退火,使所述复合结构中的活泼金属和惰性金属形成合金,得到一预制体;
步骤S60,对所述预制体进行腐蚀形成多孔结构,得到三维多孔复合材料。
与现有技术相比较,本发明提供的三维多孔复合材料制备方法,先将至少一碳纳米管结构设置在惰性金属与活泼金属之间,然后才利用去合金化技术形成多孔结构,所述碳纳米管结构中的多根碳纳米管部分嵌入在金属韧带中,部分位于孔内,提高了三维多孔复合材料的导电性、韧性、稳定性以及强度,同时增大了三维多孔复合材料的比表面积;碳纳米管与金属的接触处具有共格界面,消除了碳纳米管与金属之间的接触电阻,进一步提高了三维多孔复合材料的导电性。
附图说明
图1是本发明实施例中三维多孔复合材料的结构示意图。
图2是本发明实施例中多根碳纳米管设置于三维多孔复合材料的金属韧带中的扫描电镜图。
图3是本发明实施例图1中三维多孔复合材料制备方法的流程图。
图4a是本发明实施例用0.05m/L的稀盐酸腐蚀后形成的三维多孔复合材料的扫描电镜图。
图4b是图4a形成的三维多孔复合材料的横截面扫描电镜图。
图5是本发明实施例中用0.05m/L的稀盐酸电化学腐蚀后形成的三维多孔复合材料的扫描电镜图。
图6是本发明实施例中三维多孔复合材料在低倍下的扫描电镜图。
图7是本发明实施例中用0.05m/L的稀盐酸腐蚀15个小时形成的三维多孔复合材料的扫描电镜图。
具体实施方式
以下将结合附图及具体实施例,对本发明提供的三维多孔复合材料及其制备方法作进一步详细说明。
请参阅图1及图2,本发明实施例提供一种三维多孔复合材料,该三维多孔复合材料包括金属韧带和至少一个碳纳米管结构,所述金属韧带之间形成多孔结构,该至少一个碳纳米管结构设置于所述金属韧带中,所述至少一个碳纳米管结构包括至少一层碳纳米管膜,该至少一层碳纳米管膜包括多个碳纳米管,该多个碳纳米管首尾相连且沿同一方向择优取向排列。
可以理解为,所述三维多孔复合材料呈三维网状,所述多孔结构是由金属韧带相互交错形成多个孔的结构。所述多个孔可以呈规则分布,如三维双连续网络形式分布,也可以呈不规则分布。该多个孔的孔径小于等于100μm。该多个孔的形成方法不限。优选的,所述金属韧带的材料可以为铜、汞、银、铂、金等惰性金属中的任意一种。本实施例中,所述金属韧带的材料为铜。
所述碳纳米管结构为多个时,该多个碳纳米管结构之间间隔设置,相邻两个碳纳米管结构中的碳纳米管的排列方向可以形成一夹角θ,该夹角θ的范围为0°≤θ≤90°,优选的,所述夹度θ为0°,即,碳纳米管结构中的碳纳米管均沿同一方向择优取向排列。所述碳纳米管结构包括至少一层碳纳米管膜,当所述碳纳米管结构包括多层碳纳米管膜时,该多层碳纳米管膜可以共面设置或层叠设置,层叠设置的相邻碳纳米管膜中的碳纳米管形成一个夹度α,该夹角α的范围为0°≤θ≤90°,优选的,所述夹度α为0°,即,碳纳米管膜中的碳纳米管均沿同一方向择优取向排列。本实施例中,所述碳纳米管结构为一个,该碳纳米管结构由一层碳纳米管膜构成。
所述碳纳米管膜包括多个基本沿同一方向择优取向排列且首尾相连的碳纳米管,从而使碳纳米管膜具有更好的机械强度、韧性及导电性。所述择优取向是指在碳纳米管膜中大多数碳纳米管的整体延伸方向基本朝同一方向。所述大多数碳纳米管的整体延伸方向基本平行于该碳纳米管膜的表面。进一步地,所述碳纳米管膜中多数碳纳米管是通过范德华力首尾相连,相邻的碳纳米管之间具有间隙。具体地,所述碳纳米管膜中基本朝同一方向延伸的大多数碳纳米管中每一碳纳米管与在延伸方向上相邻的碳纳米管通过范德华力首尾相连,从而使该碳纳米管膜能够实现自支撑。
当然,所述碳纳米管膜中存在少数随机排列的碳纳米管,这些碳纳米管不会对碳纳米管膜中大多数碳纳米管的整体取向排列构成明显影响。可以理解,所述碳纳米管膜中基本朝同一方向延伸的多数碳纳米管并非绝对的直线状,可以适当的弯曲;或者并非完全按照延伸方向上排列,可以适当的偏离延伸方向。因此,不能排除碳纳米管膜的基本朝同一方向延伸的多数碳纳米管中并列的碳纳米管之间可能存在部分接触而部分分离的情况。本实施例中,所述碳纳米管膜从超顺排碳纳米管阵列中拉取获得,该超顺排碳纳米管阵列中的多个碳纳米管基本沿同一方向生长且彼此平行。
本实施例中,所述一层碳纳米管膜设置于在所述金属韧带中。可以理解,碳纳米管膜中的部分碳纳米管嵌入在所述金属韧带内,部分碳纳米管位于所述多个孔内或者部分碳纳米管通过所述多个孔暴露。
本发明实施例提供的三维多孔复合材料包括至少一个碳纳米管结构,使所述三维多孔复合材料具有良好的导电性、韧性及稳定性;该三维多孔复合材料具有多孔结构,至少一个碳纳米管结构设置于所述金属韧带内,增大了该三维多孔复合材料的比表面积;所述三维多孔复合材料中穿插有碳纳米管,该三维多孔复合材料能够自支撑。
请参阅图3,本发明进一步提供上述三维多孔复合材料的制备方法,主要包括以下步骤:
步骤S10,提供一惰性金属的盐溶液及一活泼金属的盐溶液;
该惰性金属的盐溶液作为待用镀液A,该活泼金属的盐溶液待用镀液B。该活泼金属可以为钾、钙、钠、镁、铝、锌、铁、锡、镍中的任意一种。该惰性金属可以为铜、汞、银、铂、金中的任意一种。该活泼金属相对于该惰性金属而言,更容易与酸、碱反应。优选的,所述惰性金属的盐溶液与葡萄糖充分搅拌,能够细化后续形成的惰性金属镀膜。本实施例中,所述活泼金属的盐溶液为ZnSO4溶液,所述惰性金属的盐溶液为CuSO4溶液。
步骤S20,提供一基板,在该基板的表面电镀所述惰性金属的盐溶液形成镀膜M;
该基板可以为纯金属或金属的合金,该金属的种类不限,可以是碳、钛、金、银或铂等。所述电镀的具体过程为:以基板为工作电极,惰性金属板为对电极,惰性金属的盐溶液为待用镀液,给予一定电压,所述惰性金属的盐溶液中惰性金属离子得到电子被还原形成惰性金属原子,沉积在基板的表面形成一层镀膜M。所述镀膜M是所述待用镀液A中的惰性金属原子形成的膜结构。本实施例中,所述基板为钛板,所述镀膜M为Cu膜。
步骤S30,在所述镀膜M的表面设置一个碳纳米管结构;
该一个碳纳米管结构包括至少一层碳纳米管膜,该至少一层碳纳米管膜依次铺设于所述镀膜M的表面。当该碳纳米管膜为多层时,所述相邻两层碳纳米管膜可以共面设置或层叠设置,若层叠设置,相邻两层碳纳米管膜中的碳纳米管的排列方向形成一夹角α,该夹角α的范围为0°≤α≤90°,优选的,该夹角α为0°;若无间隙共面设置,相邻两层碳纳米管膜中的碳纳米管均沿同一方向择优取向排列。该碳纳米管膜包括多个碳纳米管,该多个碳纳米管首尾相连且沿同一方向择优取向排列。该多个碳纳米管基本平行于该碳纳米管膜的表面。优选的,该多个碳纳米管通过范德华力相互连接,相互吸引,紧密结合,使得该碳纳米管膜为一自支撑结构。所谓“自支撑结构”即该碳纳米管膜无需通过一支撑体支撑,也能保持自身特定的形状。
所述碳纳米管膜的获取方法不限,优选地,所述碳纳米管膜可通过从超顺排碳纳米管阵列中直接拉取获得,该拉取的方法进一步包括以下步骤:
首先,提供一碳纳米管阵列。具体的,该碳纳米管阵列为通过化学气相沉积的方法生长在该生长基底的表面。该碳纳米管阵列中的碳纳米管基本彼此平行且垂直于生长基底表面,相邻的碳纳米管之间相互接触并通过范德华力相结合。通过控制生长条件,该碳纳米管阵列中基本不含有杂质,如无定型碳或残留的催化剂金属颗粒等。由于基本不含杂质且碳纳米管相互间紧密接触,相邻的碳纳米管之间具有较大的范德华力,足以使在拉取一些碳纳米管(碳纳米管片段)时,能够使相邻的碳纳米管通过范德华力的作用被首尾相连,连续不断的拉出,由此形成连续且自支撑的宏观碳纳米管膜。该生长基底的材料可以为P型硅、N型硅或氧化硅等适合生长超顺排碳纳米管阵列的基底。所述能够从中拉取碳纳米管膜的碳纳米管阵列的制备方法可参阅冯辰等人在2008年8月13日公开的中国专利申请CN101239712A。
其次,采用一拉伸工具从超顺排碳纳米管阵列中拉取获得至少一碳纳米管膜。
其具体包括以下步骤:(a)从上述碳纳米管阵列中选定一定宽度的多个碳纳米管片断,本实施例优选为采用具有一定宽度的胶带接触碳纳米管阵列以选定一定宽度的多个碳纳米管片断;(b)以一定速度沿基本垂直于碳纳米管阵列生长方向拉伸该多个碳纳米管片断,以形成一连续的碳纳米管膜。
步骤S40,在所述碳纳米管结构的表面电镀所述活泼金属的盐溶液形成一镀膜N,剥离所述基板,得到复合结构;
所述镀膜N为所述待用镀液B中的活泼金属原子形成的膜结构。所述复合结构为镀膜M、碳纳米管结构以及镀膜N层叠设置。在电镀过程中,所述活性金属原子会进入到所述碳纳米管膜中相邻碳纳米管之间的间隙。本实施例中,所述镀膜N为锌膜。在该步骤S40中,可以只形成一个复合结构,也可以形成多个复合结构,该多个复合结构层叠设置。即,可以进一步包括在所述镀膜M、碳纳米管以及镀膜N的表面不断重复形成镀膜M、碳纳米管以及镀膜N这一复合结构。其中,相邻两个复合结构中碳纳米管结构中的碳纳米管膜中的碳纳米管的排列方向不限,可以根据实际需要进行选择。
步骤S50,对上述复合结构进行高温退火,使所述复合结构中的金属原子形成合金,得到一预制体;
该复合结构在真空条件下进行高温退火的过程为:当高温加热时,所述复合结构中的镀膜N与镀膜M处于熔融状态,镀膜N中的活泼金属原子和镀膜M中的惰性金属原子通过所述碳纳米管结构进行混合,具体的,熔融状态的活泼金属原子和惰性金属原子位于相邻的两根碳管之间的间隙或碳纳米管膜的表面;此时进行退火冷却,所述活泼金属原子和惰性金属原子形成合金。不同的金属其退火温度不同,通过控制退火温度可以实现原子与原子之间的充分扩散并形成合金。在高温退火的过程中,熔融态的金属直接生长在所述碳纳米管上,大大降低了碳纳米管与金属之间的接触电阻,使该三维多孔复合结构具有更好的导电性。可以理解,所述碳纳米管与金属接触的界面为共格界面。优选的,所述退火温度范围选择300℃以上。本实施例中,该退火温度为450℃,Zn原子与Cu原子充分扩散形成合金。
所述预制体中活泼金属和惰性金属合金不仅存在于所述碳纳米管膜的表面,进一步存在于所述碳纳米管膜中相邻两根碳纳米管之间的间隙,更进一步存在于首尾相连的两根碳纳米管的节点上。
步骤S60,对所述预制体进行腐蚀形成多孔结构,得到三维多孔复合材料。
请参阅图4a、4b及5,对所述预制体进行腐蚀的方法可以为电化学或化学腐蚀,具体的,将所述预制体放置于稀酸或稀碱溶液中,使预制体中的活泼金属原子与稀酸或稀碱发生化学反应或电化学反应,该预制体中的活泼金属原子被反应完全从而形成多孔结构。优选的,对所述预制体进行电化学腐蚀,更容易控制形成孔的孔径大小。
请参阅图6和图7,对所述预制体腐蚀之后,形成金属韧带,金属韧带之间形成多个孔。可以理解,形成的三维多孔复合材料呈三维网状。所述三维多孔复合材料中的多个碳纳米管的存在形式有多种,如可以通过所述孔暴露,也可以位于所述孔中,也可以嵌入金属韧带内。所述孔的孔径、分布率等参数取决于所述活性金属原子与惰性金属原子的比例,稀酸、稀碱浓度,腐蚀的时间。对所述预制体进行腐蚀直到所述活泼金属被完全腐蚀掉,腐蚀的时间越长,形成所述孔的孔径就越大。本实施例中,所述稀酸为稀盐酸,浓度为0.05mol/L,所述孔的孔径为1μm。
本发明提供的三维多孔复合材料的制备方法中,先将至少一碳纳米管结构设置在惰性金属与活泼金属之间,然后才利用去合金化技术形成多孔结构,所述碳纳米管结构中的多根碳纳米管部分嵌入在金属韧带中,部分位于孔内,提高了三维多孔复合材料的导电性、机械强度以及稳定性,同时增大了三维多孔复合材料的比表面积;碳纳米管与金属的接触处具有共格界面,消除了碳纳米管与金属之间的接触电阻,进一步提高了三维多孔复合材料的导电性。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种三维多孔复合材料的制备方法,包括以下步骤:
步骤S10,提供一惰性金属的盐溶液及一活泼金属的盐溶液;
步骤S20,提供一基板,在该基板的表面电镀所述惰性金属的盐溶液形成镀膜M;
步骤S30,在所述镀膜M的表面设置一个碳纳米管结构,所述碳纳米管结构包括多根碳纳米管;
步骤S40,在所述碳纳米管结构的表面电镀所述活泼金属的盐溶液形成一镀膜N,剥离所述基板,得到复合结构;
步骤S50,对上述复合结构进行高温退火,使所述复合结构中的活泼金属和惰性金属形成合金,得到一预制体;
步骤S60,对所述预制体进行腐蚀形成多孔结构,得到三维多孔复合材料。
2.如权利要求1所述三维多孔复合材料的制备方法,其特征在于,在步骤S40中进一步包括在所述镀膜N的表面多次形成镀膜M、碳纳米管结构、镀膜N,得到复合结构。
3.如权利要求1所述三维多孔复合材料的制备方法,其特征在于,所述碳纳米管结构包括至少一层碳纳米管膜,该至少一层碳纳米管膜从超顺排碳纳米管阵列中拉取。
4.如权利要求3所述三维多孔复合材料的制备方法,其特征在于,从超顺排碳纳米管阵列中拉取碳纳米管膜的方法包括:从超顺排碳纳米管阵列中选定一定宽度的多个碳纳米管片断;以一定速度沿基本垂直于碳纳米管阵列生长方向拉伸该多个碳纳米管片断,以形成一连续的碳纳米管膜。
5.如权利要求4所述三维多孔复合材料的制备方法,其特征在于,所述超顺排碳纳米管阵列通过化学气相沉积的方法获得,该超顺排碳纳米管阵列中的碳纳米管基本彼此平行且垂直于生长基底表面,相邻的碳纳米管之间相互接触并通过范德华力相结合。
6.如权利要求1所述三维多孔复合材料的制备方法,其特征在于,所述高温退火的温度大于等于300℃。
7.如权利要求1所述三维多孔复合材料的制备方法,其特征在于,对所述预制体进行腐蚀的方法为:将所述预制体放置于稀酸或稀碱中进行化学腐蚀或电化学腐蚀。
8.如权利要求7所述三维多孔复合材料的制备方法,其特征在于,所述稀酸为稀盐酸,该稀盐酸的浓度为0.05mol/L。
9.如权利要求1所述三维多孔复合材料的制备方法,其特征在于,所述多孔结构具有多个孔,该多个孔的孔径小于等于100μm。
10.如权利要求9所述三维多孔复合材料的制备方法,其特征在于,所述多个孔的孔径为1μm。
CN201710317874.3A 2017-05-08 2017-05-08 三维多孔复合材料的制备方法 Active CN108866412B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710317874.3A CN108866412B (zh) 2017-05-08 2017-05-08 三维多孔复合材料的制备方法
TW106118969A TWI652375B (zh) 2017-05-08 2017-06-08 三維多孔複合材料的製備方法
US15/792,791 US10253423B2 (en) 2017-05-08 2017-10-25 Method for making three-dimensional porous composite structure
JP2018088667A JP6634468B2 (ja) 2017-05-08 2018-05-02 三次元の多孔性複合材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710317874.3A CN108866412B (zh) 2017-05-08 2017-05-08 三维多孔复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108866412A CN108866412A (zh) 2018-11-23
CN108866412B true CN108866412B (zh) 2020-09-29

Family

ID=64013982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710317874.3A Active CN108866412B (zh) 2017-05-08 2017-05-08 三维多孔复合材料的制备方法

Country Status (4)

Country Link
US (1) US10253423B2 (zh)
JP (1) JP6634468B2 (zh)
CN (1) CN108866412B (zh)
TW (1) TWI652375B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636009A (zh) * 2019-03-01 2020-09-08 清华大学 多孔铜复合材料及其制备方法
CN111640947B (zh) * 2019-03-01 2022-04-22 清华大学 锂离子电池集流体、负极及该集流体与负极的制备方法
CN111763966A (zh) 2019-04-02 2020-10-13 清华大学 纳米多孔镍复合材料的制备方法
WO2020214695A2 (en) * 2019-04-17 2020-10-22 California Institute Of Technology Improvements to atomic layer deposition on high-aspect-ratio electrode structures
CN115491665B (zh) * 2022-09-16 2023-05-09 西南科技大学 一种超顺排碳纳米管薄膜化学镀铜工艺及其应用

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018328A (ja) * 2002-06-18 2004-01-22 Japan Science & Technology Corp カーボンナノチューブネットワークとその製造方法
JP2006059676A (ja) * 2004-08-20 2006-03-02 Konica Minolta Holdings Inc 電子放出素子およびその製造方法
KR100638668B1 (ko) * 2005-01-07 2006-10-30 삼성전기주식회사 전계방출 에미터 어레이 및 그 제조 방법
US8663446B2 (en) * 2005-05-20 2014-03-04 University Of Central Florida Research Foundation, Inc. Electrochemical-codeposition methods for forming carbon nanotube reinforced metal composites
DE102007055019B4 (de) * 2007-11-14 2019-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer nanoporösen Schicht
KR101022857B1 (ko) * 2008-01-16 2011-03-17 인하대학교 산학협력단 수소저장용 전이금속 도금된 다공성 탄소나노섬유 복합체의제조방법
DE102008018695A1 (de) * 2008-04-10 2009-10-15 Siemens Aktiengesellschaft Materialverbund, bestehend aus einer metallischen Matrix, in der CNT-Filamente verteilt sind, sowie Verfahren zur Herstellung eines solchen Materialverbundes
US9011706B2 (en) * 2008-12-16 2015-04-21 City University Of Hong Kong Method of making foraminous microstructures
JP5010640B2 (ja) * 2009-05-13 2012-08-29 日産自動車株式会社 金属基複合材料を使用した積層構造体
KR101092327B1 (ko) * 2009-11-03 2011-12-09 한국과학기술연구원 다공성 구조체의 탄소나노튜브 필름을 포함하는 열전재료 및 그의 제조방법
WO2012091139A1 (ja) * 2010-12-28 2012-07-05 独立行政法人産業技術総合研究所 Cnt金属複合材及びその製造方法
US9409131B2 (en) * 2011-06-13 2016-08-09 Empire Technology Development Llc Functional and reusable electrodeposited coatings on porous membranes
JP5857339B2 (ja) * 2012-03-07 2016-02-10 国立大学法人信州大学 Ni−W合金/CNT複合めっき方法およびNi−W合金/CNT複合めっき液
CN102745670B (zh) * 2012-07-30 2014-10-08 中国科学院苏州纳米技术与纳米仿生研究所 三维有序大孔复合材料的制备方法
TWI478185B (zh) * 2013-03-12 2015-03-21 Univ Nat Taiwan 超級電容器及其製造方法
US9217084B2 (en) * 2013-03-12 2015-12-22 Hrl Laboratories, Llc Constrained microlayer cellular material with high stiffness and damping
WO2015109137A1 (en) * 2014-01-16 2015-07-23 The University Of Akron Conductive film and method of making same
US20180183041A1 (en) 2015-06-09 2018-06-28 William Marsh Rice University Sulfur-containing carbon nanotube arrays as electrodes
CN106611627A (zh) 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 高质量碳纳米管透明导电膜及其制备方法与应用
CN105624747B (zh) * 2015-12-29 2017-10-13 东莞市莞信企业管理咨询有限公司 一种铜/石墨烯复合多层散热膜
CN105489872B (zh) * 2015-12-30 2018-02-23 湘潭大学 一种铜/CNTs‑锡/石墨多层结构锂离子电池负极材料及其制备方法
CN105977038A (zh) * 2016-06-21 2016-09-28 复旦大学 一种具有多孔结构的可拉伸超级电容器及其制备方法

Also Published As

Publication number Publication date
JP2018187622A (ja) 2018-11-29
JP6634468B2 (ja) 2020-01-22
TW201843351A (zh) 2018-12-16
CN108866412A (zh) 2018-11-23
TWI652375B (zh) 2019-03-01
US20180319664A1 (en) 2018-11-08
US10253423B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
CN108866412B (zh) 三维多孔复合材料的制备方法
CN108866369B (zh) 三维多孔复合材料
TWI661598B (zh) 鋰離子電池負極及鋰離子電池
KR102184502B1 (ko) 리튬 이온 배터리용 실리콘 나노구조체 활물질, 및 그에 관련된 공정, 조성물, 구성요소 및 디바이스
KR20120031061A (ko) 카본 나노튜브 복합체 구조물 및 그 제조방법
CN111640947B (zh) 锂离子电池集流体、负极及该集流体与负极的制备方法
Xu et al. Synthesis and field emission properties of Cu dendritic nanostructures
CN111636009A (zh) 多孔铜复合材料及其制备方法
CN108878895B (zh) 燃料电池电极及燃料电池
EP3306685B1 (en) Nanostructures of concentric layers
CN108872338B (zh) 生物传感器微电极及生物传感器
WO2023104295A1 (en) Lithium metal electrode, method of manufacturing a lithium ion electrode and lithium ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant