CN108816212A - 一种二氧化钛光催化复合材料的制备方法 - Google Patents

一种二氧化钛光催化复合材料的制备方法 Download PDF

Info

Publication number
CN108816212A
CN108816212A CN201810748127.XA CN201810748127A CN108816212A CN 108816212 A CN108816212 A CN 108816212A CN 201810748127 A CN201810748127 A CN 201810748127A CN 108816212 A CN108816212 A CN 108816212A
Authority
CN
China
Prior art keywords
tio
ferrite
composite material
active carbon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810748127.XA
Other languages
English (en)
Inventor
王新庆
毛佳楠
王攀峰
徐靖才
金顶峰
彭晓领
洪波
金红晓
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201810748127.XA priority Critical patent/CN108816212A/zh
Publication of CN108816212A publication Critical patent/CN108816212A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种多孔可循环利用亚铁磁性铁氧体/二氧化钛(TiO2)光催化复合材料的制备方法,该材料是以活性炭的模板剂与造孔剂,经改性、磁介质填充、二氧化钛负载以及除模板等工艺制得,具有光催化效率高与磁分离效率好等优点。步骤包括:一、活性炭的硝酸回流改性;二、采用溶剂热法对改性活性炭进行铁氧体磁介质的适量填充,得到具有磁响应的铁氧体/活性炭复合材料;三、采用浸渍法以钛酸丁酯为前驱体二次负载TiO2纳米颗粒,得到TiO2/铁氧体/活性炭复合材料;四、将TiO2/铁氧体/活性炭复合材料在空气中煅烧,得到多孔易磁分离可循环利用铁氧体/二氧化钛光催化复合材料。二氧化钛光催化复合材料具有以下优势:制备工艺简单、可循环利用、催化效率。

Description

一种二氧化钛光催化复合材料的制备方法
技术领域
本发明涉及一种可循环利用高比表面积二氧化钛(TiO2)光催化复合材料的制备方法,合成的材料具有优异的光催化性能且易于分离。
背景技术
石油、煤炭以及天然气等化石能源不仅储量有限,不可持续,而且燃烧后的产物对水体、空气以及土壤产生造成污染,进而危害全球的生物,因此探索清洁的、可持续发展的替代能源迫在眉睫。除了能源危机之外,环境污染是人类面临的另一大问题。其中,大气污染使得数百万人丧失生命,其中患染疾病的人数更是数不胜数;而水体污染不仅破坏水生态环境,而且严重危害人类的健康。
自从1972年Nature上发表了关于TiO2在紫外光的照射下将水分解为氢气和氧气后,人们从各个领域对TiO2光催化进行了深入的研究。研究表明二氧化钛粉体可作为一种高效、无毒、稳定的环境污染物降解用光催化剂,但是如何有效得从悬浮液中回收TiO2纳米粒子一直存在很大的困难。尤其是高活性的纳米TiO2材料以其较大的比表面积、较多的表面活性位点等特征,展现了较好的催化活性。但TiO2纳米颗粒由于具有较大的表面能,容易发生团聚,且粒子较小难以从污水分离。近年来,有研究者提出用超顺磁性和耐腐蚀的铁磁性微粒,制成磁性包覆型纳米光催化剂。磁铁分离提供了一个极其方便的从水中回收利用TiO2纳米的方法,通过外加磁场能够迅速分离催化剂并进行回收利用,而不需要进一步的处理,明显提高其回收效率。它既有普通悬浮光催化剂的高效性,又能通过磁性顺利收集,克服了悬浮状粉末回收困难的缺点。这种催化剂既保持了良好的光催化活性和稳定性,又能在外界磁场下被回收循环利用,因而具有一定的理论研究价值和潜在的应用前景。
活性炭具有复杂的多孔结构、巨大的比表面积,是良好的吸附剂、催化剂载以及复合材料的模板剂。将某种无机金属前驱物引入活性炭孔道中,然后经焙烧在纳米孔道中生成氧化物晶体,去除硬模板后制备出相应的多孔材料,在理想情况下所得氧化物材料可保持原来活性炭的孔道形貌,具备非常大的比表面积。若通过有效的制备方法将磁性介质与光催化材料填充到活性炭的孔道结构中,再加上活性炭煅烧过程产生的CO2的造孔,就能得到纳米颗粒有效聚集的多孔磁性光催化材料,实现更高效的催化反应和磁分离循环利用。
发明内容
本发明是为了制备高催化活性、易分离回收循环利用的光催化材料,提供了一种多孔可分离TiO2纳米催化复合材料的制备方法。
活性炭表面具有大量且复杂的孔结构,故选用比表面积大于900 m2/g的活性炭作为模板剂和造孔剂。
本发明通过溶剂热合成铁氧体/活性炭复合材料,二步浸渍法将适量的TiO2纳米颗粒填充于活性炭孔道内,再经煅烧处理后得到由铁氧体和TiO2纳米颗粒组成、具有多孔结构的高比表面积TiO2光催化复合材料。
一种二氧化钛光催化复合材料的制备方法,具体是按以下步骤合成:一、将300~400目活性炭经干燥后在70~90℃硫酸中回流2~4 h,经反复冲洗后移入真空干燥箱中150~200℃干燥处理12~24 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在80~100℃油浴搅拌0.5~2h后,滴加二乙醇胺(与二乙二醇体积比为1:6~10),而后逐步加入NaOH(与铁氧体摩尔比为10~15:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在200~250℃下溶剂热处理6~8h,经磁分离后洗涤干燥;三、将质量比为1~2:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在60~70℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5 ℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(0.5~1 ℃/min升温速率)中500℃后退火4~6 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
本发明具有以下优点:一、TiO2/铁氧体纳米催化材料保留了活性炭的多孔结构,具有相对较大的比表面积,活性高;二、多孔结构TiO2纳米光催化复合材料易于吸附有机污染物,在TiO2纳米颗粒表面形成高浓度,利于提高光催化降解效率;三、多孔易分离TiO2纳米催化剂由TiO2纳米颗粒聚集形成,易于分离回收。
附图说明
按照具体实施方式一制备了一种可循环利用高比表面积钴铁氧体/二氧化钛光催化复合材料,图1是复制活性炭多孔结构的钴铁氧体/二氧化钛光催化复合材料扫描电子显微镜照片,图2是钴铁氧体/二氧化钛光催化复合材料吸附与光降解亚甲基蓝曲线(其中插图为磁分离效果照片)。
具体实施方式
具体实施方式一:一、将300目活性炭经干燥后在90℃硫酸中回流2 h,经反复冲洗后移入真空干燥箱中200℃干燥处理12,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子(Co)与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在80油浴搅拌2h后,滴加二乙醇胺(与二乙二醇体积比为1:6),而后逐步加入NaOH(与铁氧体摩尔比为10:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在200下溶剂热处理8h,经磁分离后洗涤干燥;三、将质量比为1:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在60℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5 ℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(0.5 ℃/min升温速率)中500℃后退火6 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
具体实施方式二:一、将400目活性炭经干燥后在70℃硫酸中回流2 h,经反复冲洗后移入真空干燥箱中150℃干燥处理24 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子(Ni)与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在100℃油浴搅拌0.5h后,滴加二乙醇胺(与二乙二醇体积比为1: 10),而后逐步加入NaOH(与铁氧体摩尔比为15:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在250℃下溶剂热处理6h,经磁分离后洗涤干燥;三、将质量比为2:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在70℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(1 ℃/min升温速率)中500℃后退火4 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
具体实施方式三:一、将300目活性炭经干燥后在80℃硫酸中回流3 h,经反复冲洗后移入真空干燥箱中180℃干燥处理18 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子(Fe)与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在90℃油浴搅拌1h后,滴加二乙醇胺(与二乙二醇体积比为1:8),而后逐步加入NaOH(与铁氧体摩尔比为12:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在220℃下溶剂热处理7h,经磁分离后洗涤干燥;三、将质量比为1:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在65℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(1 ℃/min升温速率)中500℃后退火5 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
具体实施方式四:一、将350目活性炭经干燥后在90℃硫酸中回流3 h,经反复冲洗后移入真空干燥箱中150℃干燥处理24 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子(Zn)与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在100℃油浴搅拌2h后,滴加二乙醇胺(与二乙二醇体积比为1: 10),而后逐步加入NaOH(与铁氧体摩尔比为15:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在200℃下溶剂热处理6h,经磁分离后洗涤干燥;三、将质量比为1.5:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在70℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(1 ℃/min升温速率)中500℃后退火4 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
具体实施方式五:一、将400目活性炭经干燥后在90℃硫酸中回流4 h,经反复冲洗后移入真空干燥箱中200℃干燥处理24 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子(Co)与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在80℃油浴搅拌2h后,滴加二乙醇胺(与二乙二醇体积比为1: 10),而后逐步加入NaOH(与铁氧体摩尔比为15:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在200℃下溶剂热处理7h,经磁分离后洗涤干燥;三、将质量比为2:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在70℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(0.5 ℃/min升温速率)中500℃后退火6 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
具体实施方式六:一、将300目活性炭经干燥后在75℃硫酸中回流3 h,经反复冲洗后移入真空干燥箱中200℃干燥处理24 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子(Ni)与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在100℃油浴搅拌1h后,滴加二乙醇胺(与二乙二醇体积比为1:9),而后逐步加入NaOH(与铁氧体摩尔比为12:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在250℃下溶剂热处理6h,经磁分离后洗涤干燥;三、将质量比为2:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在70℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(0.5℃/min升温速率)中500℃后退火4 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
上述的具体实施方式是示例性的,是为了更好的使本领域技术人员能够理解本发明,不能理解为是对本发明包括范围的限制,只要是根据本发明所揭示精神的所作的任何等同变更或修饰,均落入本发明包括的范围。

Claims (7)

1.一种二氧化钛(TiO2)光催化复合材料的制备方法,其特征在于以活性炭为硬模板合成多步分别合成铁氧体/活性炭、TiO2/铁氧体/活性炭复合材料,经除模板后得到TiO2/铁氧体多孔光催化复合材料。
2.根据权利要求1所述一种二氧化钛光催化复合材料的制备方法,其特征在于以活性炭为模板,经适量填充亚铁磁铁氧体材料、负载TiO2光催化材料后复制活性炭多孔结构,除模板后性能以TiO2光催化材料为主体的可磁分离循环利用多孔结构复合材料;具体步骤如下:一、将300~400目活性炭经干燥后在70~90℃硫酸中回流2~4 h,经反复冲洗后移入真空干燥箱中150~200℃干燥处理12~24 h,排出吸附气体及其它杂质;二、采用溶剂热合成亚铁磁性铁氧体/活性炭,按一定比列称取两种可溶性金属盐(二价金属离子与三价铁盐原子比为1:2)加入到二乙二醇溶液中,在80~100℃油浴搅拌0.5~2h后,滴加二乙醇胺(与二乙二醇体积比为1:6~10),而后逐步加入NaOH(与铁氧体摩尔比为10~15:1)的二乙二醇溶液与活性炭(铁氧体与活性炭摩尔比为1:100)二乙二醇溶液,将均匀混合上述液体在200~250℃下溶剂热处理6~8h,经磁分离后洗涤干燥;三、将质量比为1~2:1的钛酸丁酯与铁氧体/活性炭加入到冰醋酸与无水乙醇中(溶剂质量比为1:9),在剧烈搅拌的条件下滴加1.5 mL浓盐酸及10 mL去离子水,在60~70℃旋转蒸发溶剂,继而将得到黑色固体粉末在氮气气氛保护下利用管式炉以0.5 ℃/min的速率升到550℃后保温2 h,初步得到TiO2/铁氧体/活性炭复合材料;四、以步骤三得到的TiO2/铁氧体/活性炭复合材料代替铁氧体/活性炭,重复步骤三两次,将得到的黑色固体材料置于马弗炉(0.5~1 ℃/min升温速率)中500℃后退火4~6 h,制得可循环利用高比表面积二氧化钛光催化复合材料。
3.根据权利要求1所述一种二氧化钛光催化复合材料的制备方法,其特征在于采用活性炭为模板剂及造孔剂,比表面积不小于900 m2/g。
4.根据权利要求1所述一种二氧化钛光催化复合材料的制备方法,其特征在于选用的铁氧体为尖晶石亚铁磁铁氧体。
5.根据权利要求1所述一种二氧化钛光催化复合材料的制备方法,其特征在于采用的金属盐为氯化物、硝酸盐和硫酸盐等可溶性盐,二价金属离子可为Ni2+、Fe2+、Co2+、Zn2+中之一,三价金属离子是Fe3+
6.根据权利要求1所述一种二氧化钛光催化复合材料的制备方法,其特征在于采用的金属盐为氯化物、硝酸盐和硫酸盐等可溶性盐,二价金属离子可为Ni2+、Fe2+、Co2+、Zn2+中之一,三价金属离子是Fe3+
7.根据权利要求1所述一种二氧化钛光催化复合材料的制备方法,其特征在于TiO2为锐钛矿相结构多孔结构,易于吸附有机污染物,提高光催化降解效率。
CN201810748127.XA 2018-07-10 2018-07-10 一种二氧化钛光催化复合材料的制备方法 Pending CN108816212A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810748127.XA CN108816212A (zh) 2018-07-10 2018-07-10 一种二氧化钛光催化复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810748127.XA CN108816212A (zh) 2018-07-10 2018-07-10 一种二氧化钛光催化复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN108816212A true CN108816212A (zh) 2018-11-16

Family

ID=64135839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810748127.XA Pending CN108816212A (zh) 2018-07-10 2018-07-10 一种二氧化钛光催化复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108816212A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110064395A (zh) * 2019-01-29 2019-07-30 吉林师范大学 一种具备磁性分离功能的可见光催化剂的制备方法
CN110911623A (zh) * 2019-11-06 2020-03-24 电子科技大学 一种锂硫电池隔膜用铁酸铋@二氧化钛复合材料及制备方法
CN111604029A (zh) * 2020-05-15 2020-09-01 吴丹妮 一种改性活性炭复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428220A (zh) * 2008-12-26 2009-05-13 北京化工大学 一种磁性二氧化钛空心球及其制备方法
CN101780404A (zh) * 2009-01-20 2010-07-21 华东交通大学 具有高比表面积介孔二氧化钛光催化剂的一种新型制备方法
CN103041813A (zh) * 2012-12-10 2013-04-17 江苏大学 一种二氧化钛包覆三氧化二铁空心球的制备方法
CN103949259A (zh) * 2014-05-05 2014-07-30 浙江师范大学 新型废水处理剂—ZnFe2O4/TiO2复合物的制备和应用
CN104310469A (zh) * 2014-11-05 2015-01-28 华玉叶 二氧化钛多孔材料的制备方法
CN104722263A (zh) * 2015-03-14 2015-06-24 彭晓领 一种TiO2/ZnFe2O4/活性炭复合材料制备方法
CN106186060A (zh) * 2016-07-19 2016-12-07 西安交通大学 一种直径小于100nm超细中空二氧化钛纳米球的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428220A (zh) * 2008-12-26 2009-05-13 北京化工大学 一种磁性二氧化钛空心球及其制备方法
CN101780404A (zh) * 2009-01-20 2010-07-21 华东交通大学 具有高比表面积介孔二氧化钛光催化剂的一种新型制备方法
CN103041813A (zh) * 2012-12-10 2013-04-17 江苏大学 一种二氧化钛包覆三氧化二铁空心球的制备方法
CN103949259A (zh) * 2014-05-05 2014-07-30 浙江师范大学 新型废水处理剂—ZnFe2O4/TiO2复合物的制备和应用
CN104310469A (zh) * 2014-11-05 2015-01-28 华玉叶 二氧化钛多孔材料的制备方法
CN104722263A (zh) * 2015-03-14 2015-06-24 彭晓领 一种TiO2/ZnFe2O4/活性炭复合材料制备方法
CN106186060A (zh) * 2016-07-19 2016-12-07 西安交通大学 一种直径小于100nm超细中空二氧化钛纳米球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VORRADA LORYUENYONG ET AL.: "The synthesis of microporous and mesoporous titania with high specific surface area using sol–gel method and activated carbon templates", 《MATERIALS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110064395A (zh) * 2019-01-29 2019-07-30 吉林师范大学 一种具备磁性分离功能的可见光催化剂的制备方法
CN110911623A (zh) * 2019-11-06 2020-03-24 电子科技大学 一种锂硫电池隔膜用铁酸铋@二氧化钛复合材料及制备方法
CN111604029A (zh) * 2020-05-15 2020-09-01 吴丹妮 一种改性活性炭复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Shi et al. Recyclable photo-thermal conversion and purification systems via Fe3O4@ TiO2 nanoparticles
JP7011350B2 (ja) 過硫酸塩を効率よく活性化可能なグラフェン系中空硫化コバルトのナノ結晶の製造方法
Zeng et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study
CN102489284B (zh) 可磁性分离回收的石墨烯复合二氧化钛光催化剂及其制备方法
Zhou et al. Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres
CN108816212A (zh) 一种二氧化钛光催化复合材料的制备方法
Santhosh et al. Iron oxide nanomaterials for water purification
KR101437597B1 (ko) 수처리용 그래핀 복합체 및 그 제조방법
CN108940335A (zh) 一种基于氮掺杂具有核壳结构可磁场回收铁碳材料的高级氧化还原水处理方法
CN103007944A (zh) 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
CN105478121B (zh) 一种三氧化二铁改性的二氧化钛高效可见光催化剂的制备方法
CN111068736B (zh) 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法
CN106311206A (zh) 二氧化钛/石墨烯复合纳米光催化剂及其制备方法与应用
CN108514863B (zh) 利用腐植酸制备炭包覆磁性埃洛石复合物吸附剂的方法及其所得产物
Balgude et al. Succinate assisted synthesis of magnetically separable Fe2O3/g-C3N4 nano-heterostructure: A stable catalyst for environmental remediation
CN110951088A (zh) 锆基金属有机骨架材料、制备及作为除铬剂的用途
CN109847803A (zh) 一种缺陷mof催化剂及其制备方法与应用
CN104128183A (zh) 一种高效降解微囊藻毒素的纳米级磁性石墨烯复合材料及其制备和应用
CN105148964A (zh) 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法
CN102872846A (zh) 一种粉煤灰微珠负载一维纳米二氧化钛复合光催化剂及其制备方法
Solanki et al. Hierarchical 3D flower‐like metal oxides micro/nanostructures: fabrication, surface modification, their crucial role in environmental decontamination, mechanistic insights, and future perspectives
Uddin et al. Adsorptive removal of pollutants from water using magnesium ferrite nanoadsorbent: a promising future material for water purification
CN103878001A (zh) 一种氟硼共掺杂TiO2纳米片的制备方法及用途
CN108579715A (zh) 一种多孔易分离二氧化钛纳米催化剂的制备方法
CN109107580A (zh) 一种磁性钒酸铋/钛酸铋/四氧化三铁光催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181116