CN108794016A - 一种高红外透过率AlON透明陶瓷的快速制备方法 - Google Patents
一种高红外透过率AlON透明陶瓷的快速制备方法 Download PDFInfo
- Publication number
- CN108794016A CN108794016A CN201810684626.7A CN201810684626A CN108794016A CN 108794016 A CN108794016 A CN 108794016A CN 201810684626 A CN201810684626 A CN 201810684626A CN 108794016 A CN108794016 A CN 108794016A
- Authority
- CN
- China
- Prior art keywords
- alon
- powder
- sintering
- crystalline ceramics
- powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种高红外透过率AlON透明陶瓷的快速制备方法,属于透明陶瓷材料制备领域。一种高红外透过率AlON透明陶瓷的快速制备方法,所述方法包括下述工艺步骤:将具有双峰粒度分布特征的AlON混合粉体置于模具中,将模具置于放电等离子体烧结炉中,真空条件下进行烧结过程,整个烧结过程中保持向粉体施加50~100MPa的压强,所述烧结过程为:将烧结炉以150~300℃/min的升温速率升温至1500~1700℃后保温0.5~5min,后随炉冷却至室温,得AlON透明陶瓷块体。该方法升温速度快、保温时间短、烧结温度低且降温速度快,制备效率非常高,节能效果好,可显著降低AlON透明陶瓷的制备成本。
Description
技术领域
本发明涉及一种高红外透过率AlON透明陶瓷的快速制备方法,属于透明陶瓷材料制备领域。
背景技术
立方尖晶石结构的AlON陶瓷在近紫外-可见-红外波段(0.2-6.0μm)都具有良好的透光性,同时其还拥有非常优异的力学性能,AlON透明陶瓷的综合性能可与蓝宝石相媲美,是一种理想的结构功能一体化多晶透明陶瓷材料。AlON透明陶瓷可广泛用于高速飞行器的信号探测窗口、先进载运装备的透明观测窗口、透明装甲等领域,具有广阔的发展前景与应用价值。
两步法,即:首先合成AlON粉体,再进行致密化烧结制备AlON透明陶瓷,是制备高透过率AlON透明陶瓷的有效手段。近年来,研究人员多采用无压烧结、热压烧结以及热等静压烧结等技术制备AlON透明陶瓷,目前采用这些技术已经能够制备出具有较高透过率的AlON透明陶瓷。但是,这些传统陶瓷烧结技术在AlON透明陶瓷烧结方面的应用,至今仍然存在烧结温度高(≥1820℃)、保温时间长(≥2.5h)等诸多问题。
放电等离子体烧结(SPS)技术又称为场辅助烧结技术,是一种非常有效的粉体快速致密化烧结方法,可具有高达600℃/min的快速升温能力,同时在焦耳热效应的作用下,可使烧结时间大大缩短。同时,在粉体SPS致密化烧结过程中,施加到样品上的压力载荷也有具有降低烧结温度的作用。因此,与传统的粉体致密化烧结技术相比,SPS技术是有效降低粉体致密化烧结温度、缩短保温时间的致密化烧结技术,利用SPS技术可实现粉体快速高致密化烧结。此外,SPS的快速加热和短时间保温的特点,易使其产品具有细晶结构,有利于产品力学性能的提高。
在AlON透明陶瓷制备领域,研究人员也期望利用SPS技术实现AlON透明陶瓷的快速烧结。例如:张龙等人的专利201610296486.7,以Al2O3和AlN粉体为原料,加入烧结助剂,在氮气环境中采用SPS技术制备了AlON透明陶瓷,并进一步采用无压烧结方法在氮气环境中保温2-4h制备了透过率为73%的AlON透明陶瓷;魏巍也以Al2O3和AlN粉体为原料研究了升温速率和压力对AlON性能的影响,所制备陶瓷的相对密度为99.3%,且透过率不高;Kaplan等人也尝试了利用SPS烧结制备AlON透明陶瓷(Journal of the European CeramicSociety 35(2015)3255-3262),但所制备陶瓷的透过率很低;单英春等以AlON粉体为原料,采用SPS技术在1350℃保温10min制备了γ-AlON,α-Al2O3及h-AlN三相共存的透明陶瓷,透过率为77.3%(J Mater Res.2017;32:3279-3285.);李璇等采用SPS技术研究了烧结温度等工艺参数对致密度的影响,获得了致密度为98.94%的AlON陶瓷。
发明内容
本发明的目的在于提供一种高红外透过率AlON透明陶瓷的快速制备方法,具体为以双峰粒度分布的纯相AlON粉体为原料,添加Y2O3为烧结助剂,采用SPS技术快速升温、短时间保温以及快速降温实现AlON透明陶瓷快速制备。该技术可在较低温度、较短时间内烧结制得高红外透过率的AlON透明陶瓷。其利用双峰粒度分布特征的AlON粉体,采用SPS技术,一方面可充分利用双峰粉体中小颗粒在大颗粒间的填隙效应,从而提高致密化速率和致密度,另一方面结合放电等离子体烧结的快速升温能有效减少较低温度下AlON相变为α-Al2O3和h-AlN的量,从而实现在较低烧结温度下保温较短时间获得高AlON相纯度的高透过率AlON透明陶瓷。
一种高红外透过率AlON透明陶瓷的快速制备方法,所述方法包括下述工艺步骤:
将具有双峰粒度分布特征的AlON混合粉体置于模具中,将模具置于放电等离子体烧结炉中,真空条件下进行烧结过程,整个烧结过程中保持向粉体施加50~100MPa的压强,所述烧结过程为:将烧结炉以150~300℃/min的升温速率升温至1500~1700℃后保温0.5~5min,后随炉冷却至室温,得AlON透明陶瓷块体,
其中,所述具有双峰粒度分布特征的AlON粉体的颗粒粒度为0.9~15μm,其由60~85wt.%粗颗粒粉体和15~40wt.%细颗粒粉体组成;所述粗颗粒粉体和细颗粒粉体的划分界限值为1.2~1.6μm,粒度不小于划分界限值的粉体为粗颗粒粉体,粒度小于划分界限值的粉体为细颗粒粉体。
上述技术方案中,优选所述烧结过程为:将烧结炉以150~250℃/min的升温速率升温至1550~1650℃后保温0.5~1.5min,后随炉冷却至室温,得AlON透明陶瓷块体。
本发明所述高红外透过率AlON透明陶瓷的快速制备方法,优选所述具有双峰粒度分布特征的AlON混合粉体由纯相AlON粉体和烧结助剂Y2O3组成,其中,烧结助剂Y2O3的重量为纯相AlON粉体的0.4~0.6%。
本发明所述高红外透过率AlON透明陶瓷的快速制备方法,优选所述具有双峰粒度分布特征的AlON粉体按下述方法制得:将纯相AlON粉体和烧结助剂粉体置于球磨罐内,在无水乙醇介质中球磨混合后,获得具有双峰粒度分布特征的混合粉体。
本发明所述球磨于现有技术公开的球磨设备值进行,如行星球磨机中。
进一步地,所述球磨为:以5mm、8mm和10mm的Si3N4球为球磨介质,球的级配是1.7:1:1.3,球料比为7:1,添加粉体质量3.93倍的无水乙醇作为分散介质,球磨时间为24h,球磨转速为170rpm。
本发明所述高红外透过率AlON透明陶瓷的快速制备方法,优选所述方法包括后处理的步骤:将所得AlON透明陶瓷块体进行磨平、抛光。
本发明的另一目的是提供由上述方法制得的AlON透明陶瓷,所述AlON透明陶瓷的相对密度≥99.84%,红外透过率为80~81%。
本发明的有益效果为:本发明选用具有双峰粒度分布特征的,且粗颗粒为主体的纯相AlON粉体为原料,结合等离子体快速烧结技术,采用150~300℃/min快速升温技术,在1500~1700℃较低的烧结温度条件下,样品保温时间不超过5min,结合快速降温(关闭加热电源,随炉冷却)的制备技术,即实现了AlON陶瓷的快速致密化烧结,所制备AlON透明陶瓷的相对密度≥99.84%,红外透过率高达80~81%。该方法升温速度快、保温时间短、烧结温度低且降温速度快,制备效率非常高,节能效果好,可显著降低AlON透明陶瓷的制备成本。
附图说明
图1球磨后混合粉体的粒度分布和SEM图。
图2实施例1所制备透明陶瓷的XRD图谱。
图3实施例1所制备透明陶瓷的透过率测试曲线。
图4实施例2所制备透明陶瓷的XRD图谱。
图5实施例2所制备透明陶瓷的透过率测试曲线。
图6实施例3所制备透明陶瓷的XRD图谱。
图7实施例3所制备透明陶瓷的透过率测试曲线。
图8实施例1、2、3所制备透明陶瓷的照片。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
下述实施例1~3中所用具有具有双峰粒度分布特征的混合粉体按下述方法制得:将纯度为99.9%的AlON粉体和纯度为99.9%的烧结助剂Y2O3粉体(烧结助剂Y2O3的重量为纯相AlON粉体的0.5%)置于球磨罐内于行星球磨机上,在无水乙醇介质中球磨24h,球磨转速为170rpm,获得具有双峰粒度分布特征的混合粉体,其中,以5mm、8mm和10mm的Si3N4球为球磨介质,球的级配是1.7:1:1.3,球料比为7:1,添加粉体质量3.93倍的无水乙醇作为分散介质。
所得球磨后混合粉体的粒度分布和粉体形貌见附图1。根据附图1可知,所述具有双峰粒度分布特征的AlON粉体的颗粒粒度为0.9~11.2μm,其由70wt.%粗颗粒粉体和30wt.%细颗粒粉体组成;所述粗颗粒粉体和细颗粒粉体的划分界限值为~1.3μm,粒度不小于划分界限值的粉体为粗颗粒粉体,小于划分界限值的粉体为细颗粒粉体。
实施例1
一种高红外透过率AlON透明陶瓷的快速制备方法,所述方法包括下述工艺步骤:
将具有双峰粒度分布特征的AlON混合粉体置于模具中,将模具置于放电等离子体烧结炉中,真空条件下进行烧结过程,整个烧结过程中保持向粉体施加60MPa的压强,所述烧结过程为:将烧结炉以150℃/min的升温速率升温至1600℃后保温1min,后迅速降至室温,得AlON透明陶瓷块体,将所得AlON透明陶瓷块体进行磨平、抛光。
所制备的陶瓷相组成为纯相AlON,物相组成测试结果见附图2;磨平、抛光后测得其红外透过率超过80%(1.4mm厚样品),见附图3;样品照片见附图8。
实施例2
其他步骤与实施例1相同,不同的是烧结时采用的升温速率为200℃/min。如附图4所示,所制备的陶瓷相组成为纯相AlON,其同时也具有高红外透过率(附图5),样品照片见附图8。
实施例3
其他步骤与实施例1相同,不同的是烧结时采用的升温速率为250℃/min。如附图6所示,所制备的陶瓷相组成为纯相AlON,其同时也具有高红外透过率(附图7),样品照片见附图8。
Claims (7)
1.一种高红外透过率AlON透明陶瓷的快速制备方法,其特征在于:所述方法包括下述工艺步骤:
将具有双峰粒度分布特征的AlON混合粉体置于模具中,将模具置于放电等离子体烧结炉中,真空条件下进行烧结过程,整个烧结过程中保持向粉体施加50~100MPa的压强,所述烧结过程为:将烧结炉以150~300℃/min的升温速率升温至1500~1700℃后保温0.5~5min,后随炉冷却至室温,得AlON透明陶瓷块体,
其中,所述具有双峰粒度分布特征的AlON粉体的颗粒粒度为0.9~15μm,其由60~85wt.%粗颗粒粉体和15~40wt.%细颗粒粉体组成;所述粗颗粒粉体和细颗粒粉体的划分界限值为1.2~1.6μm,粒度不小于划分界限值的粉体为粗颗粒粉体,粒度小于划分界限值的粉体为细颗粒粉体。
2.根据权利要求1所述的方法,其特征在于:所述具有双峰粒度分布特征的AlON混合粉体由纯相AlON粉体和烧结助剂Y2O3组成,其中,烧结助剂Y2O3的重量为纯相AlON粉体的0.4~0.6%。
3.根据权利要求1所述的方法,其特征在于:所述具有双峰粒度分布特征的AlON粉体按下述方法制得:将纯相AlON粉体和烧结助剂粉体置于球磨罐内,在无水乙醇介质中球磨混合后,获得具有双峰粒度分布特征的混合粉体。
4.根据权利要求3所述的方法,其特征在于:所述球磨为:以5mm、8mm和10mm的Si3N4球为球磨介质,球的级配是1.7:1:1.3,球料比为7:1,添加粉体质量3.93倍的无水乙醇作为分散介质,球磨时间为24h,球磨转速为170rpm。
5.根据权利要求1所述的方法,其特征在于:所述烧结过程为:将烧结炉以150~250℃/min的升温速率升温至1550~1650℃后保温0.5~1.5min,后随炉冷却至室温,得AlON透明陶瓷块体。
6.根据权利要求1所述的方法,其特征在于:所述方法包括后处理的步骤:将所得AlON透明陶瓷块体进行磨平、抛光。
7.权利要求1~6任一项所述方法制得的AlON透明陶瓷,其特征在于:所述AlON透明陶瓷的相对密度≥99.84%,红外透过率为80~81%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810684626.7A CN108794016B (zh) | 2018-06-28 | 2018-06-28 | 一种高红外透过率AlON透明陶瓷的快速制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810684626.7A CN108794016B (zh) | 2018-06-28 | 2018-06-28 | 一种高红外透过率AlON透明陶瓷的快速制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108794016A true CN108794016A (zh) | 2018-11-13 |
CN108794016B CN108794016B (zh) | 2021-03-23 |
Family
ID=64072176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810684626.7A Active CN108794016B (zh) | 2018-06-28 | 2018-06-28 | 一种高红外透过率AlON透明陶瓷的快速制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108794016B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108794016B (zh) * | 2018-06-28 | 2021-03-23 | 大连海事大学 | 一种高红外透过率AlON透明陶瓷的快速制备方法 |
CN113185301A (zh) * | 2021-04-23 | 2021-07-30 | 北京科技大学 | 一种AlON透明陶瓷的快速制备方法 |
CN114804931A (zh) * | 2022-05-11 | 2022-07-29 | 北京理工大学 | 一种AlON透明陶瓷低温腐蚀方法 |
CN115028458A (zh) * | 2022-07-29 | 2022-09-09 | 鲁米星特种玻璃科技股份有限公司 | 一种氮氧化铝透明陶瓷的制备技术 |
CN116789455A (zh) * | 2023-06-14 | 2023-09-22 | 大连海事大学 | 一种低温快速无压烧结制备AlON透明陶瓷的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050164867A1 (en) * | 2004-01-23 | 2005-07-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Transparent polycrystalline sintered ceramic of cubic crystal structure |
US20070132154A1 (en) * | 2005-07-20 | 2007-06-14 | The Regents Of The University Of California | Low-temperature high-rate superplastic forming of ceramic composite |
CN102557087A (zh) * | 2011-12-16 | 2012-07-11 | 中国科学院上海硅酸盐研究所 | 一种制备高纯AlON粉体的方法 |
CN102875152A (zh) * | 2012-09-13 | 2013-01-16 | 大连海事大学 | 一种AlON透明陶瓷的低温快速制备方法 |
CN103755350A (zh) * | 2014-01-24 | 2014-04-30 | 大连海事大学 | 一种γ-AlON透明陶瓷粉体的制备方法 |
CN107344854A (zh) * | 2016-05-06 | 2017-11-14 | 中国科学院上海光学精密机械研究所 | 一种制备氮氧化铝透明陶瓷的方法 |
CN107399972A (zh) * | 2016-05-20 | 2017-11-28 | 河北高富氮化硅材料有限公司 | 一种基于sps方法制备透明氮化铝陶瓷的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108794016B (zh) * | 2018-06-28 | 2021-03-23 | 大连海事大学 | 一种高红外透过率AlON透明陶瓷的快速制备方法 |
-
2018
- 2018-06-28 CN CN201810684626.7A patent/CN108794016B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050164867A1 (en) * | 2004-01-23 | 2005-07-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Transparent polycrystalline sintered ceramic of cubic crystal structure |
US20070132154A1 (en) * | 2005-07-20 | 2007-06-14 | The Regents Of The University Of California | Low-temperature high-rate superplastic forming of ceramic composite |
CN102557087A (zh) * | 2011-12-16 | 2012-07-11 | 中国科学院上海硅酸盐研究所 | 一种制备高纯AlON粉体的方法 |
CN102875152A (zh) * | 2012-09-13 | 2013-01-16 | 大连海事大学 | 一种AlON透明陶瓷的低温快速制备方法 |
CN103755350A (zh) * | 2014-01-24 | 2014-04-30 | 大连海事大学 | 一种γ-AlON透明陶瓷粉体的制备方法 |
CN107344854A (zh) * | 2016-05-06 | 2017-11-14 | 中国科学院上海光学精密机械研究所 | 一种制备氮氧化铝透明陶瓷的方法 |
CN107399972A (zh) * | 2016-05-20 | 2017-11-28 | 河北高富氮化硅材料有限公司 | 一种基于sps方法制备透明氮化铝陶瓷的方法 |
Non-Patent Citations (7)
Title |
---|
LI XIBAO 等: "Progress and Challenges in the Synthesis of AlON Ceramics by Spark Plasma Sintering", 《TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY》 * |
SHAN YINGCHUN 等: "A fast pressureless sintering method for transparent AlON ceramics by using a bimodal particle size distribution powder", 《CERAMICS INTERNATIONAL》 * |
SHAN YINGCHUN 等: "Fast densification mechanism of bimodal powder during pressureless sintering of transparent AlON ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
SHAN YINGCHUN 等: "Further experimental investigation on fast densification mechanism of bimodal powder during pressureless sintering of transparent AlON ceramics", 《CERAMICS INTERNATIONAL》 * |
SHAN YINGCHUN 等: "Highly infrared transparent spark plasma sintered AlON ceramics", 《JOURNAL OF MATERIALS RESEARCH》 * |
李旋: "AlON粉体合成及其材料的SPS制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
赵二娟: "γ-AlON透明陶瓷的SPS烧结制备研究", 《万方数据》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108794016B (zh) * | 2018-06-28 | 2021-03-23 | 大连海事大学 | 一种高红外透过率AlON透明陶瓷的快速制备方法 |
CN113185301A (zh) * | 2021-04-23 | 2021-07-30 | 北京科技大学 | 一种AlON透明陶瓷的快速制备方法 |
CN114804931A (zh) * | 2022-05-11 | 2022-07-29 | 北京理工大学 | 一种AlON透明陶瓷低温腐蚀方法 |
CN114804931B (zh) * | 2022-05-11 | 2022-12-20 | 北京理工大学 | 一种AlON透明陶瓷低温腐蚀方法 |
CN115028458A (zh) * | 2022-07-29 | 2022-09-09 | 鲁米星特种玻璃科技股份有限公司 | 一种氮氧化铝透明陶瓷的制备技术 |
CN116789455A (zh) * | 2023-06-14 | 2023-09-22 | 大连海事大学 | 一种低温快速无压烧结制备AlON透明陶瓷的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108794016B (zh) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108794016A (zh) | 一种高红外透过率AlON透明陶瓷的快速制备方法 | |
EP3892601A9 (en) | Rare earth tantalate ceramic resisting corrosion of low melting point oxide and preparation method therefor | |
CN111533559A (zh) | 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法 | |
Li et al. | Phase, microstructure and sintering of aluminum nitride powder by the carbothermal reduction-nitridation process with Y2O3 addition | |
Wang et al. | Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method | |
CN102875152B (zh) | 一种AlON透明陶瓷的低温快速制备方法 | |
CN110002873B (zh) | 一种多孔钽酸盐陶瓷及其制备方法 | |
CN110590404B (zh) | 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法 | |
CN112299861B (zh) | 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法 | |
CN108249914B (zh) | 一种石榴石结构铝酸盐微波介质陶瓷及其制备方法 | |
CN114031297B (zh) | 一种堇青石基多孔玻璃陶瓷及其制备方法 | |
CN105924176A (zh) | 碳化硼基复相陶瓷及其放电等离子烧结制备方法 | |
CN106064936B (zh) | 一种高纯莫来石陶瓷材料的制备方法 | |
CN106587940A (zh) | 一种高纯致密氧化镁靶材及其制备方法 | |
CN104446496B (zh) | 一种AlON粉体的制备方法及由其制备的透明陶瓷 | |
CN110922195B (zh) | 原位反应制备镁铝尖晶石-碳化硅复合材料的方法 | |
CN104016668A (zh) | 一种莫来石陶瓷粉体的制备方法 | |
CN109053192B (zh) | 一种MgAlON透明陶瓷粉体的制备方法 | |
CN115286392B (zh) | 一种制备TiB2-TiC-SiC三元复相陶瓷的方法及其产品 | |
CN107473742B (zh) | 一种高质量单相双钙钛矿Sr2FeMoO6陶瓷的制备方法 | |
CN104098335A (zh) | 一种高电阻率碳化硅陶瓷及其制备方法 | |
CN102030535A (zh) | 氮化锆增强氧氮化铝复合陶瓷材料的制备方法 | |
CN112225564B (zh) | 一种氮氧化铝透明陶瓷及其制备方法 | |
CN108585878B (zh) | 一种高硬度MgAlON透明陶瓷及其制备方法 | |
CN108358628B (zh) | 一种莫来石-氧化锆复合陶瓷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |