CN108778542A - 在横向磁通感应热处理期间冷却导电片材的方法 - Google Patents

在横向磁通感应热处理期间冷却导电片材的方法 Download PDF

Info

Publication number
CN108778542A
CN108778542A CN201680071055.9A CN201680071055A CN108778542A CN 108778542 A CN108778542 A CN 108778542A CN 201680071055 A CN201680071055 A CN 201680071055A CN 108778542 A CN108778542 A CN 108778542A
Authority
CN
China
Prior art keywords
edge
magnetic flux
transverse magnetic
alloy
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680071055.9A
Other languages
English (en)
Inventor
J·威斯沃尔
J·A·安德森
M·M·李
G·F·怀亚特-梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aokoninke Technology Co.,Ltd.
Original Assignee
Okkonen G Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okkonen G Co filed Critical Okkonen G Co
Publication of CN108778542A publication Critical patent/CN108778542A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

在一些实施方案中,本发明公开一种方法,该方法包括:获得非铁合金片材作为具有第一边缘和第二边缘的原料,使用横向磁通感应加热系统对原料进行加热以形成经热处理的产品,以及伴随加热步骤,通过使至少一种流体跨原料的第一边缘和第二边缘中的至少一者横向流动来使原料的第一边缘和第二边缘中的至少一者冷却。

Description

在横向磁通感应热处理期间冷却导电片材的方法
技术领域
本发明涉及在横向磁通感应热处理期间冷却非铁合金片材。
背景技术
横向磁通感应热处理是已知的。
发明内容
在实施方案中,本发明是一种方法,该方法包括获得片材作为原料,其中片材是非铁合金,并且其中原料具有第一边缘和第二边缘;使用横向磁通感应加热系统对原料进行加热以形成经热处理的产品;伴随该加热步骤,通过使至少一种流体跨原料的第一边缘和第二边缘中的至少一者横向流动来使原料的第一边缘和第二边缘中的至少一者冷却。
在本文详细描述的一个或多个实施方案中,至少一种流体是氦气、氢气或空气中的至少一种。在本文详细描述的一个或多个实施方案中,至少一种流体是空气。在本文详细描述的一个或多个实施方案中,空气还包括水蒸汽。
在本文详细描述的一个或多个实施方案中,空气还包括液态水滴。在本文详细描述的一个或多个实施方案中,非铁合金选自由以下项组成的组:铝合金、镁合金、钛合金、铜合金、镍合金、锌合金和锡合金。
在本文详细描述的一个或多个实施方案中,非铁合金是选自由以下项组成的组的铝合金:1xxx、2xxx、3xxx、4xxx、5xxx、6xxx、7xxx和8xxx系列铝合金。在本文详细描述的一个或多个实施方案中,铝合金选自由以下项组成的组:2xxx、5xxx、6xxx和7xxx系列铝合金。在本文详细描述的一个或多个实施方案中,横向磁通感应加热系统包括多个横向磁通感应加热器。
根据前述权利要求中任一项所述的方法,其中该冷却步骤在该多个横向磁通感应加热器中的至少两个之间进行。
根据前述权利要求中任一项所述的方法,其中该冷却步骤在该原料由该多个横向磁通感应加热器中的至少一个加热之后进行。
根据前述权利要求中任一项所述的方法,其中该冷却步骤在该原料由多个横向磁通感应加热器中多于一半的横向磁通感应加热器加热之后进行。
附图说明
图1示出跨感应加热片材的典型的温度分布图。
图2示出横向磁通感应加热系统的示意图。
图3示出冷却片材边缘的横流的特征。
图4示出在20米每秒的横流的情况下关于2.7毫米样品的建模结果。
图5示出图1的与横流边缘冷却的感应加热片材的温度分布图相比较的温度分布图。
图6示出非限制性冷却喷嘴配置。
图7示出非限制性冷却喷嘴配置。
图8示出非限制性冷却喷嘴配置。
图9示出典型的边缘过热分布图和在边缘冷却的情况下建模的校正温度分布图。
本发明将进一步参考附图来解释,其中在整个若干视图中,相同的结构由相同的标号指代。所示出的附图未必按比例或纵横比绘制,而是通常把重点放在说明本发明的原理上。此外,一些特征可被夸大来示出特定组件的细节。
附图构成本说明书的一部分,并且包括本发明的例示性实施方案,并且示出了其各种目的和特征。此外,附图未必按比例绘制,一些特征可被夸大来示出特定组件的细节。此外,图中所示出的任何测量、规格等旨在是例示性的而非限制性的。因此,本文所公开的特定结构和功能细节不应被解释为限制性的,而仅仅是作为用于教导本领域技术人员以各种方式利用本发明的代表性基础。
具体实施方式
本发明将进一步参考附图来解释,其中在整个若干视图中,相同的结构由相同的标号指代。所示出的附图未必按比例绘制,而是通常把重点放在说明本发明的原理上。此外,一些特征可被夸大来示出特定组件的细节。
附图构成本说明书的一部分,并且包括本发明的例示性实施方案,并且示出了其各种目的和特征。此外,附图未必按比例绘制,一些特征可被夸大来示出特定组件的细节。此外,图中所示出的任何测量、规格等旨在是例示性的而非限制性的。因此,本文所公开的特定结构和功能细节不应被解释为限制性的,而仅仅是作为用于教导本领域技术人员以各种方式利用本发明的代表性基础。
在已公开的那些益处和改进中,本发明的其他目的和优点将结合附图从以下描述中变得显而易见。本文公开了本发明的详细实施方案;然而,应当理解,所公开的实施方案仅仅是可以各种形式体现的本发明的例示性说明。此外,结合本发明的各种实施方案给出的示例中的每一个旨在是例示性的而非限制性的。
在整个说明书和权利要求书中,除非上下文另有明确规定,否则以下术语采用在此明确关联的含义。如本文所用,短语“在一个实施方案中”和“在一些实施方案中”并不一定指相同的实施方案,尽管可以是相同的实施方案。此外,如本文所用,短语“在另一个实施方案中”和“在一些其它实施方案中”并不一定指不同的实施方案,尽管可以是不同的实施方案。因此,如下文所描述,本发明的各种实施方案可在不脱离本发明的范围或精神的情况下容易地组合。
此外,如本文所用,术语“或”是包括性的“或”运算符,并且等同于术语“和/或”,除非上下文以另外的方式明确规定。术语“基于”是非排他性的,并且允许基于未被描述的另外的因素,除非上下文以另外的方式明确规定。此外,在整个说明书中,“一”、“一个”和“该”的含义包括复数引用。“在…中”的含义包括“在…中”和“在…上”。
在实施方案中,本发明是一种方法,该方法包括获得片材作为原料,其中该片材是非铁合金,并且其中该原料具有第一边缘和第二边缘;使用横向磁通感应加热系统对原料进行加热以形成经热处理的产品;伴随该加热步骤,通过使至少一种流体跨原料的第一边缘和第二边缘中的至少一者横向流动来使原料的第一边缘和第二边缘中的至少一者冷却。
在本文详细描述的一个或多个实施方案中,至少一种流体是氦气、氢气或空气中的至少一种。在本文详细描述的一个或多个实施方案中,至少一种流体是空气。在本文详细描述的一个或多个实施方案中,空气还包括水蒸汽。
在本文详细描述的一个或多个实施方案中,空气还包括液态水滴。在本文详细描述的一个或多个实施方案中,非铁合金选自由以下项组成的组:铝合金、镁合金、钛合金、铜合金、镍合金、锌合金和锡合金。
在本文详细描述的一个或多个实施方案中,非铁合金是选自由以下项组成的组的铝合金:1xxx、2xxx、3xxx、4xxx、5xxx、6xxx、7xxx和8xxx系列铝合金。在本文详细描述的一个或多个实施方案中,铝合金选自由以下项组成的组:2xxx、5xxx、6xxx和7xxx系列铝合金。在本文详细描述的一个或多个实施方案中,横向磁通感应加热系统包括多个横向磁通感应加热器。
根据前述权利要求中任一项所述的方法,其中该冷却步骤在该多个横向磁通感应加热器中的至少两个之间进行。
根据前述权利要求中任一项所述的方法,其中该冷却步骤在该原料由该多个横向磁通感应加热器中的至少一个加热之后进行。
根据前述权利要求中任一项所述的方法,其中该冷却步骤在该原料由多个横向磁通感应加热器中多于一半的横向磁通感应加热器加热之后进行。
在实施方案中,本发明是一种冷却方法,该冷却方法被配置为减少或消除在连续过程中来自使用横向磁通感应加热器的加热导电片材的边缘过热。在一些实施方案中,片材可由非铁合金形成。在一些实施方案中,非铁合金选自由以下项组成的组:铝合金、镁合金、钛合金、铜合金、镍合金、锌合金和锡合金。在一些实施方案中,非铁合金选自由以下项组成的组的铝合金:1xxx、2xxx、3xxx、4xxx、5xxx、6xxx、7xxx和8xxx系列铝合金。
如本文所用,“片材”可以具有任何合适的厚度,并且通常具有片材规格(0.006英寸至0.249英寸)或板规格(0.250英寸至0.400英寸),即,具有处于0.006英寸至0.400英寸范围内的厚度。然而,还设想超过0.400英寸的更厚的规格。在一个实施方案中,片材具有至少0.040英寸的厚度。在一个实施方案中,片材具有不超过0.320英寸的厚度。在一个实施方案中,片材具有0.0070至0.018的厚度,诸如当用于罐装/包装应用时。在一个实施方案中,片材具有处于0.06英寸至0.25英寸范围内的厚度。在一些实施方案中,片材具有处于0.08英寸至0.14英寸范围内的厚度。在一些实施方案中,片材具有处于0.08英寸至0.20英寸范围内的厚度。在一些实施方案中,片材具有厚度处于0.1英寸至0.25英寸范围内的厚度。术语“条带”、“片材”和“板”可在本文中可互换使用。
边缘过热在使用横向磁通感应加热器时典型地由延伸超过片材边缘的电感器电流回路引起。这致使处于片材边缘处片材内的感应电流密度局部地较高,并且当片材在电感器电流回路之间经过时,边缘还比片材的内部部分经历更长的高电流密度的持续时间。这些现象中的两者可导致过热的片材边缘。边缘过热的非限制性示例在美国专利6,576,878中描述。
在图1中示出针对铝合金片材的使用有限元建模确定的跨部分地通过感应加热过程的片材宽度的典型温度分布的非限制性示例。温度的可变性增加,以便增加对片材的热输入。
边缘过热造成片材边缘附近的片材产品性质(例如,屈服强度、伸长率、可成形性)变化。此外,对于一些铝产品,离开加热区段的目标热处理温度非常接近铝产品的固相线温度。
本发明的实施方案的适于连续横向磁通热处理系统的冷却方法的非限制性示例在图2中示出。图2示出使用横向磁通感应加热器的用于片材和/或板的连续热处理系统的加热部分的示意图。
在实施方案中,本发明的方法包括使非铁合金片材充分地冷却以减少或消除发生在连续的横向磁通感应加热过程中的边缘过热。在一些实施方案中,本发明包括使经受连续横向磁通感应加热过程的非铁合金片材冷却,该横向磁通感应加热过程与铸造过程在线进行。在一些实施方案中,铸造过程是连续的铸造过程,如全文以引用方式并入本文中的美国专利6,672,368、7,125,612、8,403,027、7,846,554、8,697,248和8,381,796所描述。
在一些实施方案中,本发明包括使经受连续横向磁通感应加热过程的非铁合金片材冷却,该连续横向磁通感应加热过程利用由铸造过程产生的片材离线进行。在一些实施方案中,铸造过程是连续的铸造过程,如全文以引用方式并入本文中的美国专利6,672,368、7,125,612、8,403,027、7,846,554、8,697,248和8,381,796所描述。在一些实施方案中,铸造过程是基于铸锭的过程,诸如直接冷硬铸造。
在实施方案中,本发明的冷却方法导致跨片材宽度具有基本上均匀的温度。
在实施方案中,本发明的方法将用于非铁片材的边缘冷却与横向磁通感应热处理过程整合在一起,以减少或防止边缘过热和/或边缘熔融。在实施方案中,边缘冷却的位置在加热过程的出口之前但在其附近。在实施方案中,边缘冷却的位置的选择至少部分地基于1)当片材温度由于用于冷却空气和片材之间的热传递的增加的驱动力而增加时冷却的效果;2)通过加热过程累积的边缘过热;以及3)在位于加热过程的出口处或附近的最高温度区域中熔融的发生。
在实施方案中,本发明包括对流冷却。在其它实施方案中,对流冷却是强制对流冷却。在一些实施方案中,强制对流冷却使用至少一种流体来实现。在实施方案中,流体是空气。在又一些其它实施方案中,流体可包括除空气之外的气体。在实施方案中,流体可包括水蒸汽和/或液态水。
在一些实施方案中,用于实现流体冷却的流动配置可包括但不限于横流冷却(与片材平面平行并且指向片材中心线的流),以及在片材边缘处的冲击射流。如本文所用,术语使流体跨片材等“横向流动”意指使流体以基本上平行于片材平面朝向片材中心线的方式流动。
在实施方案中,冷却步骤在横向磁通感应加热装置的加热器之间进行。在其它实施方案中,冷却步骤与横向磁通感应加热装置的加热器整合在一起进行。在又一些其它实施方案中,冷却步骤更靠近于横向磁通感应加热装置的出口而不是入口进行。
在一些实施方案中,本发明包括横流流体冷却配置。在一些实施方案中,流体是空气。在实施方案中,横流空气冷却可沿着片材的边缘充分地实现,以减少边缘过热,同时使片材的中心部分略微冷却。在非限制性示例中,流动配置的特征在图3中示出,其中当与片材的中心部分相比较时,归因于在片材边缘处非常薄的热边界层,基本上更高的热传递发生在片材边缘处。图3示出用于冷却片材边缘,同时限制来自中心部分的热量的横流冷却的设计特征。
以下非限制性示例描述了使用在Incropera,DeWitt,Bergman,Lavine,“Fundamentals of Heat and Mass Transfer”(“Incropera”)中所描述的技术进行横流空气冷却热传递的模型和测量。在本文详细描述的非限制性示例中,假定冲击在片材边缘上的流是完全的湍流,原因是湍流在大多数工业空气递送系统(诸如鼓风机和压缩空气刀具)中发生;然而,冲击在片材边缘上的层流将具有类似的效果,并且也可使用Incropera中所描述的不同技术来建模。
方程式1和2以无因次量的形式对横流空气冷却的热传递进行建模。因次量值(诸如热传递系数)可根据方程式1和2通过使用努塞尔数(Nu)、雷诺数(Re)和普朗特数(Pr)并且使用特性长度、冷却流体性质和冷却流体速度来计算。
方程式1:Nut=1.15Ret 1/2Pr1/3。(1)
方程式2:Nux=0.0296Rex 4/5Pr1/3。(2)
在片材边缘处的热传递由方程式1描述。在方程式1中,特性长度是片材厚度。来自片材的顶部表面和底部表面的热传递作为距边缘的距离的函数由方程式2描述。在方程式2中,特性长度是距片材边缘的距离。当距边缘的距离趋向于0时,方程式2趋向于无穷大;因此,方程式1用来计算处于片材边缘的一个片材厚度内的距离处的顶部表面和底部表面的Nu。根据方程式1和2计算的热传递系数用作用于片材的计算的导热模型的边界条件。对2.7mm厚的样品以20m/s的流动速度进行测试以说明冷却效果并校准热传递模型。与非限制性示例的测试数据相比较的模型预测在图4中示出。图4所示的测量被定位在距片材的前缘1.8毫米和51.5毫米处。
对于上文描述的湍流非限制性示例,期望的冷却能力可通过使用方程式1和2中的对流热传递关系估算冷却空气流动速度来实现。在实施方案中,空气流动速度可使用鼓风机来实现。在其它实施方案中,空气流动速度可使用低压鼓风机递送,从而通过靠近片材边缘定位的开口将空气以特定速度递送至具有高达声速的出口流动速度的高压狭槽喷嘴以在片材边缘处实现特定速度,该高压狭槽喷嘴定位在距夹带环境空气的边缘一定距离处。针对上述非限制性示例研发的模型可用来指定用于大范围片材厚度、片材速度和热处理过程条件的冷却系统。
图5示出图1所示的典型边缘过热的温度分布图上的冷却效果。
在一些实施方案中,本发明包括冲击射流冷却配置。在实施方案中,冲击射流还可用来使片材边缘冷却,并且可被实现为一个狭槽、狭槽阵列、喷嘴阵列、或它们的组合。射流冷却装置的非限制性配置在图6、图7和图8中示出。
图6示出使用狭槽喷嘴、狭槽喷嘴阵列和圆形喷嘴阵列的若干冷却喷嘴配置。D是圆形喷嘴直径,W是狭槽喷嘴宽度,s是沿着片材长度的喷嘴到喷嘴距离,t是沿着片材宽度的喷嘴到喷嘴距离,d是距片材边缘的喷嘴阵列中心线距离,L是冷却长度,H是喷嘴出口到片材距离,a是在垂直于片材长度方向的平面上与垂直线的喷嘴角度,并且b是在垂直于片材宽度方向的平面上与垂直线的喷嘴角度。图7和图8是图6所示的非限制性配置的放大视图。
在非限制性示例中,基于已知的热传递相关性(诸如在N.Zuckerman和N.Lior的“Jet Impingement Heat Transfer:Physics,Correlations,和Numerical Modeling”,Advances in Heat Transfer,第39卷,第565-631页中描述的那些),流体冷却可使用单一狭槽喷嘴来实现,该单一狭槽喷嘴具有介于25mm和100mm(1英寸和4英寸)之间的间隔距离、介于2mm和10mm(0.075英寸和0.4英寸)之间的宽度以及介于10m/s和300m/s(30ft/s和1000ft/s)之间的平均气体出口速度。在非限制性示例中,边缘处的热传递系数介于110W/m2K和1000W/m2K(20BTU/hr ft2F和180BTU/hr ft2F)之间。已知的热传递相关性可用来确定各种配置中的圆形喷嘴阵列或狭槽喷嘴阵列的喷嘴几何结构、间距和热传递。
在一些实施方案中,递送至冷却射流的流体流被脉动地调节以改变从片材边缘提取的热量。在又一些其它实施方案中,喷嘴相对于片材(相对于宽度、长度或两者)成角度,以改变提取的热量和在其上提取热量的区域。
图9示出在图1所示的典型边缘过热的温度分布图上、在片材边缘处使用冲击射流的效果。图9是当片材边缘经过横向磁通感应热处理过程时,在片材边缘处使用冲击射流的典型的边缘过热分布图和建模的校正温度分布图。
在本文详细描述的冲击射流和/或横流流体冷却方法的一些实施方案中,喷嘴和片材边缘之间的间隔距离可至少部分地基于片材宽度变化或由于转向而导致的片材边缘移动来修改。在一些实施方案中,横流流体冷却方法对片材边缘定位比冲击射流冷却方法更不敏感。
虽然已经描述了本发明的多个实施方案,但应当理解,这些实施方案仅仅是说明性的,而不是限制性的,并且许多修改对于本领域的普通技术人员而言可能是显而易见的。此外,各个步骤可以任何期望的顺序进行(并且任何期望的步骤可被添加和/或任何期望的步骤可被消除)。

Claims (12)

1.一种方法,包括:
(a)获得片材作为原料,
其中所述片材是非铁合金,并且
其中所述原料具有第一边缘和第二边缘;
(b)使用横向磁通感应加热系统对所述原料进行加热以形成经热处理的产品;
(c)伴随所述加热步骤,通过使至少一种流体跨所述原料的所述第一边缘和所述第二边缘中的至少一者横向流动来使所述原料的所述第一边缘和所述第二边缘中的所述至少一者冷却。
2.根据权利要求1所述的方法,其中所述至少一种流体是氦气、氢气或空气中的至少一种。
3.根据前述权利要求中任一项所述的方法,其中所述至少一种流体是空气。
4.根据前述权利要求中任一项所述的方法,其中所述空气还包括水蒸汽。
5.根据前述权利要求中任一项所述的方法,其中所述空气还包括液态水滴。
6.根据前述权利要求中任一项所述的方法,其中所述非铁合金选自由以下项组成的组:铝合金、镁合金、钛合金、铜合金、镍合金、锌合金和锡合金。
7.根据前述权利要求中任一项所述的方法,其中所述非铁合金是选自由以下项组成的组的铝合金:1xxx、2xxx、3xxx、4xxx、5xxx、6xxx、7xxx和8xxx系列铝合金。
8.根据前述权利要求中任一项所述的方法,其中所述铝合金选自由以下项组成的组:2xxx、5xxx、6xxx和7xxx系列铝合金。
9.根据前述权利要求中任一项所述的方法,其中所述横向磁通感应加热系统包括多个横向磁通感应加热器。
10.根据前述权利要求中任一项所述的方法,其中所述冷却步骤在所述多个横向磁通感应加热器中的至少两个之间进行。
11.根据前述权利要求中任一项所述的方法,其中所述冷却步骤在所述原料由所述多个横向磁通感应加热器中的至少一个加热之后进行。
12.根据前述权利要求中任一项所述的方法,其中所述冷却步骤在所述原料由所述多个横向磁通感应加热器中多于一半的横向磁通感应加热器加热之后进行。
CN201680071055.9A 2015-12-04 2016-12-05 在横向磁通感应热处理期间冷却导电片材的方法 Pending CN108778542A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562263489P 2015-12-04 2015-12-04
US62/263,489 2015-12-04
PCT/US2016/064988 WO2017096387A1 (en) 2015-12-04 2016-12-05 Methods of cooling an electrically conductive sheet during transverse flux induction heat treatment

Publications (1)

Publication Number Publication Date
CN108778542A true CN108778542A (zh) 2018-11-09

Family

ID=58797972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680071055.9A Pending CN108778542A (zh) 2015-12-04 2016-12-05 在横向磁通感应热处理期间冷却导电片材的方法

Country Status (8)

Country Link
US (1) US20200305242A1 (zh)
EP (1) EP3383561B1 (zh)
JP (1) JP2019505686A (zh)
KR (2) KR102285210B1 (zh)
CN (1) CN108778542A (zh)
CA (1) CA3007365C (zh)
MX (1) MX2018006811A (zh)
WO (1) WO2017096387A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981455A (zh) * 2019-12-13 2022-08-30 Abp感应系统有限公司 横向场感应加热设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230193442A1 (en) * 2017-11-17 2023-06-22 Sms Group Gmbh Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
CN108570552A (zh) * 2018-07-05 2018-09-25 金杯电工电磁线有限公司 电磁线用铜导体连续在线半硬值控制装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367639A (en) * 1965-08-09 1968-02-06 Westinghouse Electric Corp Continuous strip heating apparatus
US3718024A (en) * 1971-02-12 1973-02-27 Morgan Construction Co Apparatus including a fluidized bed for cooling steel rod through transformation
US3744963A (en) * 1971-11-19 1973-07-10 Nat Lumberman S Bank & Trust C Heat treatment
JPS6092428A (ja) * 1983-10-25 1985-05-24 Chugai Ro Kogyo Kaisha Ltd 金属ストリツプの誘導加熱装置
JP2002317227A (ja) * 2001-04-20 2002-10-31 Nkk Corp 鋼板の熱処理方法およびその装置
US6570141B2 (en) * 2001-03-26 2003-05-27 Nicholas V. Ross Transverse flux induction heating of conductive strip
US6963056B1 (en) * 2003-05-09 2005-11-08 Inductotherm Corp. Induction heating of a workpiece
CN102099130A (zh) * 2008-07-16 2011-06-15 杰富意钢铁株式会社 热钢板的冷却设备以及冷却方法
US20150257207A1 (en) * 2013-12-20 2015-09-10 Ajax Tocco Magnethermic Corporation Transverse flux strip heating with dc edge saturation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448401A (en) * 1982-11-22 1984-05-15 Morgan Construction Company Apparatus for combined hot rolling and treating steel rod
DE3446794C1 (de) * 1984-12-21 1986-01-02 BWG Butzbacher Weichenbau GmbH, 6308 Butzbach Verfahren zur Waermebehandlung perlitischer Schienenstaehle
JPS6298588A (ja) * 1985-10-25 1987-05-08 日本軽金属株式会社 横磁束型電磁誘導加熱装置
JPH04362143A (ja) * 1991-06-05 1992-12-15 Daido Steel Co Ltd 金属ストリップの連続加熱装置
JP3744963B2 (ja) 1995-03-29 2006-02-15 株式会社吉野工業所 合成樹脂製容器
DE19953230C2 (de) * 1999-11-04 2003-08-28 C D Waelzholz Produktionsgmbh Kaltwalzverfahren
CN100513589C (zh) * 2000-12-18 2009-07-15 杰富意钢铁株式会社 厚钢板的制造方法及其设备
US6576878B2 (en) 2001-01-03 2003-06-10 Inductotherm Corp. Transverse flux induction heating apparatus
DE10131369A1 (de) * 2001-06-28 2003-01-09 Sms Demag Ag Verfahren und Vorrichtung zum Kühlen und Schmieren von Walzen eines Walzgerüstes
US9889480B2 (en) * 2013-03-11 2018-02-13 Novelis Inc. Flatness of a rolled strip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367639A (en) * 1965-08-09 1968-02-06 Westinghouse Electric Corp Continuous strip heating apparatus
US3718024A (en) * 1971-02-12 1973-02-27 Morgan Construction Co Apparatus including a fluidized bed for cooling steel rod through transformation
US3744963A (en) * 1971-11-19 1973-07-10 Nat Lumberman S Bank & Trust C Heat treatment
JPS6092428A (ja) * 1983-10-25 1985-05-24 Chugai Ro Kogyo Kaisha Ltd 金属ストリツプの誘導加熱装置
US6570141B2 (en) * 2001-03-26 2003-05-27 Nicholas V. Ross Transverse flux induction heating of conductive strip
JP2002317227A (ja) * 2001-04-20 2002-10-31 Nkk Corp 鋼板の熱処理方法およびその装置
US6963056B1 (en) * 2003-05-09 2005-11-08 Inductotherm Corp. Induction heating of a workpiece
CN102099130A (zh) * 2008-07-16 2011-06-15 杰富意钢铁株式会社 热钢板的冷却设备以及冷却方法
US20150257207A1 (en) * 2013-12-20 2015-09-10 Ajax Tocco Magnethermic Corporation Transverse flux strip heating with dc edge saturation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981455A (zh) * 2019-12-13 2022-08-30 Abp感应系统有限公司 横向场感应加热设备

Also Published As

Publication number Publication date
CA3007365C (en) 2023-07-18
CA3007365A1 (en) 2017-06-08
EP3383561B1 (en) 2024-01-24
WO2017096387A1 (en) 2017-06-08
KR20210054063A (ko) 2021-05-12
EP3383561A1 (en) 2018-10-10
JP2019505686A (ja) 2019-02-28
KR20180089483A (ko) 2018-08-08
KR102285210B1 (ko) 2021-08-02
US20200305242A1 (en) 2020-09-24
MX2018006811A (es) 2018-11-09
EP3383561A4 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
CN108778542A (zh) 在横向磁通感应热处理期间冷却导电片材的方法
Hu et al. Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg
TWI547448B (zh) 用於製作具有受控制之厚度的玻璃片之方法及設備
JP2019536634A5 (zh)
WO2017085961A1 (ja) 三次元造形装置及び造形材料排出部材
SE530323C2 (sv) Sätt att framställa föremål av amorf metall
JP2018524535A (ja) 温度調節されるべき非無端表面の均一な非接触温度調節方法およびその装置
JPWO2006075803A1 (ja) リフロー炉
CN107206553A (zh) 钢坯的焊接
CN108984918A (zh) 一种电渣重熔自耗电极熔化速率的预测方法
CN113414403A (zh) 三维打印系统和三维打印方法
JP5432812B2 (ja) 非鉄金属用溶解炉及び非鉄金属の溶解方法
JP4556720B2 (ja) 連続鋳造における鋳片の冷却方法
Gavalas et al. Optimization of cooling conditions to avoid surface cracks in Direct Chill casting of Cu-Fe-P alloy
JP2021526311A (ja) 噴流衝突冷却装置および方法
Ali Heat transfer enhancement of a heat source located in a wake zone using rectangular vortex generators
JP2011173153A (ja) 厚鋼板の冷却制御装置、冷却制御方法、及び、製造方法
JP5547903B2 (ja) リング状熱間圧延線材の冷却方法およびその装置
JP2007253230A (ja) ダイカストマシン用高周波誘導加熱装置
EP3381248B1 (en) Deflection of heated air from a posterior electrical component
JP2008144215A (ja) アルミニウム合金材の熱処理装置および熱処理方法
Hao et al. Improvement of casting speed and billet quality of direct chill cast aluminum wrought alloy with combination of slit mold and electromagnetic coil
JP6233595B2 (ja) インゴット予熱方法及びインゴット予熱装置
EP2888384B1 (en) Gamma titanium dual property heat treat system and method
Dogan et al. Heat Transfer in a Channel with Intermittent Heated Aluminum-Foam Heat Sinks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200930

Address after: Pennsylvania, USA

Applicant after: Aokoninke Technology Co.,Ltd.

Address before: Pennsylvania, USA

Applicant before: ARCONIC Inc.

TA01 Transfer of patent application right