CN108754546A - 锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法 - Google Patents

锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法 Download PDF

Info

Publication number
CN108754546A
CN108754546A CN201810609359.7A CN201810609359A CN108754546A CN 108754546 A CN108754546 A CN 108754546A CN 201810609359 A CN201810609359 A CN 201810609359A CN 108754546 A CN108754546 A CN 108754546A
Authority
CN
China
Prior art keywords
aluminium bar
layer
plated film
metal
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810609359.7A
Other languages
English (en)
Other versions
CN108754546B (zh
Inventor
陈步明
黄惠
郭忠诚
冷和
李学龙
汪世川
闫文凯
李威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinning Science And Technology Hengda Technology Co Ltd
KUNMING HENDERA SCIENCE AND TECHNOLOGY Co Ltd
Kunming University of Science and Technology
Original Assignee
Jinning Science And Technology Hengda Technology Co Ltd
KUNMING HENDERA SCIENCE AND TECHNOLOGY Co Ltd
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinning Science And Technology Hengda Technology Co Ltd, KUNMING HENDERA SCIENCE AND TECHNOLOGY Co Ltd, Kunming University of Science and Technology filed Critical Jinning Science And Technology Hengda Technology Co Ltd
Priority to CN201810609359.7A priority Critical patent/CN108754546B/zh
Publication of CN108754546A publication Critical patent/CN108754546A/zh
Application granted granted Critical
Publication of CN108754546B publication Critical patent/CN108754546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/34Electroplating: Baths therefor from solutions of lead
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法,所述复合阳极由基体铝棒(1)、包覆于基体铝棒上的强化层、包覆于强化层上的表面活性层(4)组成,所述强化层包括底层(2)和中间层(3),底层为Pb/Ag金属复合层,中间层为铅合金层;所述表面活性层为含纳米碳化钨的复合二氧化锰层,表面活性层中碳化钨的质量分数为0.6~2.4wt.%。本发明制备的表面镀膜复合阳极应用于电积锌中,相比传统的铅银合金阳极,槽电压降低120‑240mV,使用寿命长,成本低,电流效率提高2‑4%。

Description

锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法
技术领域
本发明涉及电解用阳极技术领域,特别是锌电积用表面镀膜复合阳极及其制备方法。
背景技术
目前湿法炼锌工艺生产的电锌已占全球锌锭总产量的80%以上。在Zn的湿法冶金电积过程中,阳极材料是电积工序的关键部件之一,电极过程的方向和动力学,电解槽的结构型式、电能消耗及阴极产品质量很大程度上都取决于阳极材料的性能。阳极材料必需满足导电性、机械强度和加工性能好,电催化活性高,耐腐蚀性强,寿命长及成本低等要求。但因电积过程是在硫酸介质中进行,阳极主反应是析氧,新生态氧的氧化能力强加之硫酸的强腐蚀性,只有铅基合金、二氧化铅、钛基金属氧化物等几种惰性阳极材料才能稳定存在。
在工业生产中湿法炼锌用的阳极通常为Pb-(0.5~1%)Ag合金阳极,该类阳极制备简单同时在酸性溶液中具有较好的耐蚀性和稳定性,银的加入能够提升电极的导电性和耐腐蚀性,同时也提高了阳极的生产成本。铅基合金阳极密度大、强度低、易弯曲变形,造成阴阳极板短路,降低电流效率。为了提高电极的机械强度和导电率,并减轻电极质量,各国冶金工作者力图开发出轻质基体的新型电极材料。针对各种电极材料,Ti基电催化涂层阳极金属和铝基铅合金阳极成为研究的热点。Ti基涂层阳极在锌电积中应用寿命短是因为锌电解中含有锰离子。Al的密度仅为Pb的1/4,导电率是Pb的8倍(仅次于Ag和Cu),抗拉强度是Pb的5倍以上,且非极化条件下,金属Al在硫酸溶液中可形成致密的保护膜,与铅合金复合具有较好的机械性能以及较低的价格,能显著提高铅银合金阳极的机械性能,并且降低其生产成本,在锌电积工业生产中具有良好的应用前景。
以轻质金属铝为内芯与外层铅合金通过熔铸或电镀的形式来互溶得到的阳极存在一些难以解决的问题,一是解决不了铅合金液的流动性以及大尺寸阳极板局部可能出现的孔洞,二是镀层会出现一些晶界缝隙,电解时产生的氧气透过镀层的晶界缝隙氧化铝基体,形成导电性差的三氧化二铝膜层,恶化阳极性能。
有色金属电积用栅栏型阳极板改善了电解液的流动性能,提高了电解有色金属收集的效果和质量,避免了阴极板进行起吊时,触碰阳极板的缺陷。采用廉价的铝棒作为基体,材料成本明显降低,但依然存在界面电阻和寿命短的问题。
因此,进一步开发一种导电性好、电流效率高、能耗低、价格便宜、工艺简单、阴极锌产品质量高(含铅少)的阳极十分必要。
发明内容
本发明的目的是为了克服上述现有技术存在的缺点,提供一种高导电性、电催化活性好、槽电压低、使用寿命长、成本低、电效高的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极及其制备方法。
本发明的目的通过以下技术方案实现:
锌电积用多孔铝棒铅合金表面镀膜复合阳极,由基体铝棒、包覆于基体铝棒上的强化层、包覆于强化层上的表面活性层组成,所述强化层包括底层和中间层,底层为Pb/Ag金属复合层,中间层为铅合金层;所述表面活性层为含纳米碳化钨的复合二氧化锰层,表面活性层中碳化钨的质量分数为0.6~2.4wt.%。
本发明所述的基体铝棒截面形状为异构状矩形或异构状椭圆形或异构状圆形,所述铅合金层外表面为锯齿形或者波浪形。制作基体铝棒的铝棒材规格型号为1050、1060、1070、3003、4A01、5052、5005、6061、6063中的任一种。所述的中间层铅合金为Pb-Ag、Pb-Ag-Ca、Pb-Ag-稀土、Pb-Ag-Sb、Pb-Ag-Ca-Sr、Pb-Ag-Ca-稀土、Pb-Ag-Ca-Sr-稀土中的任一种多元铅合金。所述的含纳米碳化钨的复合二氧化锰层中的碳化钨颗粒粒径为30~80nm,其中颗粒的形状为树枝状或片状。所述底层厚度为0.5~20μm,中间层厚度为1mm~10mm,表面活性层厚度为10~200μm。
本发明所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极的制备方法步骤如下:
a.基体铝棒的制备:首先将铝棒通过挤压拉拔,再将其进行除油,在质量分数10~20%的NaOH溶液中除油1~10min,之后立即水洗干净,然后置于磷酸阳极氧化液中,以纯铅作为阴极,温度为10~30℃,阳极电流密度为1~3A/dm2,电压为20-50V,在吹气下电镀10~50min后,水洗干净,然后置于质量分数5~30%的HC1中活化2~30min,控制活化温度20℃~50℃,再经去离子水洗净,得到多孔基体铝棒;所述阳极氧化液组成为磷酸150~300g/L、草酸3~10g/L、十二烷基硫酸钠0.05~0.5g/L;
b.Pb/Ag金属复合层的制备:将经步骤a处理后的多孔基体铝棒置于镀铅溶液中浸泡10~60min,控制温度40~90℃;所述的镀铅溶液配方为:氯化铅0.1~1mol/L、乙二胺四乙酸二钠0.2~1mol/L、柠檬酸0.1~0.4mol/L、醋酸钠0.1~0.3mol/L、三氯化钛0.03~0.2mol/L、表面活性剂0.2~1.0g/L,镀铅溶液pH 6~9;
进一步将从镀铅溶液中取出的基体铝棒置于镀银溶液中浸泡30~60min,控制温度10~35℃,然后用去离子水洗净,得到底层为Pb/Ag金属复合层的铝棒;所述的镀银溶液配方为:硝酸银1~8g/L、乙二胺四乙酸二钠5~20g/L、氢氧化钠1~10g/L、葡萄糖3~20g/L、酒石酸1~5g/L、表面活性剂0.1~0.8g/L;
c.铅合金层的制备:将步骤b制得的铝置于温度为100~160℃的烘箱中热处理1~10min,然后将半熔融状态下的铅合金与热处理后的铝棒置于挤压拉拔模具中,在130~300℃温度下,以1-10m/min的速度进行挤压包覆,将铅合金包覆在铝棒的Pb/Ag金属复合层表面;
d.含纳米碳化钨的复合二氧化锰层的制备:将步骤c制得的包覆了铅合金层的铝棒置于超声波分散后的镀二氧化锰溶液中浸泡0.5~8h,控制温度70~100℃,得到表面活性层为含纳米碳化钨的复合二氧化锰层的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极;所述的镀二氧化锰溶液配方为:高锰酸钾0.1~1mol/L、硫酸0.01~1mol/L、醋酸钠0.1~0.3mol/L、纳米WC颗粒10~40g/L、表面活性剂0.2~1.0g/L。
本发明所述的表面活性剂为十二烷基硫酸钠、十二烷基苯磺酸钠、OP乳化剂、糖精、PVP、聚乙二醇、明胶中的一种或几种的组合。
本发明相比现有技术具有如下优点:
1、将铝棒阳极氧化生成多孔,并采用盐酸溶液除去氧化膜来活化处理,使铝孔直径变大,与后续镀层结合更牢固,并扩大了铝基体与基体的接触面积,提高了电极的导电性和后续作为电极使用的寿命;
2、引入Pb/Ag金属复合层,提高了A1基与铅合金的导电性,防止了A1和铅合金在复合过程中容易氧化的现象,并且提到了电极在电解过程中的导通效率;
3、对铅合金外表面进行锯齿形或波浪形粗化处理,并采用复合化学镀沉积复合二氧化锰镀层,得到的活性层与铅合金结合紧密,并且阳极在电解锌过程中避免了铅的溶解,提高了阴极锌品质;
4、MnO2作为阳极析氧过电位低、易脆、裂纹多,不能单独作为阳极,但通过加入颗粒复合沉积能产生无内应力的镀层,且其致密性好,能在中等电流密度下长时间应用。本发明引入导电纳米树枝状或片状碳化物颗粒于活性二氧化锰镀层中,减少了二氧化锰的内应力,并提高了电极的导电性,使得阳极在锌电解过程中槽电压降低,起到节能降耗作用。
本发明制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极与传统的铅合金相比,在不改变电解槽结构、电解液组成和操作规范的基础上,导电性显著提高,产生气泡较小,带出的酸雾少,槽电压可降低120-240mV,使用寿命长,成本低,电流效率提高2-4%。本发明的复合电极制备工艺简单,易实现产业化生产。
附图说明
图1为本发明的锌电积用多孔铝棒铅合金表面镀膜复合阳极的断面结构示意图;
图2为多孔基体铝棒的表面结构图;
图3为Pb/Ag金属复合层的结构图。
具体实施方式
下面通过实施例对本发明方法作进一步详细说明,但本发明保护范围不局限于所述内容。
如图1所示,本发明的锌电积用多孔铝棒铅合金表面镀膜复合阳极,由基体铝棒1、包覆于基体铝棒上的强化层、包覆于强化层上的表面活性层4组成。所述强化层包括底层2和中间层3,底层为Pb/Ag金属复合层,中间层为铅合金层。所述表面活性层为含纳米碳化钨(WC)的复合二氧化锰层,表面活性层中碳化钨的质量分数为0.6~2.4wt.%,碳化钨颗粒粒径为30~80nm,碳化钨颗粒的形状为树枝状或片状。所述的基体铝棒1截面形状为异构状矩形或异构状椭圆形或异构状圆形,可以使强化层与基体铝棒结构更加牢固。所述铅合金层3外表面为锯齿形或者波浪型形,可以使表面活性层与其结合更为牢固。图1所示的基体铝棒截面形状为异构状矩形,即外表面呈锯齿状的矩形,铅合金层3外表面为波浪形。制作基体铝棒1的铝棒材选材灵活,可选择规格型号为1050、1060、1070、3003、4A01、5052、5005、6061、6063中的任一种铝棒。底层2厚度为0.5~20μm,中间层3厚度为1mm~10mm,表面活性层4厚度为10~200μm。中间层铅合金可选用Pb-Ag、Pb-Ag-Ca、Pb-Ag-稀土、Pb-Ag-Sb、Pb-Ag-Ca-Sr、Pb-Ag-Ca-稀土、Pb-Ag-Ca-Sr-稀土中的任一种多元铅合金。
实施例1
锌电积用多孔铝棒铅合金表面镀膜复合阳极的制备方法,步骤如下:
a.基体铝棒的制备:首先将5052铝棒材通过挤压拉拔,再将其进行除油,在质量分数15%的NaOH溶液中除油8min,之后立即水洗干净,然后置于磷酸阳极氧化液中,以纯铅作为阴极,温度为20℃,阳极电流密度为2A/dm2,电压为30V,在吹气下电镀30min后,大量水洗干净后置于质量分数20%的HC1中活化20min,控制活化温度30℃,再经去离子水洗净,得到表面如图2所示的多孔基体铝棒1。所述阳极氧化液组成为磷酸(H3PO4)200g/L、草酸(H2C2O4·2H2O)8g/L、十二烷基硫酸钠(NaC12H25SO4)0.25g/L;
b.Pb/Ag金属复合层的制备:将经步骤a理后的多孔基体铝棒置于镀铅溶液中浸泡30min,控制温度75℃。所述的镀铅溶液配方为:氯化铅(PbC12)0.5mol/L、乙二胺四乙酸二钠0.6mol/L、柠檬酸0.3mol/L、醋酸钠0.1mol/L、质量浓度25%的三氯化钛(TiC13)溶液0.1mol/L、十二烷基硫酸钠0.5g/L、OP乳化剂0.1g/L,镀铅溶液pH8;
进一步将从镀铅溶液中取出的基体铝棒置于镀银溶液中浸泡40min,控制温度25℃,然后用去离子水洗净,得到底层为如图3所示的Pb/Ag金属复合层的铝棒。所述的镀银溶液配方为:硝酸银(AgNO3)6g/L、乙二胺四乙酸二钠10g/L、氢氧化钠5g/L、葡萄糖10g/L、酒石酸3g/L、十二烷基硫酸钠0.3g/L、OP乳化剂0.1g/L;
c.铅合金层的制备:将步骤b制得的铝置于温度为120℃的烘箱中热处理8min,然后将半熔融状态下的Pb-Ag-Ca多元铅合金与热处理后的铝棒置于挤压拉拔模具中,在200℃温度下,以5m/min的速度进行挤压包覆,将Pb-Ag-Ca多元铅合金包覆在铝棒的Pb/Ag金属复合层表面;
d.含纳米碳化钨的复合二氧化锰层的制备:将步骤c制得的包覆了铅合金层的铝棒置于超声波分散后的镀二氧化锰溶液中浸泡5h,控制温度80℃,得到表面活性层为含纳米碳化钨的复合二氧化锰层的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极。表面活性层中碳化钨的质量分数为2wt.%。所述的镀二氧化锰溶液配方为:高锰酸钾0.5mol/L、硫酸0.2mol/L、醋酸钠0.3mol/L、纳米WC颗粒30g/L、十二烷基硫酸钠0.5g/L。WC颗粒粒径为30nm,颗粒形状为树枝状。
本实施例制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极,底层2厚度为10μm,中间层3厚度为6mm,表面活性层4厚度为100μm。
将本实施例制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极用于锌电解,在电解液锌离子浓度为55g/L、硫酸浓度为150g/L、电解温度为45℃、200mg/L C1-离子、50mg/L F-离子的电解条件下,其电效比传统Pb-0.8wt.%Ag合金阳极板提高2.4%,槽电压低180mV,阴极锌品质为0#锌。
实施例2
锌电积用多孔铝棒铅合金表面镀膜复合阳极的制备方法,步骤如下:
a.基体铝棒的制备:首先将1060铝棒材通过挤压拉拔,再将其进行除油,在质量分数20%的NaOH溶液中除油1min,之后立即水洗干净,然后置于磷酸阳极氧化液中,以纯铅作为阴极,温度为30℃,阳极电流密度为1A/dm2,电压为50V,在吹气下电镀50min后,大量水洗干净后置于质量分数5%的HC1中活化30min,控制活化温度50℃,再经去离子水洗净,得到多孔基体铝棒1。所述阳极氧化液组成为H3PO4300g/L、H2C2O4·2H2O 10g/L、NaC12H25SO40.5g/L;
b.Pb/Ag金属复合层的制备:将经步骤a理后的多孔基体铝棒置于镀铅溶液中浸泡60min,控制温度40℃。所述的镀铅溶液配方为:PbC121mol/L、乙二胺四乙酸二钠1mol/L、柠檬酸0.1mol/L、醋酸钠0.3mol/L、质量浓度25%的TiC13溶液0.2mol/L、十二烷基硫酸钠0.5g/L、OP乳化剂0.1g/L,镀铅溶液pH 6;
进一步将从镀铅溶液中取出的基体铝棒置于镀银溶液中浸泡60min,控制温度10℃,然后用去离子水洗净,得到底层为Pb/Ag金属复合层的铝棒。所述的镀银溶液配方为:AgNO38g/L、乙二胺四乙酸二钠20g/L、氢氧化钠1g/L、葡萄糖3g/L、酒石酸5g/L、十二烷基硫酸钠0.8g/L;
c.铅合金层的制备:将步骤b制得的铝置于温度为110℃的烘箱中热处理10min,然后将半熔融状态下的Pb-0.8wt.%Ag多元铅合金与热处理后的铝棒置于挤压拉拔模具中,在130℃温度下,以1m/min的速度进行挤压包覆,将Pb-0.8wt.%Ag多元铅合金包覆在铝棒的Pb/Ag金属复合层表面;
d.含纳米碳化钨的复合二氧化锰层的制备:将步骤c制得的包覆了铅合金层的铝棒置于超声波分散后的镀二氧化锰溶液中浸泡8h,控制温度70℃,得到表面活性层为含纳米碳化钨的复合二氧化锰层的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极。表面活性层中碳化钨的质量分数为2.4wt.%。所述的镀二氧化锰溶液配方为:高锰酸钾0.1mol/L、硫酸0.01mol/L、醋酸钠0.2mol/L、纳米WC颗粒40g/L、十二烷基硫酸钠1g/L。WC颗粒粒径为50nm,颗粒形状为片状。
本实施例制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极,底层2厚度为20μm,中间层3厚度为10mm,表面活性层4厚度为200μm。
将本实施例制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极用于锌电解,在电解液锌离子浓度为55g/L、硫酸浓度为150g/L、电解温度为45℃、200mg/L C1-离子、50mg/L F-离子的电解条件下,其电效比传统Pb-0.8wt.%Ag合金阳极板提高3%,槽电压低240mV,阴极锌品质为0#锌。
实施例3
锌电积用多孔铝棒铅合金表面镀膜复合阳极的制备方法,步骤如下:
a.基体铝棒的制备:首先将6061铝棒材通过挤压拉拔,再将其进行除油,在质量分数10%的NaOH溶液中除油10min,之后立即水洗干净,然后置于磷酸阳极氧化液中,以纯铅作为阴极,温度为10℃,阳极电流密度为3A/dm2,电压为20V,在吹气下电镀10min后,大量水洗干净后置于质量分数30%的HC1中活化2min,控制活化温度20℃,再经去离子水洗净,得到多孔基体铝棒1。所述阳极氧化液组成为H3PO4150g/L、H2C2O4·2H2O 3g/L、NaC12H25SO40.05g/L;
b.Pb/Ag金属复合层的制备:将经步骤a理后的多孔基体铝棒置于镀铅溶液中浸泡10min,控制温度90℃。所述的镀铅溶液配方为:PbC120.1mol/L、乙二胺四乙酸二钠0.2mol/L、柠檬酸0.4mol/L、醋酸钠0.2mol/L、TiC13溶液0.03mol/L、十二烷基硫酸钠0.5g/L、PVP0.2g/L、聚乙二醇0.3g/L,镀铅溶液pH9;
进一步将从镀铅溶液中取出的基体铝棒置于镀银溶液中浸泡30min,控制温度35℃,然后用去离子水洗净,得到底层为Pb/Ag金属复合层的铝棒。所述的镀银溶液配方为:AgNO31g/L、乙二胺四乙酸二钠5g/L、氢氧化钠10g/L、葡萄糖20g/L、酒石酸1g/L、聚乙二醇0.1g/L;
c.铅合金层的制备:将步骤b制得的铝置于温度为160℃的烘箱中热处理1min,然后将半熔融状态下的Pb-0.25wt.%Ag-0.06wt.%Ca多元铅合金与热处理后的铝棒置于挤压拉拔模具中,在300℃温度下,以10m/min的速度进行挤压包覆,将Pb-0.25wt.%Ag-0.06wt.%Ca多元铅合金包覆在铝棒的Pb/Ag金属复合层表面;
d.含纳米碳化钨的复合二氧化锰层的制备:将步骤c制得的包覆了铅合金层的铝棒置于超声波分散后的镀二氧化锰溶液中浸泡0.5h,控制温度100℃,得到表面活性层为含纳米碳化钨的复合二氧化锰层的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极。表面活性层中碳化钨的质量分数为0.6wt.%。所述的镀二氧化锰溶液配方为:高锰酸钾1mol/L、硫酸1mol/L、醋酸钠0.1mol/L、纳米WC颗粒10g/L、十二烷基硫酸钠0.2g/L。WC颗粒粒径为80nm,颗粒形状为片状。
本实施例制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极,底层2厚度为0.5μm,中间层3厚度为1mm,表面活性层4厚度为10μm。
将本实施例制备的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极用于锌电解,在电解液锌离子浓度为55g/L、硫酸浓度为150g/L、电解温度为45℃、200mg/L C1-离子、50mg/L F-离子的电解条件下,其电效比传统Pb-0.8wt.%Ag合金阳极板提高2%,槽电压低120mV,阴极锌品质为0#锌。

Claims (8)

1.锌电积用多孔铝棒铅合金表面镀膜复合阳极,其特征在于,由基体铝棒(1)、包覆于基体铝棒上的强化层、包覆于强化层上的表面活性层(4)组成,所述强化层包括底层(2)和中间层(3),底层为Pb/Ag金属复合层,中间层为铅合金层;所述表面活性层为含纳米碳化钨的复合二氧化锰层,表面活性层中碳化钨的质量分数为0.6~2.4wt.%。
2.根据权利要求1所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极,其特征在于,所述的基体铝棒(1)截面形状为异构状矩形或异构状椭圆形或异构状圆形,所述铅合金层(3)外表面为锯齿形或者波浪形。
3.根据权利要求1所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极,其特征在于,制作基体铝棒(1)的铝棒材规格型号为1050、1060、1070、3003、4A01、5052、5005、6061、6063中的任一种。
4.根据权利要求1所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极,其特征在于,所述的中间层铅合金为Pb-Ag、Pb-Ag-Ca、Pb-Ag-稀土、Pb-Ag-Sb、Pb-Ag-Ca-Sr、Pb-Ag-Ca-稀土、Pb-Ag-Ca-Sr-稀土中的任一种多元铅合金。
5.根据权利要求1所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极,其特征在于,所述的含纳米碳化钨的复合二氧化锰层中的碳化钨颗粒粒径为30~80nm,其中颗粒的形状为树枝状或片状。
6.根据权利要求1所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极,其特征在于,所述底层(2)厚度为0.5~20μm,中间层(3)厚度为1mm~10mm,表面活性层(4)厚度为10~200μm。
7.如权利要求1~6的任一项所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极的制备方法,其特征在于,方法步骤如下:
a.基体铝棒的制备:首先将铝棒通过挤压拉拔,再将其进行除油,在质量分数10~20%的NaOH溶液中除油1~10min,之后立即水洗干净,然后置于磷酸阳极氧化液中,以纯铅作为阴极,温度为10~30℃,阳极电流密度为1~3A/dm2,电压为20-50V,在吹气下电镀10~50min后,水洗干净,然后置于质量分数5~30%的HC1中活化2~30min,控制活化温度20℃~50℃,再经去离子水洗净,得到多孔基体铝棒(1);所述阳极氧化液组成为磷酸150~300g/L、草酸3~10g/L、十二烷基硫酸钠0.05~0.5g/L;
b.Pb/Ag金属复合层的制备:将经步骤a处理后的多孔基体铝棒置于镀铅溶液中浸泡10~60min,控制温度40~90℃;所述的镀铅溶液配方为:氯化铅0.1~1mol/L、乙二胺四乙酸二钠0.2~1mol/L、柠檬酸0.1~0.4mol/L、醋酸钠0.1~0.3mol/L、三氯化钛0.03~0.2mol/L、表面活性剂0.2~1.0g/L,镀铅溶液pH 6~9;
进一步将从镀铅溶液中取出的基体铝棒置于镀银溶液中浸泡30~60min,控制温度10~35℃,然后用去离子水洗净,得到底层为Pb/Ag金属复合层的铝棒;所述的镀银溶液配方为:硝酸银1~8g/L、乙二胺四乙酸二钠5~20g/L、氢氧化钠1~10g/L、葡萄糖3~20g/L、酒石酸1~5g/L、表面活性剂0.1~0.8g/L;
c.铅合金层的制备:将步骤b制得的铝置于温度为100~160℃的烘箱中热处理1~10min,然后将半熔融状态下的铅合金与热处理后的铝棒置于挤压拉拔模具中,在130~300℃温度下,以1-10m/min的速度进行挤压包覆,将铅合金包覆在铝棒的Pb/Ag金属复合层表面;
d.含纳米碳化钨的复合二氧化锰层的制备:将步骤c制得的包覆了铅合金层的铝棒置于超声波分散后的镀二氧化锰溶液中浸泡0.5~8h,控制温度70~100℃,得到表面活性层为含纳米碳化钨的复合二氧化锰层的锌电积用高导电性多孔铝棒铅合金表面镀膜复合阳极;所述的镀二氧化锰溶液配方为:高锰酸钾0.1~1mol/L、硫酸0.01~1mol/L、醋酸钠0.1~0.3mol/L、纳米WC颗粒10~40g/L、表面活性剂0.2~1.0g/L。
8.如权利要求7所述的锌电积用多孔铝棒铅合金表面镀膜复合阳极的制备方法,其特征在于,所述的表面活性剂为十二烷基硫酸钠、十二烷基苯磺酸钠、OP乳化剂、糖精、PVP、聚乙二醇、明胶中的一种或几种的组合。
CN201810609359.7A 2018-06-13 2018-06-13 锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法 Active CN108754546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810609359.7A CN108754546B (zh) 2018-06-13 2018-06-13 锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810609359.7A CN108754546B (zh) 2018-06-13 2018-06-13 锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法

Publications (2)

Publication Number Publication Date
CN108754546A true CN108754546A (zh) 2018-11-06
CN108754546B CN108754546B (zh) 2020-04-28

Family

ID=64022703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810609359.7A Active CN108754546B (zh) 2018-06-13 2018-06-13 锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法

Country Status (1)

Country Link
CN (1) CN108754546B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926349A (zh) * 2020-09-09 2020-11-13 中南大学 一种湿法冶金用复合阳极及其制备方法和应用
CN114150348A (zh) * 2021-12-08 2022-03-08 昆明理工恒达科技股份有限公司 一种有色金属电积用wc颗粒增强低银铅合金复合阳极板及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736369A (zh) * 2009-12-29 2010-06-16 昆明理工大学 锌电积用新型铝基复合二氧化铅-二氧化锰阳极的制备方法
CN107723747A (zh) * 2017-10-17 2018-02-23 昆明理工大学 锌电积用钛基二氧化铅/二氧化锰梯度电极及其制备方法
CN207276744U (zh) * 2017-09-11 2018-04-27 昆明理工恒达科技股份有限公司 复合阳极材料与阳极板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736369A (zh) * 2009-12-29 2010-06-16 昆明理工大学 锌电积用新型铝基复合二氧化铅-二氧化锰阳极的制备方法
CN207276744U (zh) * 2017-09-11 2018-04-27 昆明理工恒达科技股份有限公司 复合阳极材料与阳极板
CN107723747A (zh) * 2017-10-17 2018-02-23 昆明理工大学 锌电积用钛基二氧化铅/二氧化锰梯度电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑曦: "MnO2-WC复合镀层的制备", 《福建师范大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926349A (zh) * 2020-09-09 2020-11-13 中南大学 一种湿法冶金用复合阳极及其制备方法和应用
CN111926349B (zh) * 2020-09-09 2021-10-15 中南大学 一种湿法冶金用复合阳极及其制备方法和应用
CN114150348A (zh) * 2021-12-08 2022-03-08 昆明理工恒达科技股份有限公司 一种有色金属电积用wc颗粒增强低银铅合金复合阳极板及制备方法
CN114150348B (zh) * 2021-12-08 2024-03-12 昆明理工恒达科技股份有限公司 一种有色金属电积用wc颗粒增强低银铅合金复合阳极板及制备方法

Also Published As

Publication number Publication date
CN108754546B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN103205780B (zh) 有色金属电积用栅栏型钛基PbO2电极及其制备方法
CN104611731B (zh) 一种有色金属电积用栅栏型铝棒铅合金阳极板的制备方法
CN102888625B (zh) 有色金属电积用栅栏型阳极板
CN100580147C (zh) 有色金属电积用节能惰性阳极材料的制备方法
CN107604388A (zh) 复合阳极材料及其制备方法、阳极板及其制备方法
CN101343758B (zh) 锌电积用惰性阳极材料的制备方法
CN102212849A (zh) 一种有色金属电积用新型阳极板制备方法
CN108149280A (zh) 一种旋流电解装置用钛基管网复合铅阳极及其制备方法
CN201220972Y (zh) 有色金属电积用节能惰性阳极板
CN202830195U (zh) 有色金属电积用栅栏型阳极板
CN108754546A (zh) 锌电积用多孔铝棒铅合金表面镀膜复合阳极及其制备方法
CN109628957A (zh) 一种锌电积用钛基纳米复合阳极的制备方法
CN1184357C (zh) 梯度功能复合阳极材料的制备方法
CN207276744U (zh) 复合阳极材料与阳极板
CN103572331B (zh) 有色金属电积用栅栏型钛基PbO2阳极的制作方法
CN108774737A (zh) 一种泡沫金属基铅合金复合阳极材料的制备方法
CN109023420A (zh) 一种镍电积用铝基复合阳极及其制备方法
CN102433581A (zh) 一种有色金属电积用新型阳极材料的制备方法
CN102443822B (zh) 一种锌电积用梯度功能惰性阳极材料及其制备方法
CN204455313U (zh) 有色金属电积用栅栏型铝棒铅合金阳极板
CN111101153A (zh) 一种铜电积用复合阳极板及其制备方法
CN108823603A (zh) 一种铜电积用栅栏型复合阳极板及其制备方法
CN113293411B (zh) 一种梯度复合二氧化铅阳极板及其制备方法与应用
CN102534717A (zh) 一种在工程塑料基底上制备二氧化铅电极板的方法
WO2013143245A1 (zh) 一种铝基铅或铅合金复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant