CN108746622B - 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法 - Google Patents

一种新型多孔镍/石墨复合自支撑膜材料及其制备方法 Download PDF

Info

Publication number
CN108746622B
CN108746622B CN201810635068.5A CN201810635068A CN108746622B CN 108746622 B CN108746622 B CN 108746622B CN 201810635068 A CN201810635068 A CN 201810635068A CN 108746622 B CN108746622 B CN 108746622B
Authority
CN
China
Prior art keywords
nickel
film
graphite composite
composite self
pore structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810635068.5A
Other languages
English (en)
Other versions
CN108746622A (zh
Inventor
喻林萍
谢维
康建刚
粟雨轲
乔越
喻强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201810635068.5A priority Critical patent/CN108746622B/zh
Publication of CN108746622A publication Critical patent/CN108746622A/zh
Application granted granted Critical
Publication of CN108746622B publication Critical patent/CN108746622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种具有多维孔结构的镍/石墨复合自支撑膜材料及其制备方法,该方法包含以下步骤:1.以高纯度不同粒度及形貌镍粉混合聚乙烯醇缩丁醛液;2.控制浆料粘度在以薄层硬脂酸锌隔离的石英平板表面覆膜,压膜器控制生膜厚度为50~500μm,置于真空干燥器干燥8小时;3.从石英平板表面移出平整生膜,转移并平置于多孔氧化铝板表面;4.控制升温速率及保温平台,真空烧结得到多孔镍/石墨复合自支撑膜材料。与传统的泡沫镍支撑材料相比,新型多孔镍/石墨复合自支撑膜孔径大大减小至0.5~10μm(商业泡沫镍垂直孔道孔径≥100μm),同时比表面积增加,可大大提高活性物质的负载量,形成的多维孔道结构能有效地缩短分子扩散路径,提高反应物及产物的扩散及传质效率。本发明制备方法简单,工艺参数容易控制,成本低。其产品结构和性质非常适用于制作电极元件载体和催化反应核心支撑材料。

Description

一种新型多孔镍/石墨复合自支撑膜材料及其制备方法
技术领域
本发明属于电池及电解行业复合材料制备领域,涉及一种三维孔道、高比表面积的,具有良好导电性的支撑骨架材料及其制备方法,所制备的多孔镍/石墨复合自支撑膜材料适用于电解水,动力电池,气相催化还原等行业作活性物质载体材料。
背景技术
功能复合材料在清洁能源及储能等行业的发展上日益重要,其中基体单元材料不仅起到承载作用,而且能产生协同或者加强功能特征。基体单元仍以泡沫镍为主导,发展复合功能材料整体性能由此对多孔基底提出更多更高的要求,主要表现在在维持良好导电性的前提下,如何提高多孔基底的比表面积、均质性、高活性物质容量及反应传质能力等性能上,更一步满足电解、电池及气相催化等过程核心器件的高效、低成本及稳定等性能要求。
目前,具有电催化、吸附、储能、化学催化等功能的活性材料大致分如下几种:1.碳材料(如碳纳米管,石墨烯等);2.过渡族金属氧化物及氢氧化物(MnO2、Co3O4、Ni(OH)2等);3.稀土及其氧化物(CeO2、TiO2等);4.贵金属及其氧化物(如IrO2、RuO2、Rh2O3等);5.导电聚合物(如聚乙炔、聚噻吩等);6.金属有机框架材料(MOF)等。基底单元在合成复合功能材料的过程中,由于活性物质与基底组成的不相容性,需要通过第三组元辅助活性物质与基底形成整体结构,而导电性能极弱的聚合物粘结剂作为第三组元辅助成份,不仅大大降低基底组元及活性物质的协同作用,同时影响了基底的电子迁移能力。在此背景下,基底组元原位生长活性物质是复合功能材料的发展趋势。相对于泡沫镍,具有三维多孔结构优势的多孔镍/石墨复合基底材料具有较大的比表面积和贯通的结构,为活性物质的原位生长提供更丰富的位点及更大的空间容量,有利于复合材料活性物质与气相或液相介质的充分接触和电子传递,在电池、电解、电化学传感器、化学催化等领域都有很大的应用前景。
发明内容
针对现有泡沫镍作为复合功能材料基底单元的不足,本发明的目的在于,提供一种自支撑三维多孔镍/石墨复合基底膜材料的制备方法及由该方法制备出的自支撑复合基底膜,制备过程简易,应用范围广泛。本发明采用如下技术方案实现:
1.镍生膜浆料的制备;
以高纯度不同粒度及形貌镍粉分别混合聚乙烯醇缩丁醛液;
2.镍生膜的制备;
控制浆料粘度在以薄层硬脂酸锌隔离的石英平板表面覆膜,压膜器控制生膜厚度为50~500μm,置于真空干燥器干燥8小时;将干燥后的平整生膜从石英平板表面移出,转移并平置于多孔氧化铝板表面;
3.多孔镍/石墨复合自支撑膜的烧结成型;
控制升温速率及保温平台,真空烧结得到多孔镍/石墨复合自支撑膜材料。
附图说明
图1:多孔镍/石墨复合自支撑膜表面形貌(a);截面形貌(b);
图2:多孔镍/石墨复合自支撑膜拉曼谱。
实施例
实施例:本实施例给出一种制备多孔镍/石墨复合自支撑膜材料的方法,包括以下具体步骤:在40℃下,将取聚乙烯醇缩丁醛3g,以无水乙醇35mL超声溶解得到聚乙烯醇缩丁醛液;取高纯羰基镍粉(中位径6.4μm)10g,聚乙烯醇缩丁醛液15g,磁力搅拌至形成均匀浆料,密封静置2小时无气泡。以薄层硬脂酸锌隔离平整无滑痕石英表面,取浆料4g覆膜面积20cm2,置于真空干燥箱中干燥8小时;将形成的生膜从石英平板表面脱除,平铺于涂覆薄层硬酯酸锌隔离的多孔氧化铝板,置入真空烧结炉进行烧结。控制升温速率及保温平台,在600度保温3小时,800、900、1000℃分别保温140min,真空烧结最高温度为1100℃,保温90min,程序结束后随炉冷却,可得到多孔镍/石墨复合自支撑膜材料,石墨含量10wt.%,膜厚70.5μm。表面形貌及膜厚见附图1;膜内碳元素以石墨形式存在,见图2拉曼谱(石墨烯的拉曼光谱图上主要有3个峰,分别是D、G和2D峰(倍频峰)。D峰出现在1353cm-1处,是由芳香环中sp2碳原子的对称伸缩振动(径向呼吸模式)引起的,且需要一个缺陷才能激活,因此D峰的强度通常用来衡量石墨的无序度。G峰出现在1587cm-1附近,它是由sp2碳原子间的拉伸振动引起的。而2D峰出现在2711cm-1附近,是由碳原子中两个具有反向动量的声子双共振跃迁引起的,它的移动和形状与石墨的层数密切相关)。

Claims (2)

1.一种具有多维孔结构的镍/石墨复合自支撑膜,其特征在于,以石墨含量控制具有多维孔结构的镍/石墨复合自支撑膜的厚度,厚度可在50-500μm之间调控,孔径及孔道形貌可根据原始镍粉粒度及形貌调控;具有三维多孔结构优势的多维孔镍/石墨复合基底材料具有较大的比表面积和贯通的结构,为活性物质的原位生长提供更丰富的位点,同时可根据需要引入协同组元活性位点;
所述具有多维孔结构的镍/石墨复合自支撑膜的制备方法,由以下步骤组成:
1)镍生膜浆料的制备;
2)镍生膜的制备;
3)具有多维孔结构的镍/石墨复合自支撑膜的烧结成型;
所述步骤1)镍生膜浆料的制备方法为以高纯度不同粒度及形貌镍粉分别混合聚乙烯醇缩丁醛液;所述镍粉粒度在5-20μm,镍粉形貌由羰基镍粉,雾化镍粉,电解镍粉中的一种或两种组成;
所述聚乙烯醇缩丁醛液采用的溶剂为松油醇、丁酮或乙醇中的一种,溶质质量浓度为10wt.%-25.0wt.%;镍生膜浆料质量浓度为20wt.%-45.0wt.%;
所述步骤2)镍生膜的制备方法为,控制镍生膜浆料粘度在以薄层硬脂酸锌隔离的石英平板表面覆膜,压膜器控制镍生膜厚度为50-500μm,置于真空干燥器干燥8小时;将干燥后的平整镍生膜从石英平板表面移出,转移并平置于多孔氧化铝板表面;其中,镍生膜浆料配制好后密封静置使粉末颗粒均匀分散,无气泡;多孔氧化铝板表面以薄层硬酯酸锌隔离,防止烧结成膜粘连;
所述步骤3)具有多维孔结构的镍/石墨复合自支撑膜的烧结成型方法为,控制升温速率及保温平台,真空烧结得到具有多维孔结构的镍/石墨复合自支撑膜材料;真空烧结最高温度为1200℃,保温平台为600-1000℃中的进行两至四段保温,保温时长控制在1-5hrs范围内;烧结程序结束后随炉冷却至200℃以下,可得到具有多维孔结构的镍/石墨复合自支撑膜材料。
2.一种具有多维孔结构的镍/石墨复合自支撑膜的制备方法,其特征在于,由以下步骤组成:
1)镍生膜浆料的制备;
2)镍生膜的制备;
3)具有多维孔结构的镍/石墨复合自支撑膜的烧结成型;
所述步骤1)镍生膜浆料的制备方法为以高纯度不同粒度及形貌镍粉分别混合聚乙烯醇缩丁醛液;所述镍粉粒度在5-20μm,镍粉形貌由羰基镍粉,雾化镍粉,电解镍粉中的一种或两种组成;
所述聚乙烯醇缩丁醛液采用的溶剂为松油醇、丁酮或乙醇中的一种,溶质质量浓度为10wt.%-25.0wt.%;镍生膜浆料质量浓度为20wt.%-45.0wt.%;
所述步骤2)镍生膜的制备方法为,控制镍生膜浆料粘度在以薄层硬脂酸锌隔离的石英平板表面覆膜,压膜器控制镍生膜厚度为50-500μm,置于真空干燥器干燥8小时;将干燥后的平整镍生膜从石英平板表面移出,转移并平置于多孔氧化铝板表面;其中,镍生膜浆料配制好后密封静置使粉末颗粒均匀分散,无气泡;多孔氧化铝板表面以薄层硬酯酸锌隔离,防止烧结成膜粘连;
所述步骤3)具有多维孔结构的镍/石墨复合自支撑膜的烧结成型方法为,控制升温速率及保温平台,真空烧结得到具有多维孔结构的镍/石墨复合自支撑膜材料;真空烧结最高温度为1200℃,保温平台为600-1000℃中的进行两至四段保温,保温时长控制在1-5hrs范围内;烧结程序结束后随炉冷却至200℃以下,可得到具有多维孔结构的镍/石墨复合自支撑膜材料。
CN201810635068.5A 2018-06-20 2018-06-20 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法 Active CN108746622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810635068.5A CN108746622B (zh) 2018-06-20 2018-06-20 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810635068.5A CN108746622B (zh) 2018-06-20 2018-06-20 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108746622A CN108746622A (zh) 2018-11-06
CN108746622B true CN108746622B (zh) 2021-03-23

Family

ID=63979432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810635068.5A Active CN108746622B (zh) 2018-06-20 2018-06-20 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108746622B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110820010A (zh) * 2019-11-12 2020-02-21 长沙理工大学 一种自支撑Ni2P/Ni@C复合阴极析氢材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597829A (en) * 1969-03-18 1971-08-10 Us Army Method of making a nickel hydroxide electrode
WO2012016480A1 (en) * 2010-08-06 2012-02-09 Delta Electronics, Inc. Process for manufacturing porous material
CN102677031B (zh) * 2012-05-18 2014-09-10 中国科学院上海硅酸盐研究所 制备金属/碳纳米复合的多孔膜的方法及由其制得的多孔膜
CN103681003B (zh) * 2013-11-25 2016-04-27 北京工业大学 一种三维石墨烯-氧化镍复合材料基底的制备方法
CN106868539B (zh) * 2017-03-09 2019-07-09 长沙理工大学 一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法

Also Published As

Publication number Publication date
CN108746622A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN110467731B (zh) 一种稳定超薄介孔金属有机框架材料的制备方法
Osman et al. Highly activated porous carbon with 3D microspherical structure and hierarchical pores as greatly enhanced cathode material for high-performance supercapacitors
CN107871617B (zh) 石墨烯-金属有机框架复合材料及其制备方法和应用
Xiong et al. A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes
Tashima et al. Double layer capacitance of high surface area carbon nanospheres derived from resorcinol–formaldehyde polymers
US20040141908A1 (en) Aerogel and metallic composites
CN111509293B (zh) 一种降低氧化物电解质晶界阻抗及界面阻抗的方法
CN107946086A (zh) 一种以石墨烯为粘结剂的超级电容器柔性自支撑全炭电极及其制备方法
CN108711518B (zh) 氮氧共掺杂多孔碳纳米带及其制备方法和应用
CN111627714B (zh) 一种具有多级混合结构的多孔阳极铝箔的制备方法
CN110473712B (zh) 一种mof衍生纳米片插层材料及制备方法和其应用
Zhang et al. PtRu nanoparticles supported on nitrogen-doped polyhedral mesoporous carbons as electrocatalyst for methanol oxidation
CN114783782B (zh) 一种3d打印的三维石墨烯-金属有机框架电极、其制备方法及应用
CN108746622B (zh) 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法
Yang et al. Co 3 O 4 nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material
Samancı et al. Chemically and thermally reduced graphene oxide supported Pt catalysts prepared by supercritical deposition
US20220044879A1 (en) Large-Area Continuous Flexible Free-Standing Electrode And Preparation Method And Use Thereof
CN105591108A (zh) 一种用于锂离子电池负极的SiOx-C复合材料的制备方法
CN110931271B (zh) 一种疏水性席夫碱钴@β环糊精-石墨烯多孔碳复合材料的制备及应用
CN108134065B (zh) 一种储锂用S掺杂的TiO2/C复合材料、其制备方法及应用
CN102522209A (zh) 一种高能镍碳超级电容器负极负极板浆料的制备方法
Zhu et al. A rapid preparation of acicular Ni impregnated anode with enhanced conductivity and operational stability
CN109935872A (zh) 一种燃料电池催化层、基于其的气体扩散层及制备方法
KR100392418B1 (ko) 메조포러스 탄소/금속산화물 복합물질과 이의 제조방법 및이를 이용한 전기 화학 캐패시터
CN108754482A (zh) 一种新型多孔NiCuC合金膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant