CN108736726B - 转换器 - Google Patents

转换器 Download PDF

Info

Publication number
CN108736726B
CN108736726B CN201710244194.3A CN201710244194A CN108736726B CN 108736726 B CN108736726 B CN 108736726B CN 201710244194 A CN201710244194 A CN 201710244194A CN 108736726 B CN108736726 B CN 108736726B
Authority
CN
China
Prior art keywords
inductor
converter
resonant
secondary winding
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710244194.3A
Other languages
English (en)
Other versions
CN108736726A (zh
Inventor
李文章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to CN201710244194.3A priority Critical patent/CN108736726B/zh
Priority to US15/716,495 priority patent/US10236780B2/en
Priority to EP18157923.6A priority patent/EP3389173A1/en
Publication of CN108736726A publication Critical patent/CN108736726A/zh
Application granted granted Critical
Publication of CN108736726B publication Critical patent/CN108736726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种转换器包含切换电路、谐振电路、变压器以及整流电路。切换电路用以将直流输入电压转换为切换信号。谐振电路电性连接于切换电路,用以接收切换信号以提供原边电流。变压器包含原边绕组以及副边绕组。原边绕组电性连接于谐振电路。整流电路电性连接该变压器的副边绕组,用以对副边绕组输出的副边电流进行整流以提供输出电压。谐振电路包含可变电感器,以调整转换器的特性曲线。

Description

转换器
技术领域
本发明关于一种转换器,且特别关于一种谐振转换器。
背景技术
LLC谐振转换器可通过频率调变的方式达到稳定的输出电压。近来,由于LLC谐振转换器适合宽范围输入电压与大功率输出,被广泛应用于各种应用当中。
然而,现有LLC谐振转换器中,当负载或是工作条件改变时,励磁电感与谐振电感的比值若过大或过小,便无法操作在最佳的工作点上,导致转换器的效率降低,其应用场合也受到限制。
发明内容
本揭示内容的一态样为一种转换器。转换器包含切换电路、谐振电路、变压器以及整流电路。切换电路用以将一直流输入电压转换为一切换信号。谐振电路电性连接于该切换电路,用以接收该切换信号以提供一原边电流。变压器包含一原边绕组,电性连接于该谐振电路;以及一副边绕组。整流电路电性连接于该变压器的该副边绕组,用以对该副边绕组输出的一副边电流进行整流以提供一输出电压。该谐振电路包含一可变电感器,以调整转换器的特性曲线。
在本揭示内容部分实施例中,该转换器用以调整该可变电感器的电感值以控制该转换器的直流增益。
在本揭示内容部分实施例中,该谐振电路包含:一谐振电容单元,以串联形式电性连接于该原边绕组;一谐振电感单元,以串联形式电性连接于该原边绕组;以及一励磁电感单元,以并联形式电性连接于该原边绕组。
在本揭示内容部分实施例中,该谐振电感单元与该励磁电感单元中任一者包含该可变电感器,且该谐振电路通过该可变电感器调整该励磁电感单元与该谐振电感单元的电感比值。
在本揭示内容部分实施例中,该谐振电感单元包含该可变电感器,且该谐振电路通过该可变电感器调整该转换器的质量因子。
在本揭示内容部分实施例中,该谐振电感单元更包含一固定电感器,该固定电感器以串联或并联方式电性耦接于该可变电感器,该固定电感器的磁芯材料异于该可变电感器的磁芯材料。
在本揭示内容部分实施例中,该固定电感器包含一铁氧体磁芯电感器。
在本揭示内容部分实施例中,该励磁电感单元包含该可变电感器。
在本揭示内容部分实施例中,该励磁电感单元更包含一固定电感器,该固定电感器以串联或并联方式电性耦接于该可变电感器,该固定电感器的磁芯材料异于该可变电感器的磁芯材料。
在本揭示内容部分实施例中,该固定电感器包含一铁氧体磁芯电感器。
在本揭示内容部分实施例中,该可变电感器包含一磁粉芯电感器,其导磁率随着直流磁场强度变化而变化。
在本揭示内容部分实施例中,该可变电感器包含一可饱和磁芯电感器。
在本揭示内容部分实施例中,该切换电路包含:一第一开关,该第一开关的一第一端电性耦接于该直流输入电压的正极端,该第一开关的一第二端电性耦接于该谐振电路;以及一第二开关,该第二开关的一第一端电性耦接于该第一开关的该第二端,该第二开关的一第二端电性耦接于该直流输入电压的负极端。
在本揭示内容部分实施例中,该变压器中的该副边绕组包含一第一副边绕组与一第二副边绕组,其中该第二副边绕组的起始端电性耦接于该第一副边绕组的结束端。
在本揭示内容部分实施例中,该整流电路包含:一第一二极管,该第一二极管的一阳极端电性耦接于该第一副边绕组的起始端,该第一二极管的一阴极端电性耦接于一输出电容的一正极端;以及一第二二极管,该第二二极管的一阳极端电性耦接于该第二副边绕组的结束端,该第二二极管的一阴极端电性耦接于该第一二极管的该阴极端;其中该第一副边绕组的结束端与该第二副边绕组的起始端电性耦接于该输出电容的一负极端。
附图说明
图1为根据本揭示内容部分实施例所绘示的转换器的示意图。
图2、图3为根据本揭示内容部分实施例所绘示的转换器的操作示意图。
图4A、图4B以及图4C为根据本揭示内容部分实施例所绘示的直流增益与正规化频率的关系图。
图5A~图5D为根据本揭示内容部份实施例所绘示的谐振电路的示意图。
图6A~图6D为根据本揭示内容其他部份实施例所绘示的谐振电路的示意图。
图7为根据本揭示内容其他部份实施例所绘示的谐振电路的示意图。
其中附图标记为:
100 转换器
110 直流电压源
120 切换电路
140 谐振电路
142 谐振电容单元
144 谐振电感单元
146 励磁电感单元
160 变压器
180 整流电路
Co 输出电容
Np 原边绕组
Ns1、Ns2 副边绕组
S1、S2 开关
D1、D2 二极管
CS1、CS2 驱动信号
Sig1 切换信号
Vin 输入电压
Vo 输出电压
L1~L12 曲线
Ls、Ls1、Ls2、Lm、Lm1、Lm2 电感器
具体实施方式
下文举实施例配合所附图式作详细说明,以更好地理解本案的态样,但所提供的实施例并非用以限制本公开所涵盖的范围,而结构操作的描述非用以限制其执行的顺序,任何由元件重新组合的结构,所产生具有均等功效的装置,皆为本公开所涵盖的范围。此外,根据业界的标准及惯常做法,图式仅以辅助说明为目的,并未依照原尺寸作图,实际上各种特征的尺寸可任意地增加或减少以便于说明。下述说明中相同元件将以相同的符号标示来进行说明以便于理解。
在全篇说明书与申请专利范围所使用的用词(terms),除有特别注明外,通常具有每个用词使用在此领域中、在此公开的内容中与特殊内容中的平常意义。某些用以描述本公开的用词将于下或在此说明书的别处讨论,以提供本领域技术人员在有关本公开的描述上额外的引导。
此外,在本文中所使用的用词“包含”、『包括”、“具有”、“含有”等等,均为开放性的用语,即意指“包含但不限于”。此外,本文中所使用的“及/或”,包含相关列举项目中一或多个项目的任意一个以及其所有组合。
于本文中,当一元件被称为“连接”或“耦接”时,可指“电性连接”或“电性耦接”。“连接”或“耦接”亦可用以表示二或多个元件间相互搭配操作或互动。此外,虽然本文中使用“第一”、“第二”、…等用语描述不同元件,该用语仅是用以区别以相同技术用语描述的元件或操作。除非上下文清楚指明,否则该用语并非特别指称或暗示次序或顺位,亦非用以限定本发明。
请参考图1。图1为根据本案部分实施例所绘示的转换器100的示意图。如图1所示,在部分实施例中,转换器100包含切换电路120、谐振电路140、变压器160、整流电路180以及输出电容Co。
在结构上,切换电路120的输入端电性耦接至直流电压源110,用以接收直流输入电压Vin。切换电路120的输出端电性耦接于谐振电路140的输入端,用以输出直流输入电压Vin经切换电路120转换后的切换信号Sig1至谐振电路140。谐振电路140的输出端电性耦接于变压器160的原边侧。整流电路180的输入端电性耦接于变压器160的副边侧。整流电路180的输出端电性耦接于输出电容Co,以提供直流输出电压Vo至后级电路。如此一来,切换电路120、谐振电路140、变压器160、整流电路180便可形成LLC谐振转换器的电路架构。
具体来说,在部分实施例中变压器160的原边侧包含一组原边绕组Np。变压器160的副边侧包含两组副边绕组Ns1、Ns2,其中副边绕组Ns2的起始端电性耦接于副边绕组Ns1的结束端,并一同电性耦接于输出电容Co的负极端。举例来说,在部分实施例中,变压器160可为副边侧带中心抽头式的变压器,以将变压器160的副边侧分为彼此耦接的副边绕组Ns1与副边绕组Ns2。在部分实施例中,变压器160亦可为副边侧仅一组副边绕组的变压器,并搭配全桥整流电路,副边侧及其整流电路可根据本领域技术人员熟知的任何形式来完成。
在部分实施例中,转换器100中的切换电路120可采用半桥式架构以实现半桥谐振变换器,但本案并不以此为限。如图1所示,在部分实施例中,切换电路120包含开关S1与开关S2。在结构上,开关S1的第一端电性耦接于直流输入电压Vin的正极端,开关S1的第二端电性耦接于谐振电路140。开关S2的第一端电性耦接于开关S1的第二端,开关S2的第二端电性耦接于直流输入电压Vin的负极端。开关S1、开关S2的控制端分别用以接收驱动信号CS1、CS2,使得开关S1、开关S2根据驱动信号CS1、CS2选择性地导通或关断。
藉此,切换电路120通过选择性地导通开关S1、开关S2当中之一者,便可于开关S1导通时输出具有高准位(如:输入电压Vin)的切换信号Sig1,并于开关S2导通时输出具有低准位(如:零电位)的切换信号Sig1。举例来说,在一个完整切换周期内,驱动信号CS1、CS2可为脉冲频率调变(Pulse Frequency Modulation,PFM)信号,开关S1与开关S2可分别导通半个周期,以输出责任周期为50%的切换信号Sig1。此外,在其他实施例中,切换电路120亦可采用全桥式架构以实现全桥谐振变换器。举例来说,切换电路120亦可包含两两成对的四组开关,该些开关分别接受对应的驱动信号选择性地导通或截止。如此一来,于一个完整周期内,切换电路120便可于前半周期根据驱动信号导通其中一对开关,关断另外一对开关以输出具有正电位的切换信号Sig1,并于后半周期根据驱动信号切换开关的启闭,以输出具有负准位的切换信号Sig1。
在部分实施例中,谐振电路140包含谐振电容单元142、谐振电感单元144以及励磁电感单元146,但本案并不以此为限。在结构上,谐振电容单元142、谐振电感单元144与变压器160的原边绕组Np彼此串联。励磁电感单元146与变压器160的原边绕组Np彼此并联。举例来说,如图1所示,谐振电容单元142的第一端电性连接于谐振电路140的第一端,以电性连接于开关S1的第二端以及开关S2的第一端。谐振电容单元142的第二端电性连接于谐振电感单元144的第一端。谐振电感单元144的第二端电性连接于励磁电感单元146的第一端。励磁电感单元146的第二端电性连接于谐振电路140的第二端,以电性连接于直流输入电压Vin的负极端,但本揭示内容并不以此为限。在部分实施例中,谐振电感单元144以及励磁电感单元146可分别包含变压器160的漏感与磁化电感。在其他实施例中,谐振电容单元142、谐振电感单元144以及励磁电感单元146亦可通过不同方式电性连接以实现LLC谐振电路。此外,在其他实施例中,谐振电路140亦可藉由一或多组的电感单元与电容单元实现LC谐振电路、LCC谐振电路、LLCC谐振电路,因此本案图式中所绘示的LLC谐振电路仅为本案可能的实施方式之一,并非用以限制本案。换言之,本技术领域具有通常知识者当明白,本案各个实施例中的谐振电路140可为一或多组电感单元与一或多组电容单元的任意组合,并通过串联或并联等不同方式电性连接以实现谐振。
具体来说,谐振电路140中的谐振电感单元144与励磁电感单元146其中任一者包含一可变电感器,且谐振电路140通过可变电感器调整励磁电感单元146与谐振电感单元144的电感比值,藉此调整转换器100的特性曲线。详细内容将于后续段落中搭配相应图式进行说明。
如图1所示,在部分实施例中,整流电路180电性连接于变压器160的副边绕组Ns1与副边绕组Ns2,用以对副边绕组Ns1与副边绕组Ns2感应原边绕组Np上信号变化而输出的副边电流Is进行整流,以提供输出电容Co两端上的输出电压Vo。
在部分实施例中,整流电路180包含二极管D1与二极管D2。在结构上,二极管D1的阳极端电性耦接于副边绕组Ns1的起始端。二极管D1的阴极端电性耦接于输出电容Co的正极端。二极管D2的阳极端电性耦接于副边绕组Ns2的结束端。二极管D2的阴极端电性耦接于二极管D1的阴极端。
藉此,通过整流电路180与输出电容Co对副边绕组Ns1、Ns2感应输出的电信号进行整流与滤波,便可提供直流输出电压Vo。
如此一来,通过上述电路的操作,转换器100便可将直流输入电压Vin转换为具有适当电压准位的直流输出电压Vo提供给后级电路。
请一并参考图2以及图3。图2、图3为根据本揭示内容部分实施例所绘示的转换器100的操作示意图。于图2、图3中,与图1的实施例有关的相似元件以相同的参考标号表示以便于理解,且相似元件的具体原理已于先前段落中详细说明,若非必要介绍者,于此不再赘述。
如图2所示,在上半周期,开关S1接收具有致能准位的驱动信号CS1而导通。原边绕组Np承受正向电压,谐振电容单元142与谐振电感单元144参与谐振,并通过变压器160将能量传递至副边绕组Ns1,最后经由导通的二极管D1输出电流。
如图3所示,在下半周期,开关S2接收具有致能准位的驱动信号CS2而导通。随着切换信号Sig1降为零,原边绕组Np承受反向电压,谐振电容单元142与谐振电感单元144参与谐振,并通过变压器160将能量传递至副边绕组Ns2,最后经由导通的二极管D2输出电流。
对于图1~图3中所绘示的LLC谐振转换器的电路架构而言,转换器100的谐振频率、质量因子(Quality Factor)与直流增益(DC gain)可分别表示为下列各式。
Figure BDA0001270202950000071
Figure BDA0001270202950000072
Figure BDA0001270202950000073
其中fs表示谐振频率,Ls表示谐振电感单元144的感值,Cs表示谐振电容单元142的容值。n表示原边绕组Np与副边绕组Ns1、Ns2的匝数比。Ro表示负载阻值。M(h,Q,Ω)表示直流增益。h表示励磁电感单元146与谐振电感单元144的电感比值(即:Lm/Ls)。Ω表示正规化频率(即:切换频率f与谐振频率fs的比值f/fs)。
由以上各式可得知,转换器100的谐振频率fs与质量因子Q与谐振电感单元144的感值Ls有关。当谐振电感单元144的感值Ls越大时,品质因子Q越大,谐振频率fs越低。相对地,当谐振电感单元144的感值Ls越小时,质量因子Q越小,谐振频率fs越高。
另一方面,转换器100的直流增益M(h,Q,Ω)可表示为励磁电感单元146与谐振电感单元144的电感比值h、质量因子Q以及正规化频率Ω之的函数。因此,转换器100的直流增益M(h,Q,Ω)与谐振电感单元144的感值Ls、励磁电感单元146的感值Lm有关。
操作上,谐振转换器的切换频率f通常设计在谐振频率fs附近,以获得较佳的转换效率,并维持切换频率f整体的操作范围在一定区间内,使得各种工作条件下,可以将转换器100的损耗维持在较低的水平。因此,通过设置谐振电感单元144的感值Ls与励磁电感单元146的感值Lm在电路工作当中可变,便可调整h值、质量因子Q、谐振频率fs,来优化转换器100的工作特性,在特性曲线上取得理想的工作点。
请参考图4A、图4B以及图4C。图4A、图4B以及图4C为根据本揭示内容部分实施例所绘示的直流增益M(h,Q,Ω)与正规化频率Ω的关系示意图。在图4A、图4B以及图4C中,横轴代表正规化频率Ω,纵轴代表直流增益M(h,Q,Ω)。于图4A中绘示励磁电感单元146与谐振电感单元144的电感比值h固定于4时,曲线L1、L2、L3、L4分别对应于质量因子Q为0.1、0.2、0.4、0.8时,直流增益M(h,Q,Ω)与正规化频率Ω的关系。图4B中绘示励磁电感单元146与谐振电感单元144的电感比值h固定于6时,曲线L5、L6、L7、L8分别对应于质量因子Q为0.1、0.2、0.4、0.8时,直流增益M(h,Q,Ω)与正规化频率Ω的关系。图4C中绘示质量因子固定于0.3时,曲线L9、L10、L11、L12分别对应于电感比值h为2、4、6、8时,直流增益M(h,Q,Ω)与正规化频率Ω的关系。
值得注意的是,图4A、图4B以及图4C中的具体参数数值以及所绘示的特性曲线仅为示例之用,用以说明直流增益M(h,Q,Ω)与电感比值h、质量因子Q以及正规化频率Ω的相关性,并非用以限制本案。
如图4A与图4B所示。当励磁电感单元146与谐振电感单元144的电感比值h较大时,对于具有相同质量因子Q(如:相同负载的情况下)的曲线而言,转换器100具有较小的最大直流增益值。举例来说,当质量因子维持在0.1时,当电感比值h为4时,曲线的最大值大于5。相对地,当电感比值h为6时,曲线的最大值介于4与5之间。
此外,当励磁电感单元146与谐振电感单元144的电感比值h较大时,对应于最大直流增益值的正规化频率Ω较小。相对地,当励磁电感单元146与谐振电感单元144的电感比值h较小时,对应于最大直流增益值的正规化频率Ω较大。换言之,当励磁电感单元146与谐振电感单元144的电感比值h较大时,欲操作在相同直流增益输出时,切换频率f较为远离转换器100的谐振频率fs,进而影响转换器100整体效率。
此外,由图4A与图4B中亦可得知,在切换频率f小于谐振频率fs的操作区域中,当励磁电感单元146与谐振电感单元144的电感比值h较大时,转换器100操作在相同的切换频率f时,转换器100亦具有较小的直流增益M(h,Q,Ω)。
由图4C中亦可得知,当质量因子Q维持于一定值,而励磁电感单元146与谐振电感单元144的电感比值h改变时,对于较大的h值而言,直流增益的最大值较小,且当正规化频率Ω随切换频率f增加时,直流增益M(h,Q,Ω)的变化较为平缓,进而导致负载处于轻载的情况下,可能会无法将输出电压Vo控制在适当的电压位准。
然而,对于较小的h值而言,励磁电感单元146相对较小导致励磁电流较大,因此可能会增加开关切换损失,因此h值的选择往往无法满足所有状况。换言之,由图4A、图4B以及图4C的特性曲线图可得知,若谐振电感单元144与励磁电感单元146的电感值皆为定值,便无法根据负载状况、工作条件的差异调整特性曲线,导致转换器100效率降低,或是应用场合受到限制。
因此,在本揭示内容部分实施例中,谐振电感单元144与励磁电感单元146中至少包含一可变电感器。藉此,谐振电路140便可通过可变电感器调整励磁电感单元146与谐振电感单元144的电感比值h。如此一来,转换器100便可藉由调整可变电感器的电感值以控制转换器100的最大直流增益。
此外,在谐振电感单元144包含可变电感器的实施例中,谐振电路140更可通过可变电感器同时调整转换器100的质量因子Q与励磁电感单元146与谐振电感单元144的电感比值h,以调整转换器100的输出特性。
举例来说,当于电压可调整的应用中,转换器100的直流增益可能会不足,或需要大幅降低切换频率f以提高增益。而根据本揭示内容部分实施例,转换器100可藉由调整可变电感器的电感值,以降低励磁电感单元146与谐振电感单元144的电感比值h,藉此获得较高的输出电压Vo。
以下段落中将分别搭配图式,说明于谐振电路140中设置可变电感器的各种实施态样。请参考图5A~图5D。图5A~图5D为根据本揭示内容部份实施例所绘示的谐振电路140的示意图。
在图5A~图5D所绘示的实施例中,可通过于励磁电感单元146中设置可变电感器Lm对励磁电感单元146与谐振电感单元144的电感比值h进行调整。如图5A所示,在部分实施例中,谐振电感单元144可包含固定电感器Ls,励磁电感单元146可包含可变电感器Lm。举例来说,在部分实施例中,可变电感器Lm可为磁粉芯电感器。例如含铁、镍、钼的钼坡莫合金磁粉芯(MPP Cores)、含铁镍合金粉末的高磁通磁芯(High Flux core)、含铁硅铝合金粉末的磁芯(Kool Mu/Sendust Cores)、含铁硅合金粉末的超高磁通磁芯(Mega Flux core)等等,但本案并不以此为限。
采用以上磁粉芯的可变电感器Lm,其磁导率(Permeability)会随着直流偏置(DCbias)磁场强度变化而变化,因此电感值会随着流过电流大小而改变,且不同磁粉芯亦有不同变化率。
如图5B、图5C所示,在部分实施例中,励磁电感单元146可包含彼此电性耦接的固定电感器Lm1与可变电感器Lm2,使得励磁电感单元146整体的电感值可变。如图5B所示,励磁电感单元146中的固定电感器Lm1与可变电感器Lm2彼此串联。如图5C所示,励磁电感单元146中的固定电感器Lm1与可变电感器Lm2彼此并联。值得注意的是,此处所述固定电感仅代表在负载变动范围内会保持固定的电感值,只要在负载变动范围内会保持固定的电感都可视为固定电感。
举例来说,在图5B、图5C所示实施例中,固定电感器Lm1可为铁氧体磁芯电感器(gapped ferrite Core)。换言之,固定电感器Lm1采用的磁芯材料异于可变电感器Lm2采用的磁芯材料。与图5A相比,图5B、图5C所示实施例中,进一步可藉由固定电感器Lm1和可变电感器Lm2的分配比例来调整整个励磁电感的变化率。举例来说,在图5B中,若需要励磁电感较大的变化,可增加Lm2的分配比例;若仅需要励磁电感些微变化,可减少Lm2的分配比例,藉此优化线路。
如图5D所示,在部分实施例中,励磁电感单元146中的可变电感器Lm2亦可为一可饱和磁芯电感器。通过改变流经可饱和磁芯电感器的电流,可以使可饱和磁芯电感器的电感值随的改变。如此一来,谐振电路140便可通过可饱和磁芯的磁饱和特性,改变励磁电感单元146与谐振电感单元144的电感比值h。
请参考图6A~图6D。图6A~图6D为根据本揭示内容其他部份实施例所绘示的谐振电路140的示意图。和图5A~图5D所绘示的实施例相比,在图6A~图6D所绘示的实施例中,可变电感器Ls或Ls2设置于谐振电感单元144中,以对励磁电感单元146与谐振电感单元144的电感比值h进行调整。此外,由于转换器100的谐振频率fs与质量因子Q皆与谐振电感单元144的感值有关。因此亦可通过设置于谐振电感单元144中的可变电感器Ls或Ls2调整转换器100的谐振频率fs与品质因子Q。举例来说,当负载较轻时,流经谐振电感单元144的电流会较小,此时可变电感器Ls或Ls2具较大的电感值,转换器100则有较大的质量因子Q与较小的电感比值h,可帮助输出电压Vo控制在适当的电压位准。
如图6A所示,在部分实施例中,励磁电感单元146可包含固定电感器Lm,谐振电感单元144可包含可变电感器Ls。相似地,在部分实施例中,谐振电感单元144中的可变电感器Ls可为各种类型的磁粉芯电感器,其以于先前段落中详细说明,故于此不再赘述。
如图6B、图6C所示,在部分实施例中,谐振电感单元144可包含彼此电性耦接的固定电感器Ls1与可变电感器Ls2,使得谐振电感单元144整体的电感值可变。如图6B所示,谐振电感单元144中的固定电感器Ls1与可变电感器Ls2彼此串联。如图6C所示,谐振电感单元144中的固定电感器Ls1与可变电感器Ls2彼此并联。相似地,固定电感器Ls1可为铁氧体磁芯电感器(gapped ferrite Core)。换言之,固定电感器Ls1采用的磁芯材料异于可变电感器Ls2采用的磁芯材料。其固定电感器Ls1与可变电感器Ls2分配比例亦可调整,类似先前段落中的说明,故于此不再赘述。
如图6D所示,在部分实施例中,谐振电感单元144中的可变电感器Ls2亦可为一可饱和磁芯电感器。通过改变流经可饱和磁芯电感器的电流,可以使可饱和磁芯电感器的电感值随之改变。如此一来,谐振电路140便可通过可饱和磁芯的磁饱和特性,改变励磁电感单元146与谐振电感单元144的电感比值h。
此外,需要说明的是,在不冲突的情况下,图5A~图5D中所绘示的励磁电感单元146以及图6A~图6D中所绘示的谐振电感单元144亦可以相互组合。图式中所绘示的电路仅为示例之用,为简化以使说明简洁并便于理解,并非用以限制本案。
换言之,如图7所绘示,在部分实施例中,谐振电感单元144、励磁电感单元146可分别包含可变电感器Ls与可变电感器Lm,或是彼此串联或并联的固定电感器Ls1、可变电感器Ls2,以及彼此串联或并联的固定电感器Lm1、可变电感器Lm2。值得注意的是,当谐振电感单元144、励磁电感单元146分别包含可变电感器Ls与可变电感器Lm时,可藉由调整可变电感器Ls与可变电感器Lm具有不同的变化率,来达成各种应用的需求,其采用的磁芯材料与相关操作已于先前实施例中详细说明,故于此不再赘述。
综上所述,藉由上述各个实施例中于谐振电感单元或/及励磁电感单元中设置可变电感器的谐振电路,便可随负载不同而自动调整励磁电感单元与谐振电感单元的电感比值处于适当大小,以取得转换器不同的输出特性曲线。此外,部分实施例中,更可藉此调整转换器的谐振频率与质量因子,以取得转换器不同的输出特性曲线。
虽然本揭示内容已以实施方式公开如上,然其并非用以限定本揭示内容,任何熟习此技艺者,在不脱离本揭示内容的精神和范围内,当可作各种更动与润饰,因此本揭示内容的保护范围当视后附的申请专利范围所界定者为准。

Claims (8)

1.一种转换器,其特征在于,包含:
一切换电路,用以将一直流输入电压转换为一切换信号;
一谐振电路,电性连接于该切换电路,用以接收该切换信号以提供一原边电流;
一变压器,包含:
一原边绕组,电性连接于该谐振电路;
一副边绕组;以及
一整流电路,电性连接于该变压器的该副边绕组,用以对该副边绕组输出的一副边电流进行整流以提供一输出电压;
其中,该谐振电路包含:
一谐振电容单元,以串联形式电性连接于该原边绕组;
一谐振电感单元,以串联形式电性连接于该原边绕组;以及
一励磁电感单元,以并联形式电性连接于该原边绕组;
其中该谐振电感单元包含一第一可变电感器以及该励磁电感单元包含一第二可变电感器以对励磁电感单元与谐振电感单元的电感比值进行调整,且该谐振电路通过该第一可变电感器和/或第二可变电感器调整该转换器的质量因子和谐振频率,以调整转换器的特性曲线;第一可变电感器和第二可变电感器均包括彼此并联或彼此串联的固定电感器和可变电感器。
2.如权利要求1所述的转换器,其特征在于,该转换器用以调整该第一可变电感器和/或第二可变电感器的电感值以控制该转换器的直流增益。
3.如权利要求1所述的转换器,其特征在于,该固定电感器包含一铁氧体磁芯电感器。
4.如权利要求1所述的转换器,其特征在于,该第一可变电感器和/或第二可变电感器包含一磁粉芯电感器,其导磁率随着直流磁场强度变化而变化。
5.如权利要求1所述的转换器,其特征在于,该第一可变电感器和/或第二可变电感器包含一饱和磁芯电感器。
6.如权利要求1所述的转换器,其特征在于,该切换电路包含:
一第一开关,该第一开关的一第一端电性耦接于该直流输入电压的正极端,该第一开关的一第二端电性耦接于该谐振电路;以及
一第二开关,该第二开关的一第一端电性耦接于该第一开关的该第二端,该第二开关的一第二端电性耦接于该直流输入电压的负极端。
7.如权利要求1所述的转换器,其特征在于,该变压器中的该副边绕组包含一第一副边绕组与一第二副边绕组,其中该第二副边绕组的起始端电性耦接于该第一副边绕组的结束端。
8.如权利要求7所述的转换器,其特征在于,该整流电路包含:
一第一二极管,该第一二极管的一阳极端电性耦接于该第一副边绕组的起始端,该第一二极管的一阴极端电性耦接于一输出电容的一正极端;以及
一第二二极管,该第二二极管的一阳极端电性耦接于该第二副边绕组的结束端,该第二二极管的一阴极端电性耦接于该第一二极管的该阴极端;
其中该第一副边绕组的结束端与该第二副边绕组的起始端电性耦接于该输出电容的一负极端。
CN201710244194.3A 2017-04-14 2017-04-14 转换器 Active CN108736726B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710244194.3A CN108736726B (zh) 2017-04-14 2017-04-14 转换器
US15/716,495 US10236780B2 (en) 2017-04-14 2017-09-26 Converter
EP18157923.6A EP3389173A1 (en) 2017-04-14 2018-02-21 Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710244194.3A CN108736726B (zh) 2017-04-14 2017-04-14 转换器

Publications (2)

Publication Number Publication Date
CN108736726A CN108736726A (zh) 2018-11-02
CN108736726B true CN108736726B (zh) 2021-03-19

Family

ID=61256713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710244194.3A Active CN108736726B (zh) 2017-04-14 2017-04-14 转换器

Country Status (3)

Country Link
US (1) US10236780B2 (zh)
EP (1) EP3389173A1 (zh)
CN (1) CN108736726B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800615B2 (en) 2018-03-16 2020-10-13 Power Motion Labs, LLC Electrostatic conveyor-wheel powder feeder
CN109687720B (zh) * 2018-11-23 2021-01-15 南京航空航天大学 一种宽输入电压范围谐振型变换装置及其控制方法
US11532989B2 (en) * 2019-11-27 2022-12-20 Hamilton Sundstrand Corporation Using parasitic capacitance of a transformer as a tank element in a DC-DC converter
CN111262430A (zh) * 2019-12-05 2020-06-09 艾德克斯电子(南京)有限公司 一种动态修正电感值的方法
US11407172B2 (en) 2020-03-18 2022-08-09 Powder Motion Labs, LLC Recoater using alternating current to planarize top surface of powder bed
US11612940B2 (en) 2020-03-18 2023-03-28 Powder Motion Labs, LLC Powder bed recoater
KR20210127495A (ko) * 2020-04-14 2021-10-22 엘지이노텍 주식회사 영 전압 스위칭 회로 및 이를 포함하는 컨버터
CN112600414B (zh) * 2020-12-01 2022-10-25 上海交通大学 谐振网络、变压器及隔离型直流变换器及其参数设计方法
CN114070106A (zh) * 2021-11-16 2022-02-18 深圳英飞源技术有限公司 一种移相全桥电路及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601858A1 (en) * 1992-12-10 1994-06-15 Hughes Aircraft Company High frequency power supply using a non-saturating magnetic amplifier controller
WO2016003190A1 (ko) * 2014-07-01 2016-01-07 경북대학교 산학협력단 가변 인덕터 및 그 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071896A1 (fr) * 2000-03-23 2001-09-27 Tdk Corporation Alimentation a decoupage
US7286373B1 (en) * 2006-04-07 2007-10-23 Li Shin International Enterprise Corporation Full-resonant power circuit device for receiving a variable input voltage
US8120457B2 (en) * 2010-04-09 2012-02-21 Delta Electronics, Inc. Current-controlled variable inductor
US9762115B2 (en) * 2011-02-03 2017-09-12 Viswa N. Sharma Bidirectional multimode power converter
TWI482407B (zh) 2012-10-25 2015-04-21 Chicony Power Tech Co Ltd 電源轉換裝置
US8837173B2 (en) * 2013-01-02 2014-09-16 Chicony Power Technology Co., Ltd DC to DC power converting device
US9653996B2 (en) * 2013-10-28 2017-05-16 Infineon Technologies Americas Corp. Adaptive off time control scheme for semi-resonant and hybrid converters
KR20160021953A (ko) 2014-08-18 2016-02-29 주식회사 솔루엠 인덕턴스 가변 회로 및 그를 이용한 전원 공급 장치
US9831790B2 (en) * 2014-09-17 2017-11-28 Alps Electric Co., Ltd. DC-to-DC converter
US10148185B2 (en) 2014-11-24 2018-12-04 Dell Products L.P. Systems and methods for extension of power supply hold-up time
US9705409B2 (en) * 2014-12-15 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Equations for an LLC converter having increased power output capabilities
JP6669387B2 (ja) * 2015-12-16 2020-03-18 キヤノン株式会社 電源装置及び画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601858A1 (en) * 1992-12-10 1994-06-15 Hughes Aircraft Company High frequency power supply using a non-saturating magnetic amplifier controller
WO2016003190A1 (ko) * 2014-07-01 2016-01-07 경북대학교 산학협력단 가변 인덕터 및 그 제조 방법

Also Published As

Publication number Publication date
US10236780B2 (en) 2019-03-19
CN108736726A (zh) 2018-11-02
EP3389173A1 (en) 2018-10-17
US20180301997A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
CN108736726B (zh) 转换器
US7183754B2 (en) DC/DC converter
US6310785B1 (en) Zero voltage switching DC-DC converter
US7388760B2 (en) Switching power supply circuit
WO2005109618A1 (ja) 共振型スイッチング電源装置
CN210380663U (zh) 一种双向多路并联全桥llc谐振变换器
US20230113753A1 (en) Dc/dc converter and method for controlling output voltage thereof
US7138787B2 (en) DC/DC converter
US9401653B2 (en) Power supply with switching converter
CN111525809B (zh) 一种输出电压可调的高频混合型直流变换器
WO2018116437A1 (ja) 電力変換装置
JP6745911B2 (ja) 電力変換装置
CN112968621A (zh) 一种单级复合有源箝位推挽反激式逆变器
JP2006340432A (ja) スイッチングコンバータ
CN104660040A (zh) 一种通过自耦线圈实现辅助输出的buck电源
KR20130013092A (ko) 대칭형 양방향 공진형 컨버터
CN103036432A (zh) 基于纹波的pwm滞环控制方法
CN105790589B (zh) 一种高效率高精度的多输出开关变换器
CN109787371B (zh) 用于无线电能传输系统的磁集成差分e类整流器
CN109525111A (zh) 基于电路开关频率的阻抗匹配方法
TWI631802B (zh) 轉換器
CN109546861B (zh) 一种llc谐振腔电压转换率动态调节的方法
CN112350604A (zh) 一种谐振变换器电路与谐振变换器
CN111541387A (zh) 一种基于变电感的频率优化控制的crm升压变换器
Teng et al. Novel half-bridge LLC resonant converter with variable resonant inductor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant