CN108711584A - 一种制备铜铟铝碲薄膜的方法 - Google Patents

一种制备铜铟铝碲薄膜的方法 Download PDF

Info

Publication number
CN108711584A
CN108711584A CN201810522795.0A CN201810522795A CN108711584A CN 108711584 A CN108711584 A CN 108711584A CN 201810522795 A CN201810522795 A CN 201810522795A CN 108711584 A CN108711584 A CN 108711584A
Authority
CN
China
Prior art keywords
film
indium aluminium
copper
aluminium tellurium
optoelectronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810522795.0A
Other languages
English (en)
Inventor
刘科高
李静
许超
赵忠新
刘宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201810522795.0A priority Critical patent/CN108711584A/zh
Publication of CN108711584A publication Critical patent/CN108711584A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种制备铜铟铝碲薄膜材料的制备方法,属于光电薄膜制备技术领域,本发明通过如下步骤得到,首先清洗玻璃基片,然后将TeO2、Cu(NO3)2、In(NO3)3和Al(NO3)3先后放入溶剂中,配制澄清透明溶液,用旋涂法在玻璃片上得到前驱体薄膜,自然晾干,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触,将装有前驱体薄膜样品的密闭容器进行加热后取出样品进行干燥,可通过增加反应次数和热处理工艺改善薄膜质量,得到铜铟铝碲光电薄膜。本发明不需要高温高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铟铝碲光电薄膜有较好的连续性和均匀性,这种新工艺为制备高性能的铜铟铝碲光电薄膜提供了一种成本低、可实现工业化的生产方法。

Description

一种制备铜铟铝碲薄膜的方法
技术领域
本发明属于太阳能电池用光电薄膜制备技术领域,尤其涉及一种制备铜铟铝碲薄膜的方法。
背景技术
众所周知,经济的高速发展必然带来能源消耗量的激增。随着近年来我国社会和经济高速发展,能源紧缺及消费能源带来的污染已成为国内社会发展中的突出问题,因此开发利用清洁能源对保护环境、经济可持续发展和构筑和谐社会都有重要的意义。为了更充分的利用太阳能这种清洁、安全和环保的可再生资源,近年来光电材料的研究和应用日益受到重视。
铜铟铝碲薄膜太阳电池目前可以认为是最有发展前景的薄膜电池,这是因为其吸收层材料CuIn1-xAlxTe2具有较高的光电转化率等一系列优点。特别是以铜铟铝碲光电薄膜的制备研究已经取得了较大的进展。
目前铜铟铝碲薄膜的制备方法主要有溶剂热法、喷射热解法、离子烧结法、化学沉积法、反应溅射法、真空蒸发法等。由于原料成本低,因此是一种非常有发展前途的光电薄膜材料,但现有工艺路线复杂、制备成本高,因而需要探索低成本的制备工艺。
如前面所述方法一样,其它方法也有不同的缺陷。与本发明相关的还有如下文献:
[1] Fahim Ahmed, Naohito Tsujii, Takao Mori. Microstructure analysis andthermoelectric properties of iron doped CuGaTe2. Journal of Materiomics,2018.
主要研究了Fe掺杂对黄铜矿型CuGaTe2结构和热输运性质的影响,采用放电等离子烧结法制备多晶样品CuGa1-xFexTe2(x为0~0.05)。
[1] Zhang Jian, Qin, Xiaoying; Li, Di; et al. Enhanced thermoelectricperformance of CuGaTe2 by Gd-doping and Te incorporation. Intermetallics,2015.
采用熔融法制备了掺杂CuGaTe2,在300~800K的温度范围内研究了它们的热电性能。结果表明,Gd掺杂和Te掺入的协同效应显著提高了CuGaTe2的热电性能。
[2] Fujii, Yosuke; Kosuga, Atsuko. High-Temperature Formation Phasesand Crystal Structure of Hot-Pressed Thermoelectric CuGaTe2 with Chalcopyrite-Type Structure. Journal of Electronic Materials, 2017.
研究了热压CuGaTe2的300~800 K的温度相关的形成相和晶体结构,多晶CuGaTe2具有黄铜矿型结构,通过热压固化是作为中温热电材料的潜在候选材料。
[4] Manorama Lakhea, S.K. Mahapatra b, Nandu B.Chaurea. Developmentof CuInTe2 thin film solar cells by electrochemical route with lowtemperature (80 C) heat treatment procedure. Materials Science andEngineering, 2017.
主要研究了连续低温热处理对电沉积制备CuInTe2(CIT)薄膜的性能的影响。
[5] Li Weixin, Luo Yubo, Zheng Yun, et al. Enhancement of thethermoelectric performance of CuInTe2 via SnO2 in situ replacement. Journal ofMaterials Science-Materials In Electronics, 2018.
采用原位诱导的纳米结构作为提高p型CuInTe2基热电材料热电性能的另一种途径,通过原位取代SnO2和CuInTe2,在SnO2样品中形成分散的氧化铟纳米颗粒。
[6] Zhang Xiao, Yang Lei, Guo Zenglong, et al. Rapid synthesis ofCuInTe2 ultrathin nanoplates with enhanced photoelectrochemical properties.Chemical communications, 2017.
采用快速胶体合成法合成了超薄单晶CuInTe2二维(2D)纳米板,对其生长机理进行了详细的研究。
[7] Ntholeng N., Mojela B., Gqoba S, et al. Colloidal synthesis ofpure CuInTe2 crystallites based on the HSAB theory. New journal of chemistry,2016.
利用胶体法广泛用于合成三元和四元硫化铜和硒化物,研究了这些纳米结构的形成途径和结晶机理。
[8] Li, Shuai; Guo, Yong-Quan. Structures and PhotoelectricProperties of Ce and Co Doped CuInTe2 Semiconductor. 2nd Annual InternationalConference on Advanced Material Engineering (AME),2016.
主要研究了采用真空电弧熔炼法成功合成了CuIn1-xCeCeCOyTe2的样品,对Ce和Co掺杂CuInTe2的结构和光电性能进行了研究。
发明内容
本发明为了解决现有制备技术的不足,发明了一种与现有制备方法完全不同的铜铟铝碲薄膜材料的制备工艺。
本发明采用旋涂-化学共还原法制备铜铟铝碲薄膜材料,采用玻璃片或硅片为基片,以Cu(NO3)2、In(NO3)3、Al(NO3)3和TeO2为原料,以盐酸为溶剂,先在盐酸中添加TeO2,待其反应完全后再加入Cu(NO3)2、In(NO3)3和Al(NO3)3,使其充分反应。先以旋涂法制备一定厚度的铜铟铝碲前驱体薄膜,以水合联氨为还原剂,在密闭容器内在较低温度下加热,使前驱体薄膜还原并发生合成反应,可通过增加反应次数和反应后热处理改善所制备薄膜质量,得到目标产物。
本发明的具体制备方法包括如下顺序的步骤:
a.进行基片的清洗,本实验选择玻璃片或硅片作为基片,首先将玻璃片或硅片切至20mm×20mm×2mm大小作为薄膜基片,然后用去离子水清洗2~3次,随后经过稀硫酸煮沸30~40min、水浴加热40~50min、去离子水超声清洗20min,这三个重要清洗步骤后,用双氧水浸泡保存备用即可。
b.将Cu(NO3)2、In(NO3)3、Al(NO3)3和TeO2放入溶剂中,使溶液中的物质均匀混合。具体地说,可以先将2.0~5.0份TeO2放入30~120份的溶剂中,其中溶剂为盐酸。待其完全反应后,将1.0~3.0份Cu(NO3)2、1.0~3.0份In(NO3)3和0.1~3.0份Al(NO3)3放入,使溶液中的物质均匀混合。
c.制作外部均匀涂布步骤b所述溶液的基片,并烘干,得到前驱体薄膜样品。可以将上述溶液滴到放置在匀胶机上的基片上,再启动匀胶机以200~3500转/分旋转一定时间,使滴上的溶液涂布均匀后,并对基片进行自然晾干后,再次重复滴上前述溶液和旋涂后再自然晾干,如此重复2~8次,于是在基片上得到了一定厚度的前驱体薄膜样品。
d.将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触。水合联氨放入量为30.0~45.0份。将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间10~60小时,然后冷却到室温取出。
e.取出自然干燥后,重复b、c和d步骤2~6次,以增加所制备薄膜的厚度,减少薄膜缺陷。
f.将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至200~400℃,保温5~15小时,即得到铜铟铝碲光电薄膜。
本发明不需要高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铟铝碲光电薄膜有较好的连续性和均匀性,主相为CuIn1-xAlxTe2相,可以实现低成本大规模的工业化生产。
具体实施方式
实施例1
a.玻璃基片或硅基片的清洗:如前所述进行清洗基片,大小为20mm×20mm×2mm。
b.可以先将2.0份TeO2放入30~120份的溶剂中,其中溶剂为盐酸。待其完全反应后,将1.0份Cu(NO3)2、0.9份In(NO3)3和0.7份Al(NO3)3放入,使溶液中的物质均匀混合。
c.将上述溶液滴到放置在匀胶机上的玻璃基片上,再启动匀胶机,匀胶机以200转/分转动5秒,以3000转/分旋转15秒,使滴上的溶液涂布均匀后,对基片进行烘干后,再次重复滴上前述溶液和旋涂后再烘干,如此重复6次,于是在基片上得到了一定厚度的前驱体薄膜样品。
d.将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触。水合联氨放入量为40.0份。将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至200℃之间,保温时间20小时,然后冷却到室温取出。
e.取出自然干燥后,重复b、c和d步骤4次,以增加所制备薄膜的厚度,减少薄膜缺陷。
f.将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至300℃,保温10小时,即得到铜铟铝碲光电薄膜。

Claims (5)

1.一种制备铜铟铝碲薄膜的方法,包括如下顺序的步骤:
玻璃基片或硅基片的清洗;
先将2.0~5.0份TeO2放入30~120份的溶剂中,待其完全反应后,将1.0~3.0份Cu(NO3)2、1.0~3.0份In(NO3)3和0.1~3.0份Al(NO3)3放入,使溶液中的物质均匀混合;
制作表面均匀涂布步骤b所述溶液的基片,自然晾干,得到前驱体薄膜样品;
d.将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触;水合联氨放入量为30.0~45.0份;将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间10~60小时,然后冷却到室温取出;
e.取出自然干燥后,重复b、c和d步骤2~6次,以增加所制备薄膜的厚度;
f.将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至200~400℃,保温5~15小时,即得到铜铟铝碲光电薄膜。
2.如权利要求1所述的一种制备铜铟铝碲光电薄膜的方法,其特征在于,步骤a所述清洗,将玻璃片或硅片切至20mm×20mm×2mm大小作为薄膜基片,然后用去离子水清洗2~3次,随后经过稀硫酸煮沸30~40min、水浴加热40~50min、去离子水超声清洗20min这三个重要清洗步骤后,用双氧水浸泡保存备用即可。
3.如权利要求1所述的一种制备铜铟铝碲光电薄膜的方法,其特征在于,步骤b所述溶剂为盐酸溶液。
4.如权利要求1所述的一种制备铜铟铝碲光电薄膜的方法,其特征在于,步骤c所述均匀涂抹的基片,是通过匀胶机旋涂,匀胶机以200~3500转/分旋转,然后对基片进行烘干后,再次如此重复2~8次,得到了一定厚度的前驱体薄膜样品。
5.如权利要求1所述的一种制备铜铟铝碲光电薄膜的方法,其特征在于,步骤d所述密闭容器内放入30.0~45.0份水合联氨。
CN201810522795.0A 2018-05-28 2018-05-28 一种制备铜铟铝碲薄膜的方法 Withdrawn CN108711584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810522795.0A CN108711584A (zh) 2018-05-28 2018-05-28 一种制备铜铟铝碲薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810522795.0A CN108711584A (zh) 2018-05-28 2018-05-28 一种制备铜铟铝碲薄膜的方法

Publications (1)

Publication Number Publication Date
CN108711584A true CN108711584A (zh) 2018-10-26

Family

ID=63870831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810522795.0A Withdrawn CN108711584A (zh) 2018-05-28 2018-05-28 一种制备铜铟铝碲薄膜的方法

Country Status (1)

Country Link
CN (1) CN108711584A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484164A (zh) * 2010-03-05 2012-05-30 株式会社东芝 化合物薄膜太阳能电池及其制造方法
CN103396009A (zh) * 2013-07-09 2013-11-20 山东建筑大学 一种制备铜铝碲薄膜的方法
CN103449734A (zh) * 2013-07-09 2013-12-18 山东建筑大学 一种制备铜铝硫光电薄膜的方法
CN106057930A (zh) * 2016-06-15 2016-10-26 山东建筑大学 一种由氯化铜和氯化镓制备铜镓硒光电薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484164A (zh) * 2010-03-05 2012-05-30 株式会社东芝 化合物薄膜太阳能电池及其制造方法
CN103396009A (zh) * 2013-07-09 2013-11-20 山东建筑大学 一种制备铜铝碲薄膜的方法
CN103449734A (zh) * 2013-07-09 2013-12-18 山东建筑大学 一种制备铜铝硫光电薄膜的方法
CN106057930A (zh) * 2016-06-15 2016-10-26 山东建筑大学 一种由氯化铜和氯化镓制备铜镓硒光电薄膜的方法

Similar Documents

Publication Publication Date Title
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN102603201A (zh) 一种硒化亚铜薄膜的制备方法
CN102603202A (zh) 一种制备硒化锡光电薄膜的方法
CN102094191B (zh) 一种制备择优取向铜锡硫薄膜的方法
CN108101381A (zh) 一种铋基卤化物钙钛矿纳米片及其制备方法
CN102709351A (zh) 一种择优取向生长的硫化二铜薄膜
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
CN106057930A (zh) 一种由氯化铜和氯化镓制备铜镓硒光电薄膜的方法
CN108400184A (zh) 一种铟单质掺杂的CZTSSe薄膜的制备方法和应用
CN103390692B (zh) 一种制备铜铟碲薄膜的方法
CN108711584A (zh) 一种制备铜铟铝碲薄膜的方法
CN109023483A (zh) 一种硒化锡薄膜及其制备方法
CN108767059A (zh) 一种制备铜铟镓碲薄膜的方法
CN108682618A (zh) 一种氯化物体系制备铜镓碲薄膜的方法
CN103864027B (zh) 一种制备碲化亚铜薄膜的方法
CN108682619A (zh) 一种硝酸盐体系制备铜镓碲薄膜的方法
CN105870344A (zh) 利用直流反应磁控溅射技术制备钙钛矿太阳能电池的方法
CN108807560A (zh) 一种用硫粉辅助制备铜铁硫光电薄膜的方法
Ethridge et al. Growth Control of SnO 2 Nanoparticles Using a Low-Temperature Solution Process
CN106601873B (zh) 一种用于czts薄膜的旋涂装置及制备czts电池的方法
CN108520900A (zh) 一种硝酸盐体系制备铜铝碲薄膜的方法
Manseki et al. Current Advances in the Preparation of SnO2 Electron Transport Materials for Perovskite Solar Cells
CN108624873A (zh) 一种硝酸盐体系制备铜铟碲薄膜的方法
CN102605352B (zh) 一种二硒化锡薄膜的制备方法
CN106067489A (zh) 一种由氯化铜和硝酸镓制备铜镓硒光电薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20181026