CN108699540A - 用于纳米孔测序的聚合酶-模板复合物 - Google Patents

用于纳米孔测序的聚合酶-模板复合物 Download PDF

Info

Publication number
CN108699540A
CN108699540A CN201780014081.2A CN201780014081A CN108699540A CN 108699540 A CN108699540 A CN 108699540A CN 201780014081 A CN201780014081 A CN 201780014081A CN 108699540 A CN108699540 A CN 108699540A
Authority
CN
China
Prior art keywords
polymerase
template
nucleotide
nano
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780014081.2A
Other languages
English (en)
Inventor
A.阿耶
P.萨瓦鲍曼
C.施沃布
A.比比洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Sequencing Solutions Co
Original Assignee
Genia Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genia Technologies Inc filed Critical Genia Technologies Inc
Publication of CN108699540A publication Critical patent/CN108699540A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供了用于增强聚合酶在高浓度(大于100 mM)盐下催化模板依赖性DNA合成中的持续性的方法和组合物。还公开了用于在存在0.8‑2.2微摩尔的核苷酸和35‑45°C的高温下,例如处于或接近聚合酶的解链温度,增强与活性DNA合成相容的聚合酶‑模板复合物的组装的方法和组合物。模板和聚合酶的复合物可以用于纳米孔测序。

Description

用于纳米孔测序的聚合酶-模板复合物
技术领域
本发明一般涉及用于改进DNA测序持续性、和更具体地经调节温度、核苷酸浓度和/或聚合酶浓度增强DNA测序反应中的测序产率的方法和组合物。
背景
纳米孔最近已出现作为用于询问核酸中序列和结构的无标记平台。数据通常被报告为离子电流的时间序列,因为当施加的电场施加在由电压钳位放大器控制的单个孔上时,确定DNA序列。可以在高带宽和空间分辨率下检查数百至数千个分子。
纳米孔作为可靠的DNA分析工具成功的关键障碍是持续性或平均读取长度。例如,通过聚合酶有效结合模板是高测序产率的关键。通过修饰聚合酶以增加从模板依赖性测序反应获得的序列信息的量,可以增强这种和其他所需的特性。另外,还可以通过提供有利于形成(或稳定)聚合酶-模板复合物的条件来增加持续性。然而,由于可以运行测序反应的众多变化条件,优化某些测序反应例如基于纳米孔的测序的特定变量(条件),仍然在很大程度上难以实现。
发明概述
本文提供了可用于优化测序反应例如基于纳米孔的测序的方法和组合物。在某些实例方面,提供了利用高盐浓度来增强测序反应的方法和组合物。在一个方面,例如,提供了一种用于制备聚合酶-模板复合物的方法。该方法包括(a)提供聚合酶;和(b)使聚合酶与多核苷酸模板在含有高浓度盐并且基本上不含核苷酸的溶液中接触,从而制备聚合酶-模板复合物。
在另一方面,提供了一种增加模板-聚合酶复合物的持续性的方法,该方法包括在包含高浓度盐并且基本上不含核苷酸的溶液中形成模板-聚合酶复合物;其中模板-聚合酶复合物的持续性大于在包含同等高浓度盐且存在核苷酸的溶液中形成时的相同模板-多核苷酸复合物的持续性。例如,通过模板与聚合酶的更快结合速率来增加持续性,和/或通过模板与聚合酶的较慢解离速率来增加持续性。
在另一方面,提供了一种用于进行模板依赖性DNA合成的方法,该方法包括:(a)在包含高浓度盐并且基本上不含核苷酸的溶液中提供聚合酶-模板复合物;和(b)通过向溶液中加入核苷酸来启动模板依赖性DNA合成。
在另一方面,提供了一种用于在高盐浓度下进行纳米孔测序的方法,该方法包括:(a)在包含高浓度盐的溶液中提供聚合酶-模板复合物,该溶液基本上不含核苷酸;(b)将聚合酶-模板复合物与纳米孔组合以形成纳米孔测序复合物;(c)向纳米孔测序复合物提供标记的核苷酸,以在高浓度盐下启动模板的模板依赖性纳米孔测序;和(d)当每种核苷酸与聚合酶结合时,借助纳米孔检测在每种核苷酸掺入期间与每种标记的核苷酸结合的标签,从而确定多核苷酸模板的序列。
在各个前述方面的每一个中,聚合酶可以是变体聚合酶,例如包含与SEQ ID NO:2的聚合酶具有至少70%序列同一性的氨基酸序列的聚合酶。此外,纳米孔可以是单体纳米孔,例如OmpG纳米孔,或纳米孔可以是寡聚纳米孔,例如α-溶血素纳米孔。此外,高浓度盐定义为例如至少100mM的盐浓度。
在另一方面,提供了储存或反应组合物,所述储存或反应组合物包含在至少100mM盐的溶液中的聚合酶-模板复合物。在一些实施方案中,组合物基本上不含核苷酸。
在某些其他实例方面,提供了利用低核苷酸浓度和高温来增强测序反应的方法和组合物。例如,在一个方面,提供了一种制备聚合酶-模板复合物的方法。该方法包括,例如,提供聚合酶,然后使聚合酶与溶液中的多核苷酸模板接触,从而制备聚合酶-模板复合物。该溶液包含低浓度的核苷酸并具有高温。
另一方面,提供了一种增加模板-聚合酶复合物的持续性的方法。该方法包括在溶液中形成聚合酶-模板复合物 - 该溶液包含低浓度的核苷酸并具有高温。在这些方法中,在高温溶液中形成的聚合酶-模板复合物的持续性大于在室温下由对照聚合酶-模板复合物溶液产生的持续性。
在另一方面,提供了一种用于多核苷酸模板的基于纳米孔的测序的方法。该方法包括在溶液中形成聚合酶-模板复合物 - 该溶液包含具有高温的低浓度核苷酸。将形成的聚合酶-模板复合物与纳米孔组合以形成纳米孔 - 测序复合物。将标记的核苷酸提供给纳米孔测序复合物,以在高温下启动模板的模板依赖性纳米孔测序。借助于纳米孔,当每种标记的核苷酸与聚合酶结合时,在每种标记的核苷酸的掺入过程中检测与每种标记的核苷酸结合的标签,从而确定多核苷酸模板的序列。纳米孔可以是单体纳米孔,例如OmpG纳米孔,或多聚体纳米孔,例如基于α-溶血素的纳米孔。
在涉及低核苷酸浓度和高温的前述方面的每一个中,该方法可以进一步包括用聚合酶-模板复合物的聚合酶使溶液饱和。例如,聚合酶可以是聚合酶变体,例如与SEQ IDNO:2所示的氨基酸序列具有85%、90%、95%、98%或更多序列同一性的聚合酶。在某些方面,核苷酸的低浓度为0.8μM至2.2μM,例如1.2μM。在某些方面,高温高于室温,诸如35℃-45℃。在某些方面,高温为40℃。
附图简述
图1是由DNA聚合酶单核苷酸掺入所需的最小催化步骤的说明。该反应开始于游离DNA聚合酶(E)与双链引物/模板DNA复合物(DNAn)的结合,产生二元酶-DNA复合物(E·DNAn)。kon.DNA表示酶与模板的结合速率;和koff.DNA表示酶从酶-DNA复合物的解离速率。由kon.DNA和koff.DNA速率确定的平衡定义了聚合酶-模板复合物的静态持续性。因此,酶的静态持续性可以通过增加结合速率kon.DNA和/或降低解离速率koff.DNA的来增加。正确核苷酸(dNTP)在存在二价阳离子如Mg2+的情况下的结合,促进酶-DNA-dNTP三元复合物的形成(E•DNAn•dNTP•Mg2 +)。kon,核苷酸表示酶的核苷酸结合速率。koff,核苷酸表示从酶模板复合物的核苷酸解离速率。当聚合酶延伸模板时,由kon,DNA和koff,DNA确定的平衡定义了聚合酶的复制持续性。因此,聚合酶的复制持续性可以通过DNA结合速率kon,DNA的增加和/或DNA解离速率koff,DNA的降低来增加。dNTP的结合诱导三元复合物中酶的第一次构象变化。在进入的dNTP的α-磷酸和模板/引物末端的3'-OH之间形成磷酸二酯键,以在引物末端产生添加的核苷酸碱基(E*·DNAn+1·PPi)。该反应产生焦磷酸盐(PPi)和质子。第二种构象变化允许PPi的释放以完成核苷酸掺入的循环。
图2是显示在FRET置换测定中使用的示例性模板的图示。
图3是显示在多磷酸盐核苷酸存在下形成聚合酶-模板复合物对模板与聚合酶在各种盐浓度下的结合速率的影响的示例性结果的图。参考实施例3。
图4A-4C是显示图3中所示荧光信号的结合曲线的一系列图。参考实施例3。
图5A-5B是一系列图,其显示了阻断的核苷酸对抑制聚合酶-模板复合物形成的影响的结果。在FRET测定中获得的荧光信号显示在(A)中,解离曲线显示在(B)中。参考实施例4.1。
图6A-6B是显示核苷酸对聚合酶-模板复合物形成的影响和模板在Mg2+(♦)或20uMd6Ps(多磷酸核苷酸;■)存在下从形成的聚合酶-模板复合物的解离速率的示例性结果的一系列图。在FRET测定中获得的荧光信号显示在(A)中,解离曲线显示在(B)中。参考实施例4.2。
图7A-7B是显示核苷酸(d6Ps)对聚合酶-模板复合物形成的影响和模板在不存在(♦)或存在(■)Ca2+的情况下从形成的聚合酶-模板复合物的解离速率的示例性结果的一系列图。在FRET测定中获得的荧光信号显示在(A)中,解离曲线显示在(B)中。参考实施例4.3。
图8A-8B是显示当在Mg2+(■)、20uM多磷酸核苷酸(Δ)存在、或在Mg2+和20uM多磷酸核苷酸均不存在(♦)的情况下形成复合物时,模板从聚合酶-模板复合物的解离速率的示例性结果的一系列图。在FRET测定中获得的荧光信号显示在(A)中,解离曲线显示在(B)中。参考实施例4.4。
图9A-9B是显示当在dNTP(■)或d6Ps (♦)存在下形成复合物时模板从聚合酶-模板复合物的解离速率的示例性结果的一系列图。在FRET测定中获得的荧光信号显示在(A)中,且解离曲线显示在(B)中。参考实施例4.5。
图10A是天然5%TBE凝胶的图像,其显示在室温下聚合酶与模板的静态结合。在不存在核苷酸的情况下,聚合酶浓度相对于模板浓度增加(0、1x、4x和8x)。在4X和8X聚合酶浓度下,带移指示多个聚合酶与模板上的多个位置的非特异性结合。参考实施例5。
图10B是天然5%TBE凝胶的图像,其显示聚合酶在40℃下与模板的静态结合。与图10A类似,聚合酶浓度相对于模板浓度增加(0、1x、4x和8x),但存在1.2μM核苷酸(多磷酸)。在4X和8X浓度下缺乏带移表明聚合酶在40℃下与模板DNA的3'端特异性结合。参考实施例5。
图11A-11C说明聚合酶-模板结合与模板在40℃延伸之间的相关性。更具体地,图11A是天然5%TBE凝胶的图像,其显示聚合酶浓度在0、1x、2x、4x、6x和8x下与模板的结合。如图所示,增加的聚合酶导致在40℃下和1.2μM核苷酸存在下模板结合的增加。图11B是天然5%TBE凝胶的图像,其显示了在图11A中所示的结合后模板的延伸。如随着聚合酶浓度增加从较低条带向较高条带的带强度的移动所证明的,增加聚合酶的浓度导致模板延伸增加(在10μM核苷酸存在下发生的延伸)。图11C是显示模板结合(来自图11A)与模板延伸(图11B)的相关性的图。如图所示,%结合与%延伸(斜率 = 1)直接相关。参考实施例6。
图12A-12D是说明在40℃和低水平核苷酸(1.2μM)存在下聚合酶-模板复合物形成后模板延伸的一系列图。图12A显示了在FRET测定中获得的荧光信号的振幅曲线,其中聚合酶浓度(0、1x、2x、4x、6x、8x和1x)对于模板渐增。如所示,在结合时增加聚合酶浓度导致延伸增加(如通过与对照相比增加浓度时增加的信号振幅所证明)。图12B显示了与单独的荧光团(▲)相比,图12A中数据的荧光信号的振幅定量,即荧光团-猝灭剂(延伸反应)(■)。图12C显示聚合酶在渐增的聚合酶浓度下的延伸百分比(♦),如通过比较荧光团-猝灭剂的荧光振幅(延伸反应)与单独的荧光团的荧光振幅所确定的。图12D显示了基于凝胶的测定(参见上文)和平板读数器(FRET)测定之间的模板延伸比较。如所示,通过基于凝胶或基于板读数器的测定法所测量的%模板延伸之间存在良好的相关性。对于图12A-12D,参考实施例的实施例7。
图13A-13B是一系列图,其说明在40℃下的不同结合条件下的聚合酶模板结合和解离。图13A显示了在FRET测定中获得的荧光信号对于所示结合条件的振幅曲线。图13B显示1.2μM dNpCpp(阻断核苷酸)/ 3 mM Sr+2 (♦);单独1.2μM dNpCpp(■);仅1.2μM多磷酸核苷酸(▲);或无核苷酸/ Sr (×)的解离曲线。如所示,Sr+2不影响聚合酶-模板解离。低浓度的多磷酸核苷酸(▲)提供最低水平的解离。参考实施例8。
图14A-14B是说明在存在和不存在高核苷酸浓度(36μM)下盐浓度对在40℃下聚合酶-复合物形成和在30℃下解离的影响的图。图14A显示在存在核苷酸(■)(最终浓度10μM)和不存在核苷酸(对照)(♦)的情况下,在75mM KGlu下从FRET测定获得的解离曲线。图14B显示在存在核苷酸(■)(最终浓度10μM)和不存在核苷酸(对照)(♦)的情况下,在380mMKGlu下从FRET测定获得的解离曲线。如所示,在没有核苷酸的情况下,在零时间结合的模板量大约是2倍。因此,在两种盐浓度下,高核苷酸浓度(结合期间10uM +)的存在降低了聚合酶-模板结合。参考实施例9。
本专利的文件包含至少一幅彩色附图。含有彩色附图的本专利或专利公开的副本将在请求并支付必要费用后由专利局提供。
详细描述
除非本文另有定义,本文使用的所有技术和科学术语具有如本发明所属技术领域的普通技术人员通常理解的相同含义。Singleton, 等人, Dictionary of Microbiology andMolecular Biology, 第二版, John Wiley and Sons, New York (1994), 和Hale &Marham, The Harper Collins Dictionary of Biology, Harper Perennial, NY (1991)为技术人员提供了本发明中所用的众多术语的一般字典。尽管与本文所述的那些相似或等同的任何方法和材料均可用于本发明的实施或检测中,但描述了优选的方法和材料。对于本领域的定义和术语,技术人员具体参考Sambrook等人,1989和Ausubel FM等人,1993。应理解本发明不限于所述的具体方法、方案和试剂,因为这些均可以改变。
数值范围包括定义范围的数字。术语“约”在本文中用于表示值的正或负百分之十(10%)。例如,“约100”指的是90和110之间的任何数字。
除非另有说明,否则分别地,核酸均以5'至3'的方向从左至右书写;氨基酸序列以氨基到羧基方向从左到右书写。
本文提供的标题不是对本发明的各个方面或实施方案的限制,其可作为整体参考说明书而具有。因此,下文直接定义的术语作为整体参考说明书更全面地定义。
本文提及的所有专利和出版物包括此类专利和出版物中公开的所有序列均通过引用明确地并入。
定义
术语“持续性(processivity)”在本文中是指聚合酶保持附接于模板并进行多种修饰反应的能力。“修饰反应”包括但不限于聚合和核酸外切。在一些实施方案中,“持续性”是指DNA聚合酶在不干扰酶从生长中的DNA链解离的情况下进行一系列聚合步骤的能力。通常,DNA聚合酶的“持续性”通过掺入(即在DNA聚合酶从生长中的DNA链解离之前通过聚合酶聚合至生长中的DNA链)的核苷酸数目(例如20nt、300nt、0.5-1kb或更多)来测量。DNA聚合酶的DNA合成的持续性定义为在从DNA模板解离之前,在单一模板结合事件期间聚合酶可以掺入DNA中的核苷酸数目。当聚合酶的持续性增加时,DNA合成的总效率增加。“持续性”可取决于聚合酶的性质、DNA模板的序列和反应条件,例如盐浓度、温度或特定蛋白质的存在。如本文所用,术语“高持续性”是指每次与模板结合/解离高于20 nts的持续性(例如,高于40nts、60 nts、80 nts、100 nts、120 nts、140 nts、160 nts、180 nts、200 nts、220 nts、240nts、260 nts、280 nts、300 nts、320 nts、340 nts、360 nts、380 nts、400 nts或更高)。聚合酶的持续性越高,在聚合酶从模板解离之前可以掺入的核苷酸的数目越多,因此,可以获得的序列(读取长度)越长。可以根据本文和WO 01/92501 A1(MJ Bioworks, Inc.,Improved Nucleic Acid Modifying Enzymes,,2001年12月6日公开)中定义的方法测量持续性。持续性包括静态持续性和复制持续性。
术语“静态持续性”在本文中是指在没有核苷酸掺入的情况下(即在不存在多核苷酸合成的情况下)聚合酶-模板复合物的持久性,如由聚合酶与模板的结合速率kon,DNA和聚合酶从聚合酶-模板复合物的解离速率koff,DNA所确定。在不存在多核苷酸合成的情况下定义静态持续性。
术语“复制持续性”在本文中是指在核苷酸掺入过程中(即在存在多核苷酸合成的情况下)聚合酶-模板复合物的持久性,如由聚合酶与模板的结合速率kon,核苷酸和聚合酶从聚合酶-模板复合物的解离速率koff,核苷酸所确定。
如本文所用,术语“结合速率”,当用于指代给定的聚合酶时,在本文中是指聚合酶与模板结合的速率。结合速率可以解释为在一组确定的反应条件下聚合酶与核酸模板结合的时间常数(“kon,DNA”)。用于测量聚合酶的解离时间常数的一些示例性测定法在下面进一步描述。在一些实施方案中,解离时间常数可以以反比时间为单位测量,例如sec-1或min-1
当用于提及给定聚合酶时,术语“解离速率”在本文中是指聚合酶从聚合酶-模板复合物的模板解离的速率。解离速率可以解释为在一组确定的反应条件下聚合酶从核酸模板的解离的时间常数(“koff,DNA”)。用于测量聚合酶的解离时间常数的一些示例性测定法在下面进一步描述。在一些实施方案中,解离时间常数可以以反比时间为单位测量,例如sec-1或min-1
当用于提及聚合酶-模板复合物时,术语“稳定性”在本文中是指聚合酶-模板复合物的持久性,如通过模板与聚合酶的结合和模板从聚合酶的解离的速率来确定。
术语“读取长度”在本文中是指在从模板解离之前聚合酶以模板依赖性方式掺入核酸链中的核苷酸数目。
术语“高浓度盐”在本文中是指盐的浓度,即为至少100mM且高至1M盐的一价盐。
术语“耐盐的”在本文中用于指在包含高盐浓度(例如大于100mM的盐)的溶液中保留聚合酶活性的聚合酶。
术语“基本上不含核苷酸”在本文中是指至少99.9%不含核苷酸的溶液。
术语“多核苷酸”和“核酸”在本文中可互换使用来指由在链中共价键合的核苷酸单体构成的聚合物分子。单链DNA(ss脱氧核糖核酸;ssDNA)、双链DNA(dsDNA)和RNA(核糖核酸)是多核苷酸的实例。
在最广泛的意义上,术语“氨基酸”在本文中是指可以掺入多肽链中的任何化合物和/或物质。在一些实施方案中,氨基酸具有通式结构H2N—C(H)(R)—COOH。在一些实施方案中,氨基酸是天然存在的氨基酸。在一些实施方案中,氨基酸是合成氨基酸;在一些实施方案中,氨基酸是D-氨基酸;在一些实施方案中,氨基酸是L-氨基酸。“标准氨基酸”是指天然存在的肽中常见的20种标准L-氨基酸中的任何一种。“非标准氨基酸”是指除标准氨基酸外的任何氨基酸,无论其是合成制备还是从天然来源获得。如本文所用,“合成氨基酸”包括化学修饰的氨基酸,包括但不限于盐、氨基酸衍生物(例如酰胺)和/或取代物。氨基酸,包括肽中的羧基和/或氨基末端氨基酸,可以通过甲基化、酰胺化、乙酰化和/或用其他化学品取代来修饰,而不会不利地影响它们的活性。氨基酸可能参与二硫键。术语“氨基酸”可与“氨基酸残基”互换使用,并且可以指肽的游离氨基酸和/或氨基酸残基。从使用该术语的上下文中可以明显看出它是指游离氨基酸还是肽的残基。应当注意,所有氨基酸残基序列在本文中由式表示,其左和右取向处于氨基末端至羧基末端的常规方向。
术语“纳米孔测序复合物”或“纳米孔复合物”在本文中是指与酶(例如聚合酶)连接的纳米孔,其进而与聚合物(例如多核苷酸或蛋白质)结合。纳米孔测序复合物位于膜(例如脂质双层)中,其中其起到识别聚合物组分(例如核苷酸或氨基酸)的作用。
术语“聚合酶-模板复合物”在本文中是指与聚合物(例如多核苷酸模板)结合/偶联的聚合酶。
术语“复合的聚合酶”在本文中是指与聚合酶-模板复合物中的多核苷酸模板结合的聚合酶。
本文中的术语“核苷酸”是指由糖部分(戊糖)、磷酸和含氮杂环碱基组成的DNA或RNA的单体单元。碱基通过糖苷碳(戊糖的1'碳)与糖部分连接,并且碱基和糖的该组合是核苷。当核苷含有与戊糖的3'或5'位键合的磷酸基时,它被称为核苷酸。可操作连接的核苷酸的序列在本文中通常称为“碱基序列”或“核苷酸序列”,并且在本文中由式表示,其中左至右取向处于5'末端至3'末端的常规方向。
术语“核苷酸类似物”在本文中是指核苷三磷酸的类似物,例如以下常见核碱基的(S)-甘油核苷三磷酸(gNTP):腺嘌呤、胞嘧啶、鸟嘌呤、尿嘧啶和胸苷(Horhota等人OrganicLetters,8:5345-5347 [2006])。
本文中的术语“标签”是指可检测的部分,其可以是原子或分子,或原子或分子的集合。标签可以提供光学,电化学、磁性或静电(例如,电感、电容)特征,其可以借助于纳米孔来检测。
术语“标记的核苷酸”在本文中是指在其末端磷酸处附接有标签的核苷酸。
术语“阻断的核苷酸”在本文中是指阻断引物延伸的经修饰的非可掺入的核苷酸。dNpCpp是“阻断的核苷酸”的一个实例。
术语“聚合酶”在本文中是指催化核苷酸聚合(即聚合酶活性)的酶。术语聚合酶包括DNA聚合酶、RNA聚合酶和逆转录酶。“DNA聚合酶”催化脱氧核苷酸的聚合。“RNA聚合酶”催化核糖核苷酸的聚合。“逆转录酶”催化与RNA模板互补的脱氧核苷酸的聚合。如本文所用,术语“聚合酶”及其变体包括可以催化核苷酸(包括其类似物)聚合成核酸链的任何酶。通常(但不一定)这种核苷酸聚合可以以模板依赖性方式发生。
术语“模板DNA分子”和“模板链”在本文中可互换使用来指核酸链,互补核酸链通过DNA聚合酶从其合成,例如,在引物延伸反应中。
术语“样品多核苷酸”在本文中是指从样品(例如生物样品)获得的多核苷酸。
术语“模板依赖性合成”是指涉及与目标模板链互补的新DNA链(例如,通过DNA聚合酶的DNA合成)的合成的过程。术语“模板依赖性合成”通常是指RNA或DNA的多核苷酸合成,其中新合成的多核苷酸链的序列由互补碱基配对决定(参见,例如,Watson,J.D.等人,于:Molecular Biology of the Gene, 第四版, W. A. Benjamin, Inc., Menlo Park,Calif. (1987))。
术语“纳米孔”在本文中是指在膜中形成或以其他方式提供的通道或通路。膜可以是有机膜,例如脂质双层,或合成膜,例如由聚合物材料形成的膜。纳米孔可以邻近或靠近感测电路或耦合到感测电路的电极设置,诸如例如互补金属氧化物半导体(CMOS)或场效应晶体管(FET)电路。在一些实例中,纳米孔的特征宽度或直径近似0.1Nm至约1000nm。一些纳米孔是蛋白质。OmpG和α-溶血素是蛋白质纳米孔的实例。
术语“α-溶血素”、“α- 溶血素”、“aHL”、“αHL,”、“a-HL”和“α-HL”可互换使用,并且在本文中是指自组装成七聚体水填充跨膜纳米孔通道的蛋白质。
术语“OmpG”在本文中是指外膜蛋白G单体纳米孔。
术语“纳米孔测序”在本文中是指借助纳米孔确定多核苷酸序列的方法。在一些实施方案中,以模板依赖性方式确定多核苷酸的序列。
术语“单体纳米孔”在本文中是指由单个亚基组成的纳米孔蛋白。OmpG是单体纳米孔的一个实例。
术语“寡聚纳米孔”在本文中是指纳米孔,其可以由多个相同的亚基、多个不同的亚基或相同和不同的亚基的混合物构成。具有相同亚基的纳米孔被称为“同型寡聚纳米孔”。含有两个或更多个不同多肽亚基的纳米孔被称为“异型寡聚纳米孔”。α-溶血素是寡聚纳米孔的一个实例。
术语“野生型”在本文中是指当从天然存在的来源分离时具有该基因或基因产物(例如蛋白质)特征的基因或基因产物。
术语“亲本的”或“亲本”在本文中是指蛋白质,例如纳米孔或酶,对其进行修饰(例如取代、插入、缺失和/或截短)以产生它们的变体。该术语还指与变体进行比较和比对的多肽。亲本可以是天然存在的(野生型)多肽,或者它可以是其变体,通过任何合适的方法制备。
术语“突变”在本文中是指引入亲本序列的变化,包括但不限于取代、插入、缺失(包括截短)。突变的后果包括但不限于产生在亲本序列中不存在的新特征、特性、功能、表型或性状。
术语“变体”在本文中是指修饰的蛋白质,例如变体Pol6聚合酶,其当与亲本蛋白质相比时显示出改变的特征,例如改变的持续性。
术语“纯化的”在本文中是指样品中存在的多肽,所述多肽浓度为其所包含于其中的样品的至少95重量%、或至少98重量%。
命名法
在本说明书和权利要求书中,使用了氨基酸残基的常规单字母和三字母代码。
为便于参考,本申请的聚合酶变体通过使用以下命名法描述:原始氨基酸:位置:取代的氨基酸。根据这种命名法,例如242位丙氨酸取代丝氨酸显示为:
Glu585Lys或E585K。
多个突变由加号分隔,即:
Glu585Lys + Leu731Lys或E585K + L731K
代表位置585和731处的突变,分别用谷氨酸和亮氨酸取代赖氨酸以及用亮氨酸取代赖氨酸。
当一个或多个替代氨基酸残基可以插入给定位置时,其表示为:E585K/R或E585K或E585R。
实例实施方案
在某些实例实施方案中,本发明内容提供了用于在高浓度盐存在下在模板依赖性多核苷酸合成期间增强聚合酶的持续性的方法和组合物。在其他实例实施方案中,本发明内容提供了用于在低核苷酸浓度和高温存在下在模板依赖性多核苷酸合成期间增强聚合酶的持续性的方法和组合物。所提供的方法和组合物适用于模板依赖性DNA合成的方法,包括DNA扩增和测序。测序方法包括单个多核苷酸分子的通过合成测序,例如单个DNA分子的纳米孔测序。
如图1所示,聚合酶(例如DNA聚合酶)的持续性与聚合酶-模板复合物的形成和通过酶掺入dNTP直接相关。在这些参数下,聚合酶的总体持续性取决于静态和复制持续性。聚合酶的静态和/或复制持续性越大,聚合酶的总体持续性越大。如图1所示,静态持续性由聚合酶与模板的结合速率(kon,DNA)和解离(koff,DNA)确定。在不存在多核苷酸合成的情况下测定静态持续性。因此,聚合酶与模板的结合速率越大(或越快),和/或聚合酶从模板解离的速率越小(或越慢),聚合酶的静态持续性越大。
在核苷酸存在下并基于核苷酸与聚合酶-模板复合物的聚合酶的结合和解离速率来确定复制持续性。因此,核苷酸与复合聚合酶的结合速率越大(或越快),和/或核苷酸从复合聚合酶解离的速率越小(或越慢),聚合酶的复制持续性越大。复制持续性由聚合条件下(例如在核苷酸和二价阳离子如Mg2+存在下)核苷酸从聚合酶-模板复合物中的结合速率(kon,核苷酸)和解离速率(koff,核苷酸)确定。聚合酶的静态持续性可以通过增加聚合酶与模板的结合以形成聚合酶-模板复合物和/或减少聚合酶从聚合酶-模板复合物的解离来增加。
在示例性测定中,如本文实施例中所述,给定聚合酶与模板的结合速率和从模板解离速率可以通过在限定条件下将聚合酶与包含荧光标记的标记寡核苷酸(图2)一起孵育来测量。当寡核苷酸不被聚合酶结合时,寡核苷酸上的荧光标记的荧光被猝灭;聚合酶与寡核苷酸的结合导致寡核苷酸标记的去猝灭和荧光的相应增加。通过向反应混合物中加入未标记的竞争寡核苷酸来起始阻断;当聚合酶与荧光标记的寡核苷酸解离时,竞争寡核苷酸与寡核苷酸杂交并阻止聚合酶的进一步结合。在加入竞争寡核苷酸后的不同时间点测量反应混合物的荧光。将观察到的荧光(以RFU或相对荧光单位计)对时间(X轴)进行绘制(Y轴)。为了比较聚合酶在不同条件下的结合和解离速率,该酶可用于平行和单独的反应,其中在不同的时间点测量每种反应混合物的荧光,然后可以使用任何合适的方法计算每种酶的解离速率并进行比较。
公开的方法描述了模板与聚合酶结合形成聚合酶-模板复合物是在核苷酸存在下进行的,因为已经利用核苷酸来稳定聚合酶-模板复合物。例如,US20150167072提供了纯化聚合酶-模板复合物的方法,其在纯化过程中包括核苷酸和核苷酸类似物以稳定聚合酶-模板复合物。类似地,US20150368626提供了用于进行核酸测序的方法,其包括在一种或多种核苷酸存在下使聚合酶与核酸模板接触。
令人惊讶的是,申请人已经确定,在高浓度的盐下,核苷酸通过干扰模板与聚合酶的结合而影响聚合酶-模板复合物的形成(实施例4)。另外,申请人已经确定在核苷酸存在下(在除了非常低之外的浓度)模板与聚合酶的结合增加了模板从聚合酶的解离速率(实施例5和10)。核苷酸对聚合酶-模板复合物的静态持续性的影响不会被二价阳离子如Ca2+减轻,其通常作为聚合酶-模板复合物的稳定剂包括在内。
高水平核苷酸对聚合酶-模板复合物的静态持续性的去稳定作用对于在需要合成在高浓度盐下发生(例如纳米孔测序)的条件下的多核苷酸的模板依赖性合成是显著的。在纳米孔测序中,高盐浓度提高基于离子电流的纳米孔测量的信噪比。然而,高盐浓度使聚合酶-DNA模板复合物不稳定,导致高聚合酶转换率和减少序列核苷酸添加的检测,即聚合反应期间的持续性或序列读取的长度减少。
因此,在一些实施方案中,提供了用于制备聚合酶-模板复合物的方法,其包括提供聚合酶,并使聚合酶与多核苷酸模板在包含高浓度盐并且基本上不含核苷酸的溶液中接触。聚合酶-模板复合物的聚合酶可以是野生型或变体聚合酶,其在高浓度盐下保留聚合酶活性。可用于本文所述组合物和方法的聚合酶的实例包括本文其他地方描述的耐盐聚合酶。在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQ ID NO:2至少70%相同的氨基酸序列。
虽然较高水平的核苷酸不利地影响聚合酶-模板结合,但申请人还惊奇地发现,结合时低水平的核苷酸,以及在高温下起始结合,导致改善的聚合酶-模板结合和所得的持续性。例如,Pol6的解链温度约为40℃,并且在模板结合时,解链温度约为43℃。通过在40℃下将聚合酶与模板结合,本文提供的方法和组合物促进聚合酶与3'端的特异性结合和未结合的聚合酶或与模板上的非特异性位点结合的聚合酶的变性。申请人还确定改进的结合与模板的改善的延伸相关(实施例6-10)。
因此,在某些实例实施方案中,提供了一种在低水平核苷酸存在下和在高温下制备聚合酶-模板复合物的方法。另外,反应溶液可以用聚合酶饱和。聚合酶-模板复合物的聚合酶可以是野生型或变体聚合酶,其在低核苷酸浓度和高温下保留聚合酶活性。在某些实例实施方案中,聚合酶也可以是抗盐的。在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQ ID NO:2至少70%相同的氨基酸序列。下文描述了可用于本文所述方法和组合物的聚合酶,以及本发明的其他特征、用途和方面。
聚合酶-模板复合物的聚合酶
在某些实例实施方案中,本文所述的聚合酶-模板复合物的聚合酶可以是DNA聚合酶,并且可以包括细菌DNA聚合酶、真核生物DNA聚合酶、古细菌DNA聚合酶、病毒DNA聚合酶和噬菌体DNA聚合酶。
在某些实例实施方案中,聚合酶-模板复合物的聚合酶可以是天然存在的聚合酶及其任何亚基和截短物、突变体聚合酶、变体聚合酶、重组、融合或其他形式的工程化聚合酶、化学修饰的聚合酶、合成分子及其保留了进行模板依赖性多核苷酸合成的能力的任何类似物、同源物、衍生物或片段。任选地,聚合酶可以是突变体聚合酶,其包含一个或多个突变,所述突变涉及用其他氨基酸取代一个或多个氨基酸,从聚合酶插入或缺失一个或多个氨基酸,或两个或更多个聚合酶的部分的连接。
在一些实施方案中,用于制备聚合酶-模板复合物的聚合酶是耐盐聚合酶,其能够在包含高盐浓度且基本上不含核苷酸的溶液中催化模板依赖性DNA合成。可以形成聚合酶-模板复合物的高盐浓度定义为至少100mM盐的盐浓度,例如100mM谷氨酸钾(K-glu)。
耐盐聚合酶可以是天然耐盐的聚合酶的野生型或变体。在一些实施方案中,耐盐聚合酶是B型DNA聚合酶,其包括极端嗜盐菌的成员及其变体,如例如在标题为“耐盐DNA聚合酶”的美国专利公开US2014/0113291中所述的,其以其整体通过引用并入本文。
在其他实施方案中,耐盐聚合酶可以是不天然耐盐但已被修饰成耐盐的聚合酶。
在某些实例实施方案中,且除了慢koff,DNA、快kon,DNA之外,聚合酶-模板复合物的聚合酶可以在高浓度盐下进行DNA聚合,并且可以具有一种或多种可用于测序DNA中的期望的特征,例如慢koff,核苷酸、快kon,核苷酸、高保真度、低外切核酸酶活性、DNA链置换、kchem、增加的稳定性、增加的持续性、耐盐性和与纳米孔连接的相容性。在某些实例实施方案中,聚合酶具有掺入具有4、5、6、7或8个磷酸(例如四磷酸、五磷酸、多磷酸、七磷酸或八磷酸核苷酸)的多磷酸的能力、测序精确度和长读取长度(即长连续读取)。
在某些实例实施方案中,聚合酶可以是在高于室温的温度下起作用的聚合酶,例如在高于约30℃的温度下起作用的聚合酶。在其他实例实施方案中,聚合酶可以在40℃或更高的温度下起作用。此类聚合酶可包括在此温度下起作用的本文所述的任何聚合酶。
在某些实例实施方案中,聚合酶-模板复合物的聚合酶是已经过工程改造以具有增加的持续性的聚合酶。此类实例聚合酶可以进一步包括赋予或增强用于测序多核苷酸(例如DNA)的聚合酶的一种或多种期望特征的额外修饰。
在某些实例实施方案中,工程化聚合酶可以是变体Pol6聚合酶,其当与衍生它的亲本Pol6相比显示出增加的持续性。例如,亲本多肽是野生型Pol6多肽。聚合酶-模板复合物的变体Pol6多肽可以衍生自野生型亲本梭菌噬菌体phiCPV4野生型序列(SEQ ID NO:1)核酸编码区加His-标签;SEQ ID NO:1,蛋白质编码区域)并且可在别处获得(国家生物信息学中心或GenBank登录号AFH27113)。野生型亲本Pol6聚合酶可以是来自梭菌的亲本Pol6的同源物,其可以用作提供具有增加的持续性的变体聚合酶的起始点。
如本领域技术人员将理解的,与梭菌噬菌体种菌株phiCPV4具有高度同源性的其他聚合酶可以作为亲本Pol6而不会破坏本文提供的组合物和方法的范围。来自梭菌噬菌体的亲本Pol6的同源物可与来自梭菌噬菌体的Pol6(SEQ ID NO:1)具有至少70%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%的序列同一性。例如,变体Pol6可以衍生自梭菌属噬菌体的同源物,其与来自梭菌属噬菌体的亲本Pol6至少70%相同。
在其他实例实施方案中,聚合酶-模板复合物的变体Pol6聚合酶是可以衍生自变体亲本Pol6的变体Pol6多肽。在一些实例实施方案中,变体亲本Pol6聚合酶是SEQ ID NO:2的Pol6聚合酶。在其他实施方案中,变体亲本Pol6聚合酶包含去除/降低聚合酶的外切核酸酶活性的修饰(例如,2016年2月29日提交的名称为“Exonuclease DeficientPolymerases”的美国临时专利申请62/301,475,其明确地通过引用并入本文)。在其他实施方案中,可以突变聚合酶以降低聚合酶将核苷酸掺入核酸链(例如,生长中的核酸链)的速率。在一些情况下,通过官能化核苷酸和/或模板链以提供空间位阻,例如通过模板核酸链的甲基化,可以降低核苷酸掺入核酸链的速率。在一些情况下,通过掺入甲基化的核苷酸来降低速率。在其他实施方案中,亲本多肽是Pol6变体,其中已引入另外的突变以改进用于纳米孔测序的聚合酶的所需特征。在某些实例实施方案中,变体Pol6可以与SEQ ID NO:2的亲本Pol6具有至少70%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%的序列同一性。
在某些实例实施方案中,DNA结合位点处的一个或多个氨基酸的修饰可以是取代、缺失或插入中的一种或多种,该修饰保留变体聚合酶的聚合酶活性,并且相对于亲本Pol6降低多核苷酸从Pol-DNA复合物的解离速率。氨基酸修饰可以在对应于 SEQ ID NO:2的以下氨基酸残基的一个或多个氨基酸残基处进行:V173、N175、N176、N177、I178、V179、Y180、S211、Y212、I214、Y338、T339、G340、G341、T343、H344、A345、D417、I418、F419、K420、I421、G422、G434、A436、Y441、G559、T560、Q662、N563、E566、E565、D568、L569、I570、M571、D572、N574、G575、L576、L577、T578、F579、T580、G581、S582、V583、T584、Y596、E587、G588、E590、F591、V667、L668、G669、Q670、L685、C687、C688、G689、L690、P691、S692、A694、L708、G709、Q717、R718、V721、I734、I737、M738、F739、D693、L731、F732、T733、T287、G288、M289、R290、T291、A292、S293、S294、I295、Y342、V436、S437、G438、Q439、E440、E585、T529M、S366A、A547F、N545L、Y225L和D657R。
在一些实例实施方案中,具有聚合酶活性的变体Pol6酶包含与SEQ ID NO:2的全长亲本Pol6的氨基酸序列具有至少70%同一性的氨基酸序列,并且在对应于 SEQ ID NO:2的以下氨基酸残基的一个或多个氨基酸残基处具有修饰:V173、N175、N176、N177、I178、V179、Y180、S211、Y212、I214、Y338、T339、G340、G341、T343、H344、A345、D417、I418、F419、K420、I421、G422、G434、A436、Y441、G559、T560、Q662、N563、E566、E565、D568、L569、I570、M571、D572、N574、G575、L576、L577、T578、F579、T580、G581、S582、V583、T584、Y596、E587、G588、E590、F591、V667、L668、G669、Q670、L685、C687、C688、G689、L690、P691、S692、A694、L708、G709、Q717、R718、V721、I734、I737、M738、F739、D693、L731、F732、T733、T287、G288、M289、R290、T291、A292、S293、S294、I295、Y342、V436、S437、G438、Q439、E440、E585、T529M、S366A、A547F、N545L、Y225L和D657R。
在一些实例实施方案中,DNA结合位点的一个或多个氨基酸的突变是取代为带正电荷的氨基酸。例如,对应于SEQ ID NO:2的氨基酸残基V173、N175、N176、N177、I178、V179、Y180、S211、Y212、I214、Y338、T339、G340、G341、T343、H344、A345、D417、I418、F419、K420、I421、G422、G434、A436、Y441、G559、T560、Q662、N563、E566、E565、D568、L569、I570、M571、D572、N574、G575、L576、L577、T578、F579、T580、G581、S582、V583、T584、Y596、E587、G588、E590、F591、V667、L668、G669、Q670、L685、C687、C688、G689、L690、P691、S692、A694、L708、G709、Q717、R718、V721、I734、I737、M738、F739、D693、L731、F732、T733、T287、G288、M289、R290、T291、A292、S293、S294、I295、Y342、V436、S437、G438、Q439、E440和E585的任一个或多个氨基酸可以突变为K、R、H、Y、F、W和/或T。
在一些实例实施方案中,DNA结合位点的一个或多个氨基酸的突变是取代为K。例如,变体Pol6聚合酶可包含氨基酸取代G438K、E565K、E585K、L731K和M738K中的一个或多个。在一些实例实施方案中,变体Pol6聚合酶包含取代E585K。在其他实例实施方案中,Pol6聚合酶包含取代E585K + L731K。在仍其他实施方案中,Pol6聚合酶包含取代E585K +M738K。在其他实施方案中,突变DNA结合位点的至少两个、至少三个、至少四个、至少五个、至少六个氨基酸或更多。
在某些实例实施方案中,DNA结合位点的一个或多个氨基酸的突变是包括T529M、S366A、A547F、N545L、Y225L或D657R中的一个或多个的取代。例如,变体聚合酶可包括以下取代:T529M、S366A、A547F、N545L、Y225L和D657R。在某些实例实施方案中,变体聚合酶是这样的氨基酸序列,其与SEQ ID NO:14所示的氨基酸序列具有约70%、80%、90%、95%、98%或更多同一性,同时保留SEQ ID NO:14中鉴定的一个或多个的取代(例如保留其中鉴定的所有取代)。
在某些实例实施方案中,所得变体Pol6酶保留聚合酶活性,并且相对于缺乏相同突变的亲本聚合酶中显示的解离速率,显示出多核苷酸从Pol-DNA复合物的解离速率降低。在一些实例实施方案中,亲本Pol6的修饰产生变体Pol6聚合酶,其具有的与模板的解离速率是亲本Pol6的解离速率的至少1/2。亲本Pol6的修饰可产生变体Pol6聚合酶,其具有的与模板的解离速率是亲本Pol6的至少1/3、亲本Pol6的至少1/4、亲本Pol6的至少1/5、亲本Pol6的至少1/6、亲本Pol6的至少1/7、亲本Pol6的至少1/8、亲本Pol6的至少1/9、亲本Pol6的至少1/10。
编码野生型亲本Pol6的DNA序列可以使用本领域熟知的各种方法从产生所考虑的Pol6的任何细胞或微生物中分离。编码野生型梭菌噬菌体phiCPV4(即野生型Pol6)的DNA序列的实例在本文中作为SEQ ID NO:3的核苷酸28-2220提供,并且作为SEQ ID NO:5的核苷酸421至2610提供。除了野生型Pol6之外,SEQ ID NO:3在其5'末端包含编码组氨酸标签(His6;HHHHHH;SEQ ID NO:9)的核苷酸。SEQ ID NO:5在其5'末端包含编码组氨酸标签(His6(SEQ ID NO:9))和SpyCatcher肽SGDYDIPTTENLYFQGAMVDTLSGLSSEQGQSGDMTIEEDSATHIKFSKRDEDGKELAGATMELRDSSGKTISTWISDGQVKDFYLYPGKYTFVETAAPDGYEVATAITFTVNEQGQVTVNGKATKGDAHI (SEQ ID NO:10)的核苷酸。在某些实例实施方案中,本文鉴定的任何聚合酶(包括任何变体聚合酶)可以直接或间接连接至SpyCatcher肽(SEQ IDNO:10)。
DNA序列可以是基因组来源、混合基因组和合成来源、混合合成和cDNA来源或混合基因组和cDNA来源,其按照标准技术,通过连接合成、基因组或cDNA来源的片段(适当时,对应于完整的DNA序列的各个部分的片段)。DNA序列也可以通过聚合酶链反应(PCR)使用特异性引物制备,例如如以下中所述:美国专利号4,683,202或R. K. Saiki 等人(1988)。
高盐浓度下的聚合酶-模板复合物的形成
在某些实例实施方案中,聚合酶-模板复合物可以在至少100mM和多至1M盐的高浓度的盐(例如KCl、K-glu或其他一价盐)的存在下形成。高浓度的盐可以是约10、20、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800 mM、900 mM或更高。典型的盐包括金属元素的盐。高盐溶液可包括钾盐、钠盐、铯盐、钙盐、钴、镍、铝、锰、锌和锂中的一种或多种。盐还可包括本领域技术人员已知的金属元素的碳酸氢盐、硫酸盐、氯化物、碳酸盐、硝酸盐、亚硝酸盐、溴化物、柠檬酸盐、乙酸盐、氰化物、氧化物或磷酸盐。在一些实施方案中,盐是谷氨酸钾(K-glu)、氯化钾(KCl)、硫酸钾(K2SO4)、硝酸钾(KNO3)、氯化铯(CsCl)或硝酸铯(CsNO3)。在一些实施方案中,高盐溶液包括K-Glu(谷氨酸钾)或其他一价盐。此外,可用于本发明的盐可包括盐的混合物或掺合物。可用于本发明的矿物盐的掺合物包括K-Glu和KCl、K-Glu和K2SO4、K-Glu和KNO3、K-Glu和CsCl、K-Glu和CsNO3、K-Glu和KNO3、K-Glu和CsCl、K-Glu和CsNO3、K-Glu和CsCl、K-Glu和CsNO3、KCl和K2SO4、KCl和KNO3、KCl和CsCl、KCl和CsNO3、K2SO4和KNO3、K2SO4和CsCl、K2SO4和CsNO3、KNO3和CsCl、KNO3和CsNO3以及CsCl和CsNO3。上述盐可用于测序聚合反应中,浓度范围为50至1M、范围为100至800mM、范围为200至700mM、范围为300至600mM、范围为400至500mM。在一些实施方案中,高盐浓度可以为至少150mM且多至500mM。在一些实施方案中,高浓度盐是至少500mM盐。
复合的聚合酶(例如,变体Pol6聚合酶)在高盐浓度下的聚合速率为至少1个碱基/秒、至少5个碱基/秒、至少10个碱基/秒、至少20个碱基/秒、至少30个碱基/秒、至少40个碱基/秒、至少50个碱基/秒或更多。在一些实施方案中,复合的聚合酶(例如,变体Pol6聚合酶)的聚合速率在100mM盐下为至少1个碱基/秒,在200mM盐下为至少1个碱基/秒,在300mM盐下为至少1个碱基/秒,在400mM盐下为至少1个碱基/秒,在500mM盐下为至少1个碱基/秒,在600mM盐下为至少1个碱基/秒,在700mM盐下为至少1个碱基/秒,在800mM盐下为至少1个碱基/秒,在800mM盐下为至少1个碱基/秒 盐,在900mM盐下为至少1个碱基/秒,在1M盐下为至少1个碱基/秒。在一些实施方案中,复合的聚合酶(例如,变体Pol6聚合酶)的聚合速率在100mM盐下为1至10个碱基/秒,在200mM盐下为1至10个碱基/秒,在300mM盐下为1至10个碱基/秒,在400mM盐下为1至10个碱基/秒,在500mM盐下为1至10个碱基/秒,在600mM盐下为1至10个碱基/秒,在700mM盐下为1至10个碱基/秒,在800mM盐下为1至10个碱基/秒,在800mM盐下为1至10个碱基/秒,在900mM盐下为1至10个碱基/秒,在1M盐下为1至10个碱基/秒。
在一些实施方案中,用于制备包含高浓度盐的聚合酶-模板复合物的溶液还包含聚合酶-模板复合物稳定剂。聚合酶-模板复合物稳定剂的实例包括但不限于Ca2+。因此,在一些实施方案中,提供用于制备聚合酶-模板复合物的溶液包含,例如,高浓度的100mM至500mM K-glu的盐。制备聚合酶-模板复合物的溶液基本上不含核苷酸。
可以根据本领域已知的各种方法测定聚合酶-模板复合物的形成。例如,可以根据实施例3中描述的方法测定聚合酶-模板复合物的形成。
因此,在一些实施方案中,提供了用于制备聚合酶-模板复合物的方法,其包括提供聚合酶,并使聚合酶与多核苷酸模板在包含高浓度盐并且基本上不含核苷酸的溶液中接触。聚合酶-模板复合物的聚合酶可以是野生型或变体聚合酶,其在高浓度盐下保留聚合酶活性。可用于本文所述组合物和方法的聚合酶的实例包括本文其他地方描述的耐盐聚合酶。在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQ ID NO:2至少70%相同的氨基酸序列。
在高温和低核苷酸浓度下形成聚合酶-模板复合物
在某些实例实施方案中,聚合酶-模板复合物可以在高温与低浓度的核苷酸的存在下形成。例如,在某些实例实施方案中,提供了制备聚合酶-模板复合物的方法,该方法包括(a)提供聚合酶和(b)使聚合酶与包含低浓度核苷酸并处于高温下的溶液中的多核苷酸模板接触,从而制备聚合酶-模板复合物。
关于温度,例如,用于形成聚合酶-模板复合物的溶液的温度可以高于室温,即高于约20 ℃。例如,高温可以是约30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃、50℃或更高。在某些实例实施方案中,高温是38℃、39℃、40℃、41℃或42℃。在某些实例实施方案中,高温处于或接近聚合酶或聚合酶-模板复合物的解链温度。
虽然在本文描述的某些实例实施方案中,其中形成聚合酶-模板复合物的反应溶液包含高盐并且基本上不含核苷酸,但在其他实例实施方案中,溶液包含低浓度的核苷酸。例如,低核苷酸浓度可以范围为0.5μM至2.5μM。在其他实例实施方案中,核苷酸浓度为0.8μM至2.2μM,例如约0.8μM、0.9μM、1.0μM、1.1μM、1.2μM、1.3μM、1.4μM、1.5μM、1.6μM、1.7μM、1.8μM、1.9μM、2.0μM、2.1μM或2.2μM。除低浓度的核苷酸外,溶液还可包括如本文所述的高温。作为实例,其中形成聚合酶-模板的反应溶液可包含浓度为约0.8μM至2.2μM的模板核苷酸,且溶液为约38℃-42℃。
为了促进聚合酶与模板的结合,在某些实例实施方案中,聚合酶可以等于模板浓度或者对于模板浓度为摩尔过量。例如,聚合酶可以是模板浓度的1x、2x、3x、4x、5x、6x、7x、8x、9x、10x或更多。换句话说,在某些实例实施方案中,反应溶液可以用聚合酶饱和。
可用于本文所述的组合物和方法中的聚合酶复合物的聚合酶的实例包括本文所述的各种聚合酶。这些包括,例如,本文所述的任何适合高温的聚合酶,以及本文所述的变体聚合酶。在某些实例实施方案中,例如实施例10-14中描述的那些,聚合酶包括SEQ IDNO:14所示的序列。在其他实例实施方案中,复合物的聚合酶与SEQ ID NO:2所示的氨基酸序列具有至少70%或更高的同一性。在某些实例实施方案中,聚合酶或变体聚合酶可以直接或间接连接至SpyCatcher肽(SEQ ID NO:10)以形成融合肽。作为实例,如SEQ ID NO:14所示的序列或与其具有70%或更多同一性的序列,可以直接或间接地与SEQ ID NO:10所示的序列连接。聚合酶和SpyCatcher肽可以例如通过本领域已知的任何接头肽连接。
为了形成聚合酶复合物,例如,使聚合酶、模板和核苷酸在所需温度下在反应溶液中彼此接触。然后使复合物在溶液中形成。例如,可以在开始测序之前将反应溶液孵育约10、15、20、25、30分钟或更长时间。一旦形成聚合酶-模板复合物并开始测序,例如,可以向溶液中加入额外的核苷酸,从而提高溶液中核苷酸的浓度。也就是说,一旦开始测序,就不必保持低浓度的核苷酸以实现本文所述的若干益处,例如增加的聚合酶-模板复合物形成和提高的持续性。例如,核苷酸的浓度可以升高至约5μM、6μM、7μM、8μM、9μM、10μM、11μM、12μM、13μM、14μM或15μM。在某些实例实施方案中,反应溶液还可包括如本文所述的高盐溶液。
与用增加的盐形成聚合酶-模板复合物的评估一样,可以根据本领域已知的各种方法测定聚合酶-模板复合物的形成。例如,聚合酶-模板复合物的形成可以根据实施例3中描述的方法(即,使用FRET测定法)测定。使用本文所述的方法和组合物,例如,与缺少低核苷酸和/或在室温或低于室温下运行的对照相比,聚合酶-模板复合物的形成可以增加约10%、15%、20%、20%、25%、30%、35%、40%、45%、50%或更多。
在某些实例实施方案中,本文提供了用于增加模板-聚合酶复合物的持续性的方法,该方法包括在溶液中形成聚合酶-模板复合物,所述溶液包含如本文所述的低浓度核苷酸并具有如本文所述的高温。溶液也可以用聚合酶饱和。在高温溶液和低核苷酸溶液中形成的聚合酶-模板复合物的持续性大于在室温下由对照聚合酶-模板复合物溶液产生的持续性。例如,使用本文所述的方法和组合物,与缺少低核苷酸和/或在室温或低于室温下运行的对照相比,持续性可以增加约10%、15%、20%、20%、25%、30%、35%、40%、45%、50%或更多。
模板多核苷酸
本文提供的方法和组合物适用于各种不同种类的核酸模板、新生链和双链产物,包括单链DNA;双链DNA;单链RNA;双链RNA;DNA-RNA杂交体;包含修饰的、缺失的、非天然的、合成的和/或稀有的核苷酸的核酸;和衍生物、模拟物和/或其组合。
本发明的模板核酸可包含任何合适的多核苷酸,包括双链DNA、单链DNA、单链DNA发夹、DNA/RNA杂合体、具有结合聚合剂的识别位点的RNA、以及RNA发夹。此外,靶多核苷酸可以是细胞基因组的特定部分,例如内含子、调节区、等位基因、变体或突变;整个基因组;或其任何部分。在其他实施方案中,靶多核苷酸可以是或衍生自mRNA、tRNA、rRNA、核酶、反义RNA或RNAi。
本发明的模板核酸可包括非天然核酸例如PNA、修饰的寡核苷酸(例如,包含对生物RNA或DNA不典型的核苷酸的寡核苷酸,例如240-O-甲基化的寡核苷酸)、修饰的磷酸骨架等。核酸可以是例如单链或双链的。
用于在本文的方法中产生模板核酸的核酸(靶核酸)可以基本上是适用于本文呈现的方法的任何类型的核酸。在一些情况下,靶核酸本身包含可以直接用作模板核酸的片段。通常,将靶核酸片段化并进一步处理(例如用衔接子连接或环化)以用作模板。例如,靶核酸可以是DNA(例如,基因组DNA、mtDNA等)、RNA(例如,mRNA、siRNA等)、cDNA、肽核酸(PNA)、扩增的核酸(例如,通过PCR、LCR或全基因组扩增(WGA))、进行片段化和/或连接修饰的核酸、完整基因组DNA或RNA或其衍生物(例如,化学修饰的、标记的、重新编码的、蛋白质结合的或以其他方式改变的)。
模板核酸可以是线性的、环状的(包括用于循环冗余测序(CRS)的模板)、单链或双链的、和/或具有单链区域的双链的(例如,茎-和环-结构)。模板核酸可以从环境样品(例如,海水、冰芯、土壤样品等)、培养的样品(例如,原代细胞培养物或细胞系)、用病原体(例如,病毒或细菌)感染的样品、组织或活组织检查样品、法医样品、血液样品或来自生物(例如动物、植物、细菌、真菌、病毒等)的另一样品中纯化或分离。这些样品可含有多种其他组分,如蛋白质、脂质和非靶核酸。在某些实施方案中,模板核酸是来自生物的完整基因组样品。在其他实施方案中,模板核酸是从生物样品或cDNA文库中提取的总RNA。
除了在高盐浓度下增加聚合酶-模板复合物的持续性之外,预期本文提供的方法和组合物可用于抵消对由于次优的辅因子浓度、次优的pH水平和/或温度或包括除多核苷酸合成所需的必需核苷酸之外的化学或生物抑制剂存在而导致的聚合酶-模板复合物形成的负面影响。例如,聚合酶-模板复合物可以在不存在核苷酸的情况下在次优的pH和/或温度下形成。
根据本文提供的方法制备的聚合酶-模板复合物可用于模板依赖性DNA合成方法,包括DNA扩增和模板依赖性DNA测序。
在一些实施方案中,提供了用于进行模板依赖性DNA合成的方法,其包括(a)在包含高浓度盐并且基本上不含核苷酸的溶液中提供聚合酶-模板复合物;(b)通过向溶液中加入核苷酸来启动模板依赖性DNA合成。在其他实例实施方案中,提供了用于进行模板依赖性DNA合成的方法,其包括(a)在包含低核苷酸浓度的溶液中提供聚合酶-模板复合物,该溶液处于高温,和(b)随后通过向溶液中添加核苷酸来起始模板依赖性DNA合成。
聚合酶-模板复合物的聚合酶可以是野生型或变体聚合酶,其在高浓度的盐和/或高温下保持聚合酶活性。可用于本文所述的组合物和方法的聚合酶的实例包括本文其他地方所述的耐盐和耐温聚合酶。在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQ ID NO:2至少70%相同的氨基酸序列。在一些实施方案中,高浓度的盐大于100mM,例如,大于100mM的K-glu。
如参考图1所述,可以通过增加复合的聚合酶的静态持续性和/或增加复合的聚合酶的复制持续性来增加聚合酶的持续性。在一些实施方案中,提供了通过在包含高浓度盐并且基本上不含核苷酸的溶液中形成聚合酶-模板复合物来增加聚合酶-模板复合物的静态持续性的方法。当在不存在核苷酸的情况下在高浓度盐存在下制备时聚合酶-模板复合物的持续性的增加大于当在相同高浓度盐和存在核苷酸的情况下制备时聚合酶-模板复合物的持续性。在一些实施方案中,通过聚合酶与模板的更快结合速率和/或通过聚合酶从模板的更慢解离速率来增加持续性。高浓度的盐可以大于100mM,例如大于100mM的K-glu。
在一些实施方案中,提供了一种通过在包含低浓度核苷酸和高温的溶液中形成聚合酶-模板复合物来增加聚合酶-模板复合物的静态持续性的方法。另外,溶液可以用本文所述的聚合酶饱和。当在这样的溶液中制备时,聚合酶-模板复合物的持续性的增加大于在室温下且在含有高浓度核苷酸的溶液中制备时聚合酶-模板复合物的持续性。
纳米孔测序复合物 - 聚合酶与纳米孔的附接
借助于聚合酶的纳米孔测序通过纳米孔测序复合物完成,所述纳米孔测序复合物通过将聚合酶-模板复合物连接至纳米孔而形成。在一些实施方案中,随后将聚合酶-模板复合物与纳米孔连接以形成纳米孔测序复合物,其随后插入脂质双层中。在其他实施方案中,首先将纳米孔插入脂质双层中,并随后将聚合酶-模板复合物附接于纳米孔。用于组装纳米孔测序复合物的方法描述于2016年1月21日提交的题为“Nanopore Sequencing Complexes”的美国临时申请号62/281,719中,其通过引用整体并入本文。
跨过已经重构入脂质膜的纳米孔进行流过纳米孔的离子电流的测量。在一些情况下,将纳米孔插入膜中(例如,通过电穿孔,通过扩散)。纳米孔可以通过刺激信号插入,例如电刺激、压力刺激、液体流动刺激、气泡刺激、超声处理、声音、振动或其任何组合。在一些情况下,借助于气泡形成膜,并且借助于电刺激将纳米孔插入膜中。在其他实施方案中,纳米孔将其自身插入膜中。用于组装脂质双层,在脂质双层中形成纳米孔和测序核酸分子的方法可以在PCT专利公开号WO2011/097028和WO2015/061510中找到,其通过引用整体并入本文。
聚合酶-模板复合物可以在纳米孔插入脂质膜之前或在纳米孔插入脂质膜之后附接到纳米孔。在某些实例实施方案中,聚合酶与纳米孔附接,例如与一个或多个α-溶血素单体附接,然后加入模板以形成聚合酶-模板复合物。
纳米孔测序复合物的纳米孔包括但不限于生物纳米孔、固态纳米孔和杂化生物-固态纳米孔。Pol6纳米孔测序复合物的生物纳米孔包括来自大肠杆菌、沙门氏菌、志贺氏菌和假单胞菌的OpmG,和来自金黄色葡萄球菌属的α溶血素,来自耻垢分枝杆菌的MspA。纳米孔可以是野生型纳米孔、变体纳米孔或修饰的变体纳米孔。
变体纳米孔可以被改造成具有相对于亲本酶的那些特征发生改变的特征。参见,例如,2015年10月28日提交的名称为“alpha-Hemolysin Variants with AlteredCharacteristics”的美国专利申请号14/924,861,其通过引用整体并入本文。
其他变体纳米孔描述于例如2016年6月30日提交的名称为“Long LifetimeAlpha-Hemolysin Nanopores”的美国临时专利申请号62/357,230中,其通过引用整体并入本文。在其他实例实施方案中,α-溶血素纳米孔的α-溶血素可以如2016年3月31日提交的名称为“Nanopore Protein Conjugates and Uses Thereof”的美国临时专利申请号62/316,236中所述进行修饰,其通过引用整体并入本文。
在一些实例实施方案中,相对于野生型酶改变特征。在一些实施方案中,纳米孔测序复合物的变体纳米孔被工程化以降低衍生它的亲本纳米孔的离子电流噪声。具有改变特征的变体纳米孔的实例是在缩窄部位具有一个或多个突变的OmpG纳米孔(2015年9月22日提交的名称为“OmpG Variants”的美国临时专利申请号62/222,197,其通过引用整体并入本文),其相对于亲本OmpG降低离子噪声水平。降低的离子电流噪声提供了这些OmpG纳米孔变体在多核苷酸和蛋白质的单分子感测中的用途。在其他实施方案中,变体OmpG多肽可以进一步突变以结合分子衔接子,其在驻留在孔中时减缓分析物(例如核苷酸碱基)通过孔的移动并因此提高分析物鉴定的准确性(Astier 等人, J Am Chem Soc 10.1021/ja057123+, 2005年12月30日在线发表)。
经修饰的变体纳米孔通常是多聚体纳米孔,其亚基经过工程改造以影响亚基间相互作用(分别于2015年9月24日和2015年10月22日提交的题为“Alpha-HemolysinVariants”的美国临时专利申请号62/232,175和62/244,852。分别在2015年,其全部内容通过引用并入本文)。可以利用改变的亚基相互作用来指定单体寡聚化以在脂质双层中形成多聚纳米孔的顺序和次序。该技术提供了对形成纳米孔的亚基的化学计量的控制。其亚基可以被修饰以确定寡聚化期间亚基相互作用的顺序的多聚纳米孔的实例是aHL纳米孔。
在一些实例实施方案中,单个聚合酶附接于每个纳米孔。在其他实施方案中,两个或更多个聚合酶附接至单体纳米孔或寡聚纳米孔的亚基。
附接方式
聚合酶-模板复合物,例如Pol6-DNA模板复合物,可以以任何合适的方式附接于纳米孔。可以使用以下实现将聚合酶 - 聚合物复合物附接到纳米孔上:SpyTag/SpyCatcher肽系统(Zakeri等人 PNAS109:E690-E697 [2012])、天然化学连接(Thapa 等人, Molecules19:14461-14483 [2014])、分选酶系统 (Wu和Guo, J Carbohydr Chem 31:48-66 [2012];Heck 等人, Appl Microbiol Biotechnol 97:461-475 [2013])、转谷氨酰胺酶系统(Dennler 等人, Bioconjug Chem 25:569-578 [2014])、甲酰甘氨酸连接(Rashidian 等人, Bioconjug Chem 24:1277-1294 [2013])或本领域已知的其他化学连接技术。
聚合酶-模板复合物可以通过将复合物的聚合酶部分连接到纳米孔而附接到纳米孔。在某些情况下,聚合酶例如变体Pol6聚合酶使用SolulinkTM化学法与纳米孔连接。SolulinkTM可以是HyNic(6-肼基-烟酸,芳香肼)和4FB(4-甲酰基苯甲酸酯,芳香醛)之间的反应。在一些情况下,使用Click化学法(例如可从LifeTechnologies获得)将聚合酶与纳米孔连接。
在一些情况下,将锌指突变引入纳米孔分子中,然后使用分子(例如,DNA中间分子)将Pol6聚合酶连接到纳米孔例如α溶血素上的锌指位点。
另外,聚合酶-模板复合物例如 Pol6-DNA模板复合物可以通过在附接位点附接于纳米孔的连接分子与纳米孔(例如aHL、OmpG)附接。在某些情况下,聚合酶-模板复合物例如Pol6-DNA模板复合物与具有分子钉(molecular staples)的纳米孔附接。在一些情况下,分子钉包含三个氨基酸序列(表示为接头A、B和C)。接头A可以从纳米孔单体延伸,接头B可以从单独的聚合酶延伸或从聚合酶-DNA复合物的聚合酶延伸,和接头C然后可以结合接头A和B(例如,通过缠绕接头A和B)并因此连接聚合酶-模板复合物(例如 Pol6-DNA模板复合物)到纳米孔。接头C也可以构建成接头A或接头B的一部分,从而减少接头分子的数量。
可以用于将变体Pol6聚合酶附接到纳米孔的其他接头是直接遗传连锁(例如,(GGGGS)1-3氨基酸接头(SEQ ID NO:19))、转谷氨酰胺酶介导的连接(例如,RSKLG(SEQ IDNO:20))、分选酶介导的连接和通过半胱氨酸修饰的化学连接。预期本文中有用的具体接头是在N末端的(GGGGS)1-3 (SEQ ID NO:19)、K-标签(RSKLG(SEQ ID NO:20)),ΔTEV位点(12-25),ΔTEV位点+ SpyCatcher的N末端(12-49)。
用于附接聚合酶-模板复合物(例如, Pol6-DNA模板复合物)至膜中的纳米孔的示例性方法包括将接头分子附接至纳米孔或突变纳米孔以具有附接位点,然后将聚合酶-多核苷酸复合物附接至附接位点或附接接头。在将纳米孔插入膜中后,聚合酶-多核苷酸复合物附接于附接位点或附接接头。在一些情况下,聚合酶-多核苷酸复合物附接于多个纳米孔中的每一个,所述纳米孔插入膜中并放置在生物芯片的孔和/或电极上。
在一些实施方案中,聚合酶-模板复合物的聚合酶表达为包含接头肽的融合蛋白。聚合酶-模板复合物的聚合酶可以表达为包含SpyCatcher多肽的融合蛋白,其可以与包含SpyTag肽的纳米孔共价结合(Zakeri等人,PNAS109:E690-E697 [2012])。
聚合酶-模板复合物,例如 Pol6-DNA模板复合物可以使用例如描述于以下中的方法附接至纳米孔:PCT/US2013/068967 (公开为WO2014/074727;Genia Technologies,Inc.)、PCT/US2005/009702 (公开为WO2006/028508;President and Fellows of HarvardCollege)和PCT/US2011/065640 (公开为WO2012/083249;Columbia University)。
生物芯片
每个包含一种或多种如本文所述制备的聚合酶-模板复合物的纳米孔可以插入膜中,例如脂质双层,并且邻近或接近感测电路(例如基于纳米孔的传感器(例如,生物芯片)的集成电路)的感测电极放置。纳米孔可以插入膜中并且放置在生物芯片中孔和/或感测电极。可以提供多个纳米孔传感器作为阵列。生物芯片和制造生物芯片的方法描述于PCT/US2014/061854(公开为WO2015/061511,Genia Technologies,Inc.)中,其通过引用整体并入本文。
生物芯片可以包括纳米孔,每个纳米孔具有相对于亲本Pol6具有增加的持续性的聚合酶。变体Pol6可包括本文所述的任何修饰/取代。例如,变体聚合酶可以包含在对应于SEQ ID NO:2的以下氨基酸残基的一个或多个氨基酸残基处的修饰:V173、N175、N176、N177、I178、V179、Y180、S211、Y212、I214、Y338、T339、G340、G341、T343、H344、A345、D417、I418、F419、K420、I421、G422、G434、A436、Y441、G559、T560、Q662、N563、E566、E565、D568、L569、I570、M571、D572、N574、G575、L576、L577、T578、F579、T580、G581、S582、V583、T584、Y596、E587、G588、E590、F591、V667、L668、G669、Q670、L685、C687、C688、G689、L690、P691、S692、A694、L708、G709、Q717、R718、V721、I734、I737、M738、F739、D693、L731、F732、T733、T287、G288、M289、R290、T291、A292、S293、S294、I295、Y342、V436、S437、G438、Q439、E440、E585、T529M、S366A、A547F、N545L、Y225L和D657R。
在一些示例性实施方案中,修饰是取代为氨基酸K、R、H、Y、F、W和/或T。在一些实施方案中,取代是取代为K。在一些实施方案中,变体Pol6包含取代E585K。在其他实施方案中,变体Pol6包含两个氨基酸E585K + L731K的取代。在仍其他实施方案中,变体Pol6包含两个氨基酸E585K + L731K的取代。在其他实例实施方案中,变体Pol6可以包含在T529M、S366A、A547F、N545L、Y225L和/或D657R或其组合处的一个或多个取代。例如,聚合酶变体可包含T529M+S366A+A547F+N545L+Y225L+D657R取代中的每一个。在某些实例实施方案中,氨基酸取代可以在包含His6标签(SEQ ID NO:9)和如SEQ ID NO:4的聚合酶中给出的SpyCatcher肽的亲本Pol6聚合酶中进行。
在某些实例实施方案中,所得变体Pol6聚合酶相对于其亲本Pol6聚合酶具有增加的持续性。在一些实施方案中,变体Pol6聚合酶在高盐浓度下具有增加的持续性。在一些实施方案中,增加的持续性在10、20、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800 mM或更高的高盐浓度下保持。在一些实施方案中,在高于100mM的高盐浓度下显示出持续性的增加。持续性的增加包括模板解离速率的降低,其是亲本Pol6的模板解离速率的至少1/2。亲本Pol6的修饰可产生变体Pol6聚合酶,其具有的与模板的解离速率是亲本Pol6的至少1/3、亲本Pol6的至少1/4、亲本Pol6的至少1/5、亲本Pol6的至少1/6、亲本Pol6的至少1/7、亲本Pol6的至少1/8、亲本Pol6的至少1/9、亲本Pol6的至少1/10。在一些实施方案中,变体Pol6聚合酶在低核苷酸浓度和高温下具有增加的持续性。在某些实例实施方案中,聚合酶在高温下具有增加的持续性,例如如本文所述的高于室温。
对于在膜(例如脂质双层)中包括纳米孔阵列的实施方案,测序纳米孔复合物的密度可以是高的。高密度阵列的特征在于具有膜表面,其具有大于或等于约至约500纳米孔测序复合物/1 mm2的Pol6纳米孔测序复合物的密度。在一些实施方案中,表面具有约100、约200、约300、约400、约500、约600、约700、约800、约900、约1000、约2000、约3000、约4000、约5000、约6000、约7000、约8000、约9000、约10000、约20000、约40000、约60000、约80000、约100000或约500000纳米孔测序复合物/1 mm2的离散纳米孔测序复合物的密度。在一些实施方案中,表面具有至少约200、至少约300、至少约400、至少约500、至少约600、至少约700、至少约800、至少约900、至少约1000、至少约2000、至少约3000、至少约4000、至少约5000、至少约6000、至少约7000、至少约8000、至少约9000、至少约10000、至少约20000、至少约40000、至少约60000、至少约80000、至少约100000或至少约500000纳米孔测序复合物/1 mm2的离散纳米孔测序复合物的密度。
本文提供的纳米孔测序方法涉及在与核苷酸相互作用期间测量通过孔的电流。在一些实施方案中,对核酸分子进行测序可能需要施加直流电(例如,使得分子移动通过纳米孔的方向不反转)。然而,使用直流电操作纳米孔传感器长时间可改变电极的组成,使跨纳米孔上离子浓度失衡并具有其他不期望的效果。施加交流(AC)波形可以避免这些不期望的效果并且具有如下所述的某些优点。本文所述的利用标记的核苷酸的核酸测序方法与AC施加的电压完全相容,因此可用于实现所述优点。
用于测量通过跨膜蛋白孔的离子电流的合适条件是本领域已知的,并且实例在本文的实验部分中提供。该方法使用跨膜和孔施加的电压进行。使用的电压通常为-400mV至+400mV。所使用的电压优选在这样的范围内,所述范围具有选自-400 mV、-300 mV、-200mV、-150 mV、-100 mV、-50 mV、-20 mV和0mV的下限以及独立地选自+10 mV、+20 mV、+50mV、+100 mV、+150 mV、+200 mV、+300 mV和+400 mV的上限。使用的电压更优选在100mV至240mV的范围内,最优选在160mV至240mV的范围内。通过使用增加的施加电位,可以通过本发明的孔增加不同核苷酸之间的区分。使用AC波形和标记的核苷酸对核酸进行测序描述于2013年11月6日提交的标题为“Nucleic Acid Sequencing Using Tags”的美国专利公开US2014/0134616中,其通过引用整体并入本文。除了US2014/0134616中描述的标记的核苷酸之外,可以使用缺乏糖或非环状部分的核苷酸类似物进行测序,例如四种常见核碱基:腺嘌呤、胞嘧啶、鸟嘌呤和胸苷的(S)-甘油核苷三磷酸(gNTP)(Horhota等人OrganicLetters,8:5345-5347 [2006])。
测序多核苷酸的方法
如本文其他地方所述,使用本文所述的Pol6纳米孔测序复合物的变体Pol6聚合酶表征的分子可以是各种类型,包括带电荷或极性分子,例如带电荷或极性聚合物分子。具体实例包括核糖核酸(RNA)和脱氧核糖核酸(DNA)分子。DNA可以是单链DNA(ssDNA)或双链DNA(dsDNA)分子。可以逆转录核糖核酸然后测序。
在某些实例实施方案中,提供了使用根据本文提供的方法制备的聚合酶-模板复合物在高浓度盐即在高浓度盐和不存在核苷酸的情况下测序核酸的方法。随后将聚合酶-模板复合物附接至纳米孔以形成纳米孔测序复合物,其检测多核苷酸序列。在其他实例实施方案中,提供了使用根据本文提供的方法制备的聚合酶-模板复合物对核酸进行测序的方法,例如使用低核苷酸浓度,在高温下和在过量聚合酶存在下形成聚合酶-模板复合物。随后将聚合酶-模板复合物附接至纳米孔以形成纳米孔测序复合物,其检测多核苷酸序列。
包含根据本文提供的组合物和方法制备的聚合酶-模板复合物的纳米孔测序复合物可用于使用本领域已知的利用测序多核苷酸中的酶的其他纳米孔测序平台在高浓度盐下测定核酸序列。同样地,包含根据所提供的组合物和方法制备的聚合酶-模板复合物的纳米孔测序复合物可用于使用本领域已知的利用测序多核苷酸中的酶的其他纳米孔测序平台在例如高温下测定核酸序列。例如,包含根据本文所述方法制备的聚合酶-模板复合物的纳米孔测序复合物可用于根据Oxford Nanopore (Oxford, UK)、Illumina (San Diego,CA)的基于解旋酶和外切核酸酶的方法以及Stratos Genomics (Seattle, WA)的通过扩展的纳米孔测序来测序核酸。
在一些实例实施方案中,核酸测序包括制备包含根据本文所述方法制备的聚合酶-模板复合物的纳米孔测序复合物,并使用如描述于PCT/US2013/068967(2013年11月7日提交的标题为“Nucleic Acid Sequencing Using Tags”,其通过引用整体并入本文)的标记的核苷酸在高浓度盐下测定多核苷酸序列。例如,位于接近或邻近一个或多个感测电极的膜(例如,脂质双层)中的纳米孔测序复合物可以检测在高浓度盐下由聚合酶掺入标记的核苷酸,这是因为核苷酸碱基被掺入到与结合有聚合酶的多核苷酸链互补的链中,并且核苷酸的标签被纳米孔检测。聚合酶-模板复合物可以与本文提供的纳米孔结合。
标记的核苷酸的标签可包括能够被纳米孔检测的化学基团或分子。用于提供标记的核苷酸的标签的实例至少在PCT/US2013/068967的第[0414]至[0452]段中描述。核苷酸可以从不同核苷酸的混合物中掺入,例如标记的dNTP的混合物,其中N是腺苷(A)、胞苷(C)、胸苷(T)、鸟苷(G)或尿嘧啶(U)。或者,核苷酸可以从单个标记的dNTP的交替溶液中掺入,即标记的dATP,然后是标记的dCTP,然后是标记的dGTP等。当标签流过或邻近纳米孔时,当标签位于纳米孔中和/或当标签呈递于纳米孔时,纳米孔检测标签,可以发生多核苷酸序列的确定。每个标记的核苷酸的标签可以在任何位置与核苷酸碱基偶联,包括但不限于核苷酸的磷酸盐(例如γ磷酸盐)、糖或含氮碱基部分。在一些情况下,在掺入核苷酸标签期间标签与聚合酶结合时,检测标签。可继续检测标签,直到标签在核苷酸掺入和随后切割和/或释放标签后易位通过纳米孔。在一些情况下,核苷酸掺入事件从标记的核苷酸释放标签,并且标签通过纳米孔并被检测。标签可以通过聚合酶释放,或以任何合适的方式切割/释放,包括但不限于被位于聚合酶附近的酶切割。以这种方式,可以鉴定掺入的碱基(即A、C、G、T或U),因为从每种类型的核苷酸(即腺嘌呤、胞嘧啶、鸟嘌呤、胸腺嘧啶或尿嘧啶)释放独特的标签。在某些情况下,核苷酸掺入事件不会释放标签。在这种情况下,借助于纳米孔检测与掺入的核苷酸偶联的标签。在一些实例中,标签可以移动通过纳米孔或靠近纳米孔,并且可以借助纳米孔检测。
因此,在一个方面,提供了一种用于对来自样品(例如,生物样品)的多核苷酸进行测序的方法,其借助于高浓度盐下的纳米孔测序复合物。将样品多核苷酸与聚合酶在包含高浓度盐并且基本上不含核苷酸的溶液中组合,以提供纳米孔测序复合物的聚合酶-模板复合物部分。在一个实施方案中,样品多核苷酸是样品ssDNA链,其与DNA聚合酶组合以提供聚合酶-DNA复合物,例如Pol6-DNA复合物。
在一些实施方案中,通过以下进行多核苷酸样品的纳米孔测序:提供在包含高浓度盐例如大于100mM且基本上不含核苷酸的溶液中的聚合酶-模板复合物(例如,Pol6-模板或变体Pol6-模板复合物);将聚合酶-模板复合物附接到纳米孔上以形成纳米孔测序复合物;并提供核苷酸以起始模板依赖性链合成。如本文其他地方所述,测序复合物的纳米孔部分位于与感测电极相邻或接近的膜中。如本文其他地方所述,所得纳米孔测序复合物能够在高浓度盐下测定样品DNA的核苷酸碱基序列。在其他实施方案中,纳米孔测序复合物测定双链DNA的序列。在其他实施方案中,纳米孔测序复合物测定单链DNA的序列。在仍其他实施方案中,纳米孔测序复合物通过对逆转录产物进行测序来确定RNA的序列。
在一些实施方案中,提供了一种用于在高盐浓度下进行纳米孔测序的方法。该方法包括(a)提供在包含高浓度盐例如至少100 mM且不含核苷酸的溶液中的聚合酶-模板复合物;(b)将聚合酶-模板复合物与纳米孔组合以形成纳米孔测序复合物;(c)将标记的核苷酸提供给纳米孔测序复合物,以在至少100mM盐的高盐浓度下起始模板依赖性纳米孔测序;和(d)借助于纳米孔检测在每种核苷酸掺入期间与每种标记的核苷酸结合的标签,以测定该模板的序列。聚合酶-模板复合物的聚合酶可以是野生型或变体聚合酶,其在高浓度盐下保留聚合酶活性。可用于本文所述组合物和方法的聚合酶的实例包括本文其他地方描述的耐盐聚合酶。在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQID NO:2至少70%相同的氨基酸序列。
在一些实施方案中,提供了用于纳米孔测序核酸样品的方法。该方法包括使用纳米孔测序复合物,其包含本文提供的变体Pol6聚合酶。在一个实施方案中,该方法包括向Pol6纳米孔测序复合物提供标记的核苷酸,并在高盐条件下,进行聚合反应来以模板依赖性方式掺入核苷酸,并检测每个掺入的核苷酸的标签以测定模板DNA的序列。
在一个实施方案中,将标记的核苷酸提供至包含本文提供的变体Pol6聚合酶的Pol6纳米孔测序复合物,并且在高盐条件下,借助于所述纳米孔测序复合物的变体Pol6酶进行聚合反应,以将标记的核苷酸标记掺入至与来自核酸样品的单链核酸分子互补的正在生长的链中;借助于纳米孔,在掺入单个标记的核苷酸期间检测与所述单个标记的核苷酸结合的标签,其中借助于所述纳米孔检测标签,同时核苷酸与变体Pol6聚合酶结合。
在一个方面,提供了一种用于对来自样品(例如,生物样品)的多核苷酸进行测序的方法,其借助纳米孔测序复合物在高温和低浓度的核苷酸下进行。例如,样品多核苷酸与聚合酶在具有高温且具有低浓度核苷酸的溶液中组合。在一个实施方案中,样品多核苷酸是样品ssDNA链,其与DNA聚合酶组合以提供聚合酶-DNA复合物,例如Pol6-DNA复合物。如本文所述,温度可高于室温,例如在约40℃。例如,核苷酸浓度可以是约1.2μM,如本文所述。此外,溶液可包括高浓度的聚合酶,例如被聚合酶饱和。聚合酶可以是如本文所述的变体聚合酶。
在某些实例方面,提供了一种用于多核苷酸模板的基于纳米孔的测序的方法。该方法包括在包含低浓度核苷酸的溶液中形成如本文所述的聚合酶-模板复合物,该溶液具有高温,例如高于室温。例如,温度可以是约40℃,如本文所述。该方法包括将形成的聚合酶-模板复合物与纳米孔组合以形成纳米孔测序复合物。然后可以将标记的核苷酸提供给纳米孔测序复合物,以在高温下起始模板的模板依赖性纳米孔测序。借助于纳米孔,当每种标记的核苷酸与聚合酶结合时,在每种标记的核苷酸的掺入过程中检测与每种标记的核苷酸结合的标签,从而确定多核苷酸模板的序列。在某些实例中,形成聚合酶-模板复合物包括用聚合酶-模板复合物的聚合酶使溶液饱和。核苷酸浓度可以是0.8μM至2.2μM,例如约1.2μM。例如,温度可为约35℃至45℃,例如约40℃。
包括使用标记的核苷酸与本发明的纳米孔测序复合物用于测序多核苷酸的测序方法的其他实施方案在WO2014/074727中提供,其通过引用整体并入本文。
使用AC波形和标记的核苷酸对核酸进行测序描述于2013年11月6日提交的标题为“Nucleic Acid Sequencing Using Tags”的美国专利公开US2014/0134616中,其通过引用整体并入本文。除了US2014/0134616中描述的标记的核苷酸之外,可以使用缺乏糖或非环状部分的核苷酸类似物进行测序,例如五种常见核碱基:腺嘌呤、胞嘧啶、鸟嘌呤、尿嘧啶和胸苷的(S)-甘油核苷三磷酸(gNTP)(Horhota等人Organic Letters,8:5345-5347[2006])。
试剂、存储溶液和试剂盒
还提供了用于DNA测序或扩增(例如纳米孔测序)的测序试剂,所述试剂在包含高浓度盐并且基本上不含核苷酸的溶液中包含聚合酶-模板复合物。在某些实例实施方案中,所述试剂包括在具有低水平核苷酸的溶液中的聚合酶和模板,其中所述溶液可以如本文所述加热至高温以起始和/或增强聚合酶-模板复合物的形成。在此类实施方案中,溶液可以用聚合酶饱和。在一些实施方案中,聚合酶-模板复合物的聚合酶包括这样的聚合酶,其是在高浓度的盐下保持聚合酶活性的野生型或变体聚合酶,例如SEQ ID NO:1、2、4、6、7、8和14中任一者的Pol6。可用于本文所述组合物和方法的聚合酶的实例包括本文其他地方描述的耐盐和/或耐高温聚合酶。在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQ ID NO:2至少70%相同的氨基酸序列。
在一些实施方案中,聚合酶-模板复合物的聚合酶是Pol6聚合酶,其具有与SEQ IDNO:2的全长亲本多肽具有至少70%同一性的氨基酸序列并且包含对应于SEQ ID NO:2的以下氨基酸的氨基酸残基的一个或多个氨基酸取代:V173、N175、N176、N177、I178、V179、Y180、S211、Y212、I214、Y338、T339、G340、G341、T343、H344、A345、D417、I418、F419、K420、I421、G422、G434、A436、Y441、G559、T560、Q662、N563、E565、E566、D568、L569、I570、M571、D572、N574、G575、L576、L577、T578、F579、T580、G581、S582、V583、T584、Y596、E587、G588、E590、F591、V667、L668、G669、Q670、L685、C687、C688、G689、L690、P691、S692、A694、L708、G709、Q717、R718、V721、I734、I737、M738、F739、D693、L731、F732、T733、T287、G288、M289、R290、T291、A292、S293、S294、I295、Y342、V436、S437、G438、Q439、E440、和E585、 T529M、S366A、A547F、N545L、Y225L和D657R。在一些实施方案中,氨基酸取代是取代为K、R、Y、F、W和/或T。在一些实施方案中,测序试剂包含SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:14的变体Pol6聚合酶。在一些实施方案中,测序试剂包含编码本文提供的变体耐盐或耐热Pol6聚合酶中的任一种的多核苷酸。
在另一实例实施方案中,提供了一种存储溶液。存储溶液包含在包含高浓度盐的溶液中的聚合酶-模板复合物。在一些实施方案中,高浓度的盐大于100mM盐,例如大于100mM K-glu。在另一个实例实施方案中,储存溶液包含在具有低水平核苷酸的溶液中的聚合酶和模板,其中可以将溶液温热至如本文所述的高温以起始和/或增强聚合酶-模板复合物的形成。例如,存储溶液可以用聚合酶饱和。
另一方面,提供了包含用于DNA测序的测序试剂的试剂盒。在一些实施方案中,试剂盒包含在包含高浓度盐且不含核苷酸的溶液中的聚合酶-模板复合物。在一些实施方案中,试剂盒还包含缓冲液和/或核苷酸。在某些实例实施方案中,试剂盒包含在具有低水平核苷酸的溶液中的聚合酶和模板,其中可以将溶液温热至如本文所述的高温以起始和/或增强聚合酶-模板复合物的形成。在此类实施方案中,溶液可以用聚合酶饱和。试剂盒的溶液还可包括缓冲液。试剂盒的聚合酶可以是,例如,野生型聚合酶或变体聚合酶,例如本文所述的任何变体聚合酶。
在下面的实验公开中,以下缩写适用:eq(当量);M(摩尔浓度);μM(微摩尔浓度);N(正常);mol(摩尔);mmol(毫摩尔);μmol(微摩尔);nmol(纳摩尔);g(克);mg(毫克);kg(千克);μg(微克);L(升);ml(毫升);μl(微升);cm(厘米);mm(毫米);μm(微米);nm(纳米);℃(摄氏度);h(小时);min(分钟);sec(秒);msec(毫秒)。
实施例
实施例1
定向诱变
Pol6突变体
编码WT-Pol6 (SEQ ID NO:2)的SEQ ID NO:3的DNA购自商业来源(DNA 2.0, MenloPark, California)。通过测序验证序列。
进行定点诱变以突变亲本变体Pol6-44-X1(SEQ ID NO:4)的推定的核苷酸/DNA结合位点的一个或多个氨基酸。Pol6-44-X1衍生自野生型Pol6以包含以下取代:S366A T529MA547F D44A(SEQ ID NO:4)。Pol6-67-X2衍生自野生型Pol6以包含以下突变:S366A T529MA547F N545L Y225L D657R Y242A (参见SEQ ID NO:14)。
如44-X1的Pol6变体表达为具有N-末端His-标签(参见SEQ ID NO:4中的下划线序列)和SpyCatcher结构域(SEQ ID NO:4中的粗体斜体序列)的融合蛋白。
诱变方案
使用NEB碱基转变器方案设计每个诱变反应的引物,并以96孔板形式订购自IDT。
使用购自NEB的T4多核苷酸激酶(PNK)以高通量(HTP)形式将正向和反向引物5'磷酸化。典型的25-μl反应物含有15μl 10μM的引物、5μl 5X反应缓冲液(来自NEB)、1.25μlPNK酶、3.75μl水。反应在37℃下进行30分钟,酶在65℃下热失活20分钟。
使用来自NEB的Q5 DNA聚合酶进行PCR诱变。典型的25μl反应物包含5μl Q5缓冲液、5μl GC增强剂、0.5μl 10mM dNTPs、1.25μl 10μM磷酸化的正向和反向诱变引物、0.25μlQ5聚合酶和1μl 5ng/ ml野生型Pol6模板(即His-Pol6)和10.75μl H2O。
PCR完成后,将0.5μl Dpn1加入25μl PCR混合物中,并在37℃下孵育1小时。然后,将2.5μl 平端/TA连接酶主混合物加入到2.5μl Dpn1处理的PCR产物中,并将反应混合物在室温下孵育1小时。此后,将1μl连接混合物加入20ul 96孔BL21DE3细胞(EMD Millipore)中并在冰上孵育5分钟。
使用PCR热循环仪将细胞在42℃热击恰好30秒,并置于冰上2分钟。此后,向细胞中加入80μl SOC,然后将其在37℃下孵育1小时而不振荡。向细胞中加入100μl等分试样的SOC或超纯水,然后将其涂布在含有50-100μg/ml卡那霉素的48孔LB-琼脂平板上。细胞在37℃下生长过夜。
实施例2
表达和纯化
亲本聚合酶Pol6-44-X1(SEQ ID NO:4)和Pol6-67-X2(SEQ ID NO:14)的变体使用如下的高通量方法表达和纯化。
将表达质粒pD441载体中的编码变体DNA的转化到感受态大肠杆菌中,制备转化细胞的甘油原液。从甘油储存物的微小挑取物开始,在含有0.2%葡萄糖和100μg/ ml卡那霉素的LB中生长1ml起始培养物约8小时。将25μl对数期起始培养物转移到96深孔板中的1ml表达培养基(补充有0.2%葡萄糖、50mM磷酸钾、5mM MgCl2和100μg/ ml卡那霉素的Terrific Broth(TB)自诱导培养基)中。将板在250-300rpm下在28℃下振荡孵育36-40小时。
然后通过在4℃以3200×g离心30分钟收获细胞。将培养基倾析掉并将细胞沉淀重悬于200μl预冷的裂解缓冲液(20mM磷酸钾 pH 7.5、100mM NaCl、0.5%Tween20、5mM TCEP、10mM咪唑、1mM PMSF、1X Bug Buster、100μg/ml溶菌酶和蛋白酶抑制剂))中并在室温下温和搅拌20分钟。然后,从10x储存物中加20μl至终浓度为100μg/ml的DNase、5mM MgCl2、100μg/ml RNase I,并在冰上孵育5-10分钟以产生裂解物。将裂解物补充200μl 1M磷酸钾,pH7.5(最终浓度将约为0.5M磷酸钾于400μl裂解物中),并在4℃下经离心以约1500rpm过滤通过Pall过滤板(Part# 5053, 3微米过滤器)10分钟。然后将澄清的裂解物施加到平衡的96孔His-Pur钴板(Pierce Part#90095)上并结合15-30分钟。
通过在500xG下离心3分钟收集流通物(FT)。然后用400μl洗涤缓冲液1(0.5M磷酸钾pH 7.5、1M NaCl NaCl、5mM TCEP、20mM咪唑+0.5%吐温20)洗涤FT 3次。然后将FT在400μl洗涤缓冲液2(50mM Tris pH 7.4、200mM KCl、5mM TCEP、0.5%Tween20、20mM咪唑)中洗涤两次。
使用200μl洗脱缓冲液(50mM Tris Ph7.4、200mM KCl、5mM TCEP、0.5%Tween20、300mM咪唑、25%甘油)洗脱Pol6,并在孵育1-2分钟后收集。将洗脱液重新应用于相同的His-Pur板2-3次以使浓缩的Pol6洗脱。如通过SDS-PAGE评估,纯化的聚合酶纯度> 95%。如通过Nanodrop评估,蛋白质浓度为~3uM(0.35mg/ml),且260/280比率为0.6。
实施例3
模板结合实验
使用ShortCy5Template (/5Cy5/AGA GTG ATA GTA TGA TTA TGT AGA TGT AGG ATTTGA TAT GTG AGT AGC CGA ATG AAA CCT T/iSpC3/TT GGT TTC ATT CGG) (SEQ ID NOS12和21)和ShortBHQ2Primer (TTT TCA TAA TCA TAC TAT CAC TCT /BHQ2/-3) (SED IDNO:13)测定聚合酶-模板复合物的结合。
在以下条件下测定聚合酶-模板复合物的结合:(A)将2X Pol6-44X1聚合酶(SEQID NO:4)与50nM ShortCy5Template(SEQ ID NOS 12和21)在单独的Mg2+存在下预孵育32、55和85分钟,此时多核苷酸合成通过添加多磷酸核苷酸开始;(B)将2X Pol6-44X1聚合酶(SEQ ID NO:4)与50nM ShortCy5Template(SEQ ID NOS 12和21)在多磷酸核苷酸单独存在下预孵育32、55和85分钟,此时多核苷酸合成通过添加MgCl2开始;或(C)将2X Pol6-44X1聚合酶(SEQ ID NO:4)与50nM ShortCy5Template(SEQ ID NO 12和21)在不存在MgCl2和多磷酸核苷酸的情况下单独预孵育32、55和85分钟,此时通过添加MgCl2和多磷酸核苷酸开始多核苷酸合成。
在增加K-glu浓度的情况下,测量三种测定条件中每一种的聚合酶-模板复合物形成水平:75mM K-glu、150mM K-glu和300mM K-glu。
开始反应之后,使用在648nm(590-50)nm处激发和668nm(675-50)处发射测量每种情况下的荧光,并且每0.1秒测量,持续1分钟。
结果显示在图3(A-C)和相应的图4 A-C中。更具体地,图3显示了对于上述每种测定条件在32分钟、55分钟和85分钟获得的荧光信号。信号的振幅(以RFU计)代表DNA-Pol6复合物的水平。计算信号振幅的数值并在相应的图4(A-C)中表示,其中图4A、4B和4C分别显示在测定条件A、B和C下获得的荧光信号的振幅。菱形(♦)表示在75mM K-glu处测量的信号振幅,(■)表示在150mM K-glu处测量的信号振幅,和三角形(Δ)表示在300mM K-glu处测量的信号振幅。
图3和图4中显示的数据表明,在75mM和150mM K-glu下形成的聚合酶-模板复合物的水平与培养条件无关,即在Mg2+存在下将DNA与Pol6预孵育,单独或与核苷酸组合时,均不影响模板与Pol6的结合。然而,在300mM K-glu的高盐浓度下,当仅在核苷酸存在下使复合物形成时,DNA与Pol6的结合减少。在500mM K-glu的盐浓度下也观察到相同的效果(数据未显示)。
这些数据表明,在高盐浓度下,核苷酸干扰DNA模板与聚合酶的结合,从而降低聚合酶-模板复合物的水平。
实施例4
模板解离实验
该实施例(4.1-4.5)证明了核苷酸对模板从模板-聚合酶复合物解离的影响。
如下测定二价金属离子即Mg2+和/或核苷酸对高盐浓度下(例如500mM K-glu)模板从聚合酶-模板复合物的解离速率(koff)的作用。使聚合酶-模板复合物在75mM K-glu存在下形成。在时间= 0时,将盐的浓度升至500mM,并且根据实施例3中描述的FRET测定,在以下五种测定条件下通过起始多核苷酸合成在15、30、45、60、75、90、120、150、180、210和240分钟测定复合物的随后解离。
4.1.阻断的核苷酸抑制聚合酶-模板复合物的形成
在75mM K-glu的盐浓度下,在5mM MgCl2存在下 (A(i))或在5mM MgCl2 +0.1μMdnpCpp(阻断的核苷酸)存在下(A(ii)),将2x浓度的Pol6-44X1(SEQ ID NO:4)与ShortCy5Template(SEQ ID NO 12和21)预孵育,以允许形成模板-DNA复合物。在时间= 0分钟时,加入盐至终浓度为500mM KGlu。在不同时间间隔加入多磷酸盐后测定模板从模板-DNA复合物的解离。
图5A显示对应于在A(i)和A(ii)中给出的条件下检测的聚合酶-模板复合物水平的荧光信号。
图5B显示当在Mg2+ (♦)存在下或在5 mM Mg2+ +0.1 μM dnpCpp (■)存在下使复合物形成时聚合酶从聚合酶-模板复合物解离的图。将计算出的5A(i)和(ii)中所示的荧光信号的振幅以RFU作为时间的函数绘制。
数据显示阻断的核苷酸抑制模板与聚合酶的结合。
4.2.在核苷酸存在下聚合酶-模板复合物的形成增加了随时间模板从聚合酶解离 的速率。
将2x浓度的Pol6-44X1(SEQ ID NO:4)与ShortCy5Template(SEQ ID NO 12和21)预孵育。使结合在5mM MgCl2存在下进行,然后加入20μM多磷酸核苷酸核苷酸(图6A(i))以起始反应;或者在50μM多磷酸核苷酸多磷酸盐存在下发生结合,然后加入Mg2+(图6A(ii))以起始反应(注意在两种情况下多磷酸盐的最终浓度为20μM)。在时间= 0分钟时,加入盐至终浓度为500mM KGlu。在以不同的时间间隔加入多磷酸盐(6A(i))或MgCl2(6A(ii))后测定模板从模板-DNA复合物的解离。
数据显示在图6A(i)和(ii)以及图6B中。更具体地,图6A显示对应于在6A(i)和6A(ii)中给出的条件下检测的聚合酶-模板复合物水平的荧光信号。图6B显示当复合物在Mg2+单独存在下(♦)或在多磷酸核苷酸存在下(■)允许复合物形成时聚合酶与聚合酶-模板复合物解离的图。将计算出的6A(i)和(ii)中所示的荧光信号的振幅绘制为时间的函数。
这些数据表明,在存在50uM多磷酸盐的情况下形成聚合酶-模板复合物导致比在Mg2+存在且不存在多磷酸盐的情况下形成聚合酶-模板复合物时更高的聚合酶从模板解离的速率。
4.3.Ca2+不会改善聚合酶-模板复合物的核苷酸依赖性去稳定化,即解离。
将2x浓度的Pol6-44X1(SEQ ID NO:4)与ShortCy5Template(SEQ ID NO 12和21)预孵育。使结合在50μM多磷酸盐存在下进行,然后加入5mM MgCl2(图7A(i))以起始反应;或在50μM多磷酸盐+ 0.5mM Ca2+存在下发生结合,然后加入5mM Mg2+(图7A(ii))以起始反应。在时间= 0分钟时,加入盐至终浓度为500mM KGlu。在以不同的时间间隔加入MgCl2(7A)后测定模板从模板-DNA复合物的解离。
数据显示在图7A(i)和(ii)以及图7B中。更具体地,图7A显示对应于在7A(i)和7A(ii)中给出的条件下检测的聚合酶-模板复合物水平的荧光信号。图7B显示当在多磷酸盐存在下(♦)或在多磷酸盐 + Ca2+ (■)存在下允许形成复合物时,聚合酶从聚合酶-模板复合物解离的图。将计算出的7A(i)和(ii)中所示的荧光信号的振幅绘制为时间的函数。
如图7B所示,Ca2+的作用不影响复合物解离。图7B还显示,在核苷酸存在下模板结合后复合物解离的快速速率是相似的,无论是否存在Ca2+
4.4.在多核苷酸合成期间,Mg2+不改进聚合酶-模板复合物的核苷酸依赖性去稳定化,即解离。
将2x Pol6-44X1聚合酶(SEQ ID NO:4)与ShortCy5Template(SEQ ID NO 12和21)预孵育。在不存在Mg2+和多磷酸盐的情况下允许进行结合,然后加入Mg2+和多磷酸盐以起始反应(图8A(i));在Mg2+存在下,然后加入多磷酸盐以起始反应(图8A(ii));或在多磷酸盐存在下,然后加入Mg2+(图8A(iii))。在时间= 0分钟时,加入盐至终浓度为500mM KGlu。在加入Mg2+和多磷酸盐、仅加入多磷酸盐、或仅加入Mg2+后,在不同时间间隔测定模板从模板-聚合酶复合物的解离。
数据显示在图8A(i)、8A(ii)、8A(iii)和图8B中。更具体地,图8A(i)-(iii)显示分别对应于在8.4A(i)、8.4A(ii)和8.4A(iii)中给出的条件下检测的聚合酶-模板复合物水平的荧光信号。图8B显示了聚合酶从聚合酶-模板复合物解离的图。将计算出的8A(i)、(ii)和(iii)中所示的荧光信号的振幅绘制为时间的函数。图8A(i)和(ii)中的数据显示聚合酶-模板复合物形成是相似的,无论其是在Mg2+(ii)存在下发生,还是在不存在Mg2+和核苷酸的情况下发生。图8A(iii)中显示的数据显示核苷酸抑制模板结合。图8B显示在Mg2+(■)存在下或不存在Mg2+和核苷酸(♦)下形成时的复合物的解离速率是相似的。图8B(Δ)还显示在多磷酸盐存在下形成复合物增加了复合物解离的速率,即随着时间核苷酸使聚合酶-模板复合物去稳定。
4.5.当与多磷酸盐相比,核苷酸三磷酸增加了模板-聚合酶解离的速率
将2x浓度的Pol6-44X1聚合酶(SEQ ID NO:4)与DNA模板,即ShortCy5Template(SEQ IDNOS 12和21)预孵育。在多磷酸盐存在下允许进行结合,然后加入Mg2+起始反应(图9A(i));或者在三磷酸核苷酸存在下,然后加入Mg2+以起始多核苷酸合成(条件9A(ii))。在时间= 0分钟时,加入盐至终浓度为500mM KGlu。在以不同的时间间隔加入Mg2+(9A)后测定模板从模板-DNA复合物的解离。
数据显示在图9A(i)和9A(ii)以及图9B中。更具体地,图9A(i)-(ii)显示分别对应于在5.5A(i)和5.5A(ii)中给出的条件下检测的聚合酶-模板复合物水平的荧光信号。图9B显示了聚合酶从聚合酶-模板复合物解离的图。将计算出的9A(i)和(ii)中所示的荧光信号的振幅绘制为时间的函数。
图9A(i)和(ii)中的数据显示聚合酶-模板复合物形成是相似的,无论其是否在dNTP或多磷酸核苷酸存在的情况下发生。图9B显示在dNTP核苷酸存在下(■)形成时的复合物的解离速率大于在多磷酸核苷酸核苷酸存在下(♦)时的解离速率。
总之,数据显示,与多磷酸盐相比时,在三磷酸核苷酸存在下形成模板-聚合酶复合物导致更高的模板解离速率。在模板依赖性DNA聚合过程中,预期这种效应会导致较低的持续性和减少的测序寿命。
实施例5
温度和核苷酸对聚合酶与模板结合的影响
该实施例证明了在有和没有低浓度的核苷酸的情况下,温度对来自模板-聚合酶复合物的模板结合的影响。
将Pol6-67 X2(SEQ ID NO:14)的不同稀释度(0X,1X,4X,8X)在1.2μM多磷酸核苷酸核苷酸存在下于40℃或不存在1.2μM多磷酸核苷酸的情况下在室温下与100nM荧光发夹DNA模板(SEQ ID NOS 15和22)预孵育30分钟。将12uL预结合的模板-Pol复合物上样到5%Native-TBE凝胶上,并在4℃下以100V运行60分钟。使用Biorad的ChemiDoc XRS+成像系统使用SYBR-Green滤光器进行成像。
如图10A所示,在20℃,4X和8X聚合酶浓度导致带移,因此表明多个聚合酶与模板上的多个位置的非特异性结合。相反,将温度升高至40℃并添加1.2μM多磷酸核苷酸不会导致带移(参见图10B),因此表明聚合酶与模板的3'端特异性结合。因此,添加1.2μM多磷酸盐和升高的温度对聚合酶-模板结合具有积极作用。
实施例6
温度和核苷酸对模板延伸的影响(延伸凝胶测定)
该实施例证明了与模板结合的聚合酶的百分比(在高温和低核苷酸水平下)和模板的延伸(在高温和高浓度的核苷酸下)之间的相关性。
将不同稀释度的Pol6-67 X2(0X,1X,2X,4X,8X)与300mM荧光发夹DNA模板(SEQ IDNOS 15和22)在1.2uM多磷酸核苷酸核苷酸存在下于40℃预孵育30分钟。结合缓冲液是具有75mM K-Glu、20mM Hepes(pH 7.5)、5mM TCEP和8%海藻糖的Hepes缓冲液。
对于结合凝胶,将12uL预结合的模板-Pol复合物上样到5% Native-TBE凝胶上,并在4℃下在100V下运行60分钟。使用Biorad的ChemiDoc XRS+成像系统使用SYBR-Green滤光器进行成像。
对于延伸反应,将10μM多磷酸核苷酸、5mM MgCl2(每种最终)和20X Chase模板(SEQ ID NO:16)加入到预结合的聚合酶-模板复合物中以起始反应。反应在30℃下进行5分钟。5分钟后,使用甲酰胺+ 50mM EDTA淬灭反应,并在95℃下加热5分钟。然后将12uL样品上样到15% TB-尿素凝胶上以180V运行180分钟,并使用Biorad的ChemiDoc XRS+成像系统使用SYBR-Green滤光器成像。
如图11A所示,在低(1.2μM)多磷酸核苷酸存在下,增加聚合酶浓度导致40℃下模板结合的增加。如图11B中随聚合酶浓度增加条带强度从较低带迁移到较高带所证明的,增加聚合酶浓度导致模板延伸增加,且在延伸反应期间核苷酸浓度调整至10μM。在1x聚合酶下,活性级分显示26%延伸,而在8x聚合酶时,活性级分在40℃下显示66%延伸(图11B)。当百分比结合与百分比延伸比较时,存在直接相关性(参见图11C;斜率=1)。因此,活性级分在很大程度上取决于聚合酶在延伸之前与模板的结合。
实施例7
温度和核苷酸对模板延伸的影响(FRET测定)
该实施例证明了使用FRET测定法的在40℃下形成和延伸聚合酶-模板复合物和模板延伸(如实施例3中所述)。
使用冷却退火方案,将等摩尔量的LongHP-Cy5-ExoR模板(SEQ ID NOS 17和22)与Quencher Primer(SEQ ID NO:18)退火。设置对照,其中仅将LongHP-Cy5-ExoR模板(SEQ IDNOS 17和22)(以相同的终浓度)在1X TE中稀释,并且对照还通过冷却退火方案。
将不同稀释度的Pol6-67 X2(0X,1X,2X,4X,6X,8X)与50mM退火的模板-引物对或仅与模板对照在1.2uM多磷酸核苷酸核苷酸存在下于40℃预孵育30分钟。结合缓冲液是具有75mM K-Glu、20mM Hepes(pH 7.5)、5mM TCEP和8%海藻糖的Hepes缓冲液。
上述反应在96孔半区黑色板中进行。平板读数器(BMG FLUOstar Omega)注射试剂B(其含有75mM K-Glu、20mM Hepes、5mM TCEP、5mM MgCl2、10uM Nucs、20X Chase(终浓度)),这起始反应,并且每隔1秒测量荧光持续10分钟。使用的激发滤光器为590-50nm,且使用的发射滤光器为675-50。
图12A-12C显示了在40℃和存在低水平核苷酸(1.2μM)下聚合酶-模板形成后的模板延伸。如图12A和图12B所示,在聚合酶-模板形成之后,增加聚合酶浓度导致延伸增加,如通过增加的聚合酶浓度的荧光团猝灭剂的信号振幅增加所证明的。例如,在0x聚合酶处,不会发生模板与聚合酶的结合,因此荧光信号被完全淬灭。然而,在聚合酶-模板形成期间增加聚合酶浓度导致较少的信号被猝灭(这对应于荧光振幅的增加)(图12A和12B)。单独的对照荧光团在各种聚合酶浓度下保持最大荧光(即100%饱和)(图12A和12B)。如图12C所示,百分比延伸 - 确定为单独的荧光团100%饱和度的百分比 - 还说明聚合酶-模板形成期间增加的聚合酶浓度导致当复合物在高温和存在低水平的核苷酸的情况下形成时的延伸反应过程中增加的延伸。
在图12D中,比较了从两个独立实验获得的模板延伸量,一个是基于凝胶的测定,另一个是平板读数器测定(FRET测定)。该图显示该线的斜率接近1,因此证明如通过基于凝胶和基于板读数器的测定测量的%模板延伸之间存在良好的相关性。
实施例8
结合条件对聚合酶-模板解离的影响
该实施例使用FRET测定(如实施例3中所述)证明了Sr+2和/或核苷酸对聚合酶-模板复合物解离的影响。
将6x浓度的Pol6-67X2(SEQ ID NO:14)与Long-HP-Cy5-ExoR模板(SEQ ID NO:17和22)预孵育。在存在(13A(i)) 1.2uM dNpCpp, 3mM SrCl2或(13A(ii)) 1.2uM dNpCpp或(13A(iii)) 1.2uM多磷酸盐的情况下或(13A(iv))不存在SrCl2,核苷酸的情况下,使结合在40℃下进行30分钟。在时间= 0分钟时,加入盐至终浓度为300mM KGlu,和加入chase至终浓度为20x。在以不同的时间间隔加入多磷酸盐和MgCl2后测定模板从模板-DNA复合物的解离。
如图13A和13B所示,Sr+2对聚合酶从模板的解离具有最小的影响。此外,低浓度的多磷酸核苷酸是最佳结合条件。其他数据(未显示)说明Sr+2对聚合酶-模板结合没有任何显著影响。
实施例9
核苷酸和盐峰(spike)的影响
该实施例证明了在升高的盐浓度存在下高核苷酸浓度对聚合酶-模板结合的影响。
将6x浓度的Pol6-67X2(SEQ ID NO:14)与Long-HP-Cy5-ExoR模板(SEQ ID NO:17和22)预孵育。在存在或不存在36uM多磷酸盐的情况下,使结合在40℃下进行30分钟。在时间= 0分钟时,加入盐至终浓度为75mM(图14A)或380mM KGlu(图14B)以及2mM生物素、20xChase模板和1mM SrCl2。分别加入仅Mg2+或36μM多磷酸盐和Mg2+后以不同时间间隔测定模板从模板-DNA复合物的解离。
如图14A和图14B所示,在高水平核苷酸存在下(结合期间为36μM),75KGlu和380KGlu的盐浓度均导致初始模板结合减少33%。对于Pol6-67X2,在存在或不存在多磷酸盐的情况下,模板-聚合酶解离速率似乎没有显著差异。
实施例10
聚合酶附接至纳米孔
该实施例提供了将变体聚合酶附接至纳米孔(例如α-溶血素、OmpG)的方法。
根据实施例2表达具有SpyCatcher HisTag(SEQ ID NO:4)的Pol6变体,并使用钴亲和柱纯化。形成聚合酶-模板复合物,纯化,并附接到纳米孔上以形成纳米孔测序复合物。形成纳米孔测序复合物和纯化纳米孔测序复合物的方法描述于2016年1月21日提交的美国临时申请“Nanopore Sequencing Complexes”62/281,719和2015年11月25日提交的美国临时申请“Purification of Polymerase Complexes”62/260,194中,其全部内容通过引用并入本文。纳米孔测序复合物可以通过将变体聚合酶循序结合到纳米孔以形成酶 - 纳米孔复合物,然后结合模板以形成纳米孔测序复合物来形成。或者,可以通过首先将模板与变体聚合酶结合以形成模板 - 酶复合物,然后将模板 - 酶复合物附接到纳米孔上来形成纳米孔测序复合物。
聚合酶可以通过任何合适的方式与纳米孔偶联。参见,例如,PCT/US2013/068967(公开为WO2014/074727;Genia Technologies, Inc.)、PCT/US2005/009702 (公开为WO2006/028508;President and Fellows of Harvard College)和PCT/US2011/065640(公开为WO2012/083249;Columbia University)。
变体pol6 DNA聚合酶通过接头分子与蛋白质纳米孔(例如α-溶血素、OmpG)偶联。具体地,使用在生理条件下自发形成共价异肽键的SpyTag和SpyCatcher系统。参见,例如,Li等人,J Mol Biol.2014 Jan 23;426(2):309-17。
实施例11
纳米孔测序
测定纳米孔结合的变体Pol6聚合酶结合标记的核苷酸并由此允许检测在聚合酶附接的纳米孔处的阻断的通道电流的能力。将变体Pol6聚合酶的增加的持续性与缺乏变体酶修饰的亲本Pol6的持续性进行比较。
使变体Pol6聚合酶与DNA模板接触以形成变体Pol6-DNA复合物,其随后附接于嵌入半导体传感器芯片(也称为生物芯片)上的孔上的脂质双层中的纳米孔。如PCT/US2014/061853(标题为“Methods for Forming lipid Bilayers on Biochips”且2014年10月22日提交)中所述形成脂质双层并且将具有附接的变体Pol6聚合酶-DNA复合物(即变体Pol6纳米孔测序复合物)的纳米孔插入。
或者,将纳米孔嵌入脂质双层中,并将变体Pol6-DNA复合物原位附接。
将标记核苷酸的混合物,其中标签是由3uM T-T30、3μM C-T30、3μM G-T30和3μMA-T30组成的30个胸腺嘧啶核苷酸(T30)的聚合物,在静态条件下(500mM KGlu、3mM CaCl2、20mM HEPES, pH8.0)以0.834ul/秒的速率流过纳米孔。
以25Hz施加210mV峰至峰的交流电,并且通过纳米孔结合的聚合酶将核苷酸碱基掺入复制的DNA链中时,评估核苷酸标签的捕获。
将变体Pol6的持续性与未修饰的亲本Pol6的持续性进行比较,以确定读取长度的增加、和/或多核苷酸合成的速度、和/或测序错误的减少。
序列
SEQ ID NO:1 – 野生型Pol6 (DNA聚合酶 [梭菌噬菌体phiCPV4];GenBank: AFH27113.1)
SEQ ID NO:2 – Pol6 (具有His标签)
SEQ ID NO:3 – Pol6,具有His-标签 (DNA序列)
SEQ ID NO:4 – Pol6-44-X1,具有His-标签/SpyCatcher
SEQ ID NO:5 – Pol6-44-X1,具有His标签/SpyCatcher (DNA序列)
SEQ ID NO:6 – Pol6-44-X1,具有His标签/SpyCatcher + SEQ ID NO:2的E585K, 其 对应于SEQ ID NO:6的E715K
SEQ ID NO:7 – Pol6-44-X1,具有His标签/SpyCatcher + SEQ ID NO:2的E585K+L731K,其对应于SEQ ID NO:6的E715K+L861K
SEQ ID NO:8 – Pol6-44-X1,具有His标签/SpyCatcher + SEQ ID NO:2的E585K+M738K,其对应于SEQ ID NO:6的E715K+M868K
SEQ ID NO:9 - His 6标签:HHHHHH
SEQ ID NO:10 – SpyCatcher
SEQ ID NO:11 – SpyTag:AHIVMVDAYKPTK
SEQ ID NOS 12和21 – Cy5-标记的发荧光的DNA模板
SEQ ID NO:13 – Black Hole Quencher® 染料标记的猝灭剂寡核苷酸
SEQ ID NO:14 – Pol6-67 X2 (具有His标签和T529M-S366A-A547F-N545L-Y225L- D657R Y242A)
SEQ ID NOS 15和22 –荧光发夹DNA模板
SEQ ID NO:16 – Chase模板
SEQ ID NOS 17和22 – LongHP-Cy5-ExoR
SEQ ID NO:18 –猝灭剂引物

Claims (15)

1.用于制备聚合酶-模板复合物的方法,其包括:
(a)提供聚合酶;和
(b)将所述聚合酶与多核苷酸模板在包含0.8 µM-2.2 µM浓度的核苷酸且温度为35℃-45℃的溶液中接触,由此制备聚合酶-模板复合物。
2.权利要求1的方法,其还包括用所述聚合酶-模板复合物的聚合酶使溶液饱和。
3.增加模板-聚合酶复合物的持续性的方法,所述方法包括在包含0.8μM至2.2μM浓度的核苷酸且温度为35℃-45℃的溶液中形成聚合酶-模板复合物,其中在高温溶液中形成的所述聚合酶-模板复合物的持续性大于在室温下由对照聚合酶-模板复合物溶液产生的持续性。
4.权利要求3的方法,其中形成聚合酶-模板复合物包括用所述聚合酶-模板复合物的聚合酶使溶液饱和。
5.权利要求1-4中任一项的方法,其还包括在形成聚合酶-模板复合物后提高溶液中核苷酸的浓度。
6.权利要求1-5中任一项的方法,其中所述聚合酶-模板复合物的聚合酶与如SEQ IDID: 14所示的氨基酸序列具有至少85%、90%、95%、98%或更高的序列同一性或与其相同。
7.基于纳米孔测序多核苷酸模板方法,所述方法包括:
在包含浓度为0.8μM至2.2μM核苷酸的溶液中形成聚合酶-模板复合物,所述溶液具有高温;
将形成的聚合酶-模板复合物与纳米孔组合以形成纳米孔测序复合物;
向所述纳米孔测序复合物提供标记的核苷酸,以在35℃-45℃的高温下起始模板的模板依赖性纳米孔测序;
借助于所述纳米孔,当每种标记的核苷酸与聚合酶结合时,在每种标记的核苷酸的掺入过程中检测与每种标记的核苷酸结合的标签,从而确定多核苷酸模板的序列。
8.权利要求7的方法,其中形成聚合酶-模板复合物包括用所述聚合酶-模板复合物的聚合酶使溶液饱和。
9.权利要求7-8中任一项的方法,其中所述聚合酶-模板复合物的聚合酶与如SEQ IDID: 14所示的氨基酸序列具有至少85%、90%、95%、98%或更高的序列同一性或与其相同。
10.权利要求7-9中任一项的方法,其中所述聚合酶与SpyCatcher 序列(SEQ ID NO:10)直接或间接连接。
11.制备聚合酶-模板复合物的方法:
(a)提供聚合酶;和
(b)使所述聚合酶与多核苷酸模板在包含浓度为至少100mM盐且不含核苷酸的溶液中接触,从而制备所述聚合酶-模板复合物。
12.增加模板-聚合酶复合物的持续性的方法,所述方法包括在包含浓度为至少100mM盐且不含核苷酸的溶液中形成模板-聚合酶复合物;其中所述模板-聚合酶复合物的持续性大于当在包含相同高浓度盐且存在核苷酸的溶液中形成时的相同模板-多核苷酸复合物的持续性。
13.进行模板依赖性DNA合成的方法,所述方法包括:
(a)在溶液中提供聚合酶-模板复合物,所述溶液包含至少100mM盐的浓度且不含核苷酸;和
(b)通过向所述溶液中加入核苷酸来起始所述模板依赖性DNA合成。
14.在高盐浓度下进行纳米孔测序的方法,所述方法包括:
(a)在包含至少100mM盐的浓度的溶液中提供聚合酶-模板复合物,所述溶液基本上不含核苷酸;
(b)将所述聚合酶-模板复合物与纳米孔组合以形成纳米孔测序复合物;
(c)向所述纳米孔测序复合物提供标记的核苷酸,以在所述高浓度盐下起始所述模板的模板依赖性纳米孔测序;和
(d)借助于所述纳米孔,当每种所述核苷酸与所述聚合酶结合时,在每种所述核苷酸的掺入过程中检测与每种所述标记的核苷酸结合的标签,从而确定所述多核苷酸模板的序列。
15.存储或反应组合物,其包含在至少100mM盐的溶液中的聚合酶-模板复合物。
CN201780014081.2A 2016-02-29 2017-02-27 用于纳米孔测序的聚合酶-模板复合物 Pending CN108699540A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662301607P 2016-02-29 2016-02-29
US62/301607 2016-02-29
US201662406431P 2016-10-11 2016-10-11
US62/406431 2016-10-11
PCT/EP2017/054500 WO2017148860A1 (en) 2016-02-29 2017-02-27 Polymerase-template complexes for nanopore sequencing

Publications (1)

Publication Number Publication Date
CN108699540A true CN108699540A (zh) 2018-10-23

Family

ID=58191437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780014081.2A Pending CN108699540A (zh) 2016-02-29 2017-02-27 用于纳米孔测序的聚合酶-模板复合物

Country Status (5)

Country Link
US (3) US20170268052A1 (zh)
EP (1) EP3423574B1 (zh)
JP (1) JP6690005B2 (zh)
CN (1) CN108699540A (zh)
WO (1) WO2017148860A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164096A (zh) * 2019-09-29 2020-05-15 北京齐碳科技有限公司 一种Mmup单体变体及其应用
CN111164097A (zh) * 2019-09-29 2020-05-15 北京齐碳科技有限公司 一种Mnep单体变体及其应用
WO2023123347A1 (zh) * 2021-12-31 2023-07-06 深圳华大生命科学研究院 解旋酶bch1x及其用途

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018399610B2 (en) * 2018-01-05 2022-11-10 F. Hoffmann-La Roche Ag Enhancement of nucleic acid polymerization by aromatic compounds
JP7324835B2 (ja) 2018-08-28 2023-08-10 エフ. ホフマン-ラ ロシュ アーゲー ルテニウム含有電極を備えるナノポアシーケンシングデバイス
WO2020131759A1 (en) 2018-12-19 2020-06-25 Roche Diagnostics Gmbh 3' protected nucleotides
EP3994262A4 (en) * 2019-06-26 2023-09-20 Stratos Genomics Inc. IMPROVEMENT OF NUCLEIC ACID POLYMERIZATION THROUGH AROMATIC COMPOUNDS
WO2022008641A1 (en) 2020-07-08 2022-01-13 Roche Sequencing Solutions, Inc. Split-pool synthesis apparatus and methods of performing split-pool synthesis
EP4228793A1 (en) 2020-10-15 2023-08-23 Kapa Biosystems, Inc. Electrophoretic devices and methods for next-generation sequencing library preparation
EP4308723A1 (en) 2021-03-15 2024-01-24 F. Hoffmann-La Roche AG Targeted next-generation sequencing via anchored primer extension
WO2022200485A1 (en) 2021-03-26 2022-09-29 F. Hoffmann-La Roche Ag Hybridization buffer formulations
EP4314337A1 (en) 2021-04-01 2024-02-07 F. Hoffmann-La Roche AG Immune cell counting of sars-cov-2 patients based on immune repertoire sequencing
CN117999346A (zh) 2021-07-21 2024-05-07 豪夫迈·罗氏有限公司 形成窄通道孔的α-溶血素变体及其用途
WO2024003332A1 (en) 2022-06-30 2024-01-04 F. Hoffmann-La Roche Ag Controlling for tagmentation sequencing library insert size using archaeal histone-like proteins
WO2024046992A1 (en) 2022-09-02 2024-03-07 F. Hoffmann-La Roche Ag Improvements to next-generation target enrichment performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120071359A1 (en) * 2010-09-22 2012-03-22 Pacific Biosciences Of California, Inc. Purified extended polymerase/template complex for sequencing
WO2012129242A2 (en) * 2011-03-23 2012-09-27 Pacific Biosciences Of California, Inc. Isolation of polymerase-nucleic acid complexes and loading onto substrates
WO2015061511A1 (en) * 2013-10-23 2015-04-30 Genia Technologies, Inc. Process for biosensor well formation

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US6627424B1 (en) 2000-05-26 2003-09-30 Mj Bioworks, Inc. Nucleic acid modifying enzymes
US20100035254A1 (en) * 2003-04-08 2010-02-11 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
KR20060126516A (ko) * 2003-11-25 2006-12-07 아르고스 쎄라퓨틱스 인코포레이티드 Mrna로 전달이입된 항원제시세포
US7238485B2 (en) 2004-03-23 2007-07-03 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
US20080038730A1 (en) * 2004-05-10 2008-02-14 Heinz Von Der Kammer Diagnostic and Therapeutic Use of Kcnj6 for Alzheimer's Disease
WO2009122191A1 (en) 2008-04-04 2009-10-08 It-Is International Ltd Thermal control system and method for chemical and biochemical reactions
CA2995178C (en) 2010-02-08 2023-09-12 Genia Technologies, Inc. Method and system for forming a nanopore in a lipid bilayer
GB201002362D0 (en) 2010-02-11 2010-03-31 Isis Innovation Peptide tag systems that spontaneously form an irreversible link to protein partners via isopeptide bonds
US10443096B2 (en) 2010-12-17 2019-10-15 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using modified nucleotides and nanopore detection
WO2012173905A1 (en) 2011-06-16 2012-12-20 The Regents Of The Unversity Of California Salt-tolerant dna polymerases
EP2742151B1 (en) 2011-08-10 2017-10-25 Life Technologies Corporation Polymerase compositions
EP2861768A4 (en) 2012-06-15 2016-03-02 Genia Technologies Inc CHIP SETUP AND HIGH ACCURACY NUCLEIC ACID SEQUENCING
US9605309B2 (en) 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
CN106715453B (zh) * 2014-03-24 2021-04-30 哥伦比亚大学董事会 用于生产带标签的核苷酸的化学方法
US10006899B2 (en) * 2014-03-25 2018-06-26 Genia Technologies, Inc. Nanopore-based sequencing chips using stacked wafer technology
EP3712261A1 (en) 2015-02-02 2020-09-23 F. Hoffmann-La Roche AG Polymerase variants and uses thereof
JP2016171215A (ja) 2015-03-12 2016-09-23 株式会社東芝 半導体記憶装置
US10526588B2 (en) 2015-05-14 2020-01-07 Roche Sequencing Solutions, Inc. Polymerase variants and uses thereof
US10590480B2 (en) 2016-02-29 2020-03-17 Roche Sequencing Solutions, Inc. Polymerase variants
WO2017148861A1 (en) 2016-02-29 2017-09-08 Genia Technologies, Inc. Exonuclease deficient polymerases
ES2880331T3 (es) 2016-02-29 2021-11-24 Genia Tech Inc Variantes de polimerasa

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120071359A1 (en) * 2010-09-22 2012-03-22 Pacific Biosciences Of California, Inc. Purified extended polymerase/template complex for sequencing
WO2012129242A2 (en) * 2011-03-23 2012-09-27 Pacific Biosciences Of California, Inc. Isolation of polymerase-nucleic acid complexes and loading onto substrates
WO2015061511A1 (en) * 2013-10-23 2015-04-30 Genia Technologies, Inc. Process for biosensor well formation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164096A (zh) * 2019-09-29 2020-05-15 北京齐碳科技有限公司 一种Mmup单体变体及其应用
CN111164097A (zh) * 2019-09-29 2020-05-15 北京齐碳科技有限公司 一种Mnep单体变体及其应用
CN111164097B (zh) * 2019-09-29 2021-02-19 北京齐碳科技有限公司 一种Mnep单体变体及其应用
WO2023123347A1 (zh) * 2021-12-31 2023-07-06 深圳华大生命科学研究院 解旋酶bch1x及其用途

Also Published As

Publication number Publication date
US20170268052A1 (en) 2017-09-21
JP2019513007A (ja) 2019-05-23
US20190376133A1 (en) 2019-12-12
US20210277462A1 (en) 2021-09-09
US11034999B2 (en) 2021-06-15
JP6690005B2 (ja) 2020-04-28
EP3423574B1 (en) 2021-03-17
EP3423574A1 (en) 2019-01-09
WO2017148860A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
CN108699540A (zh) 用于纳米孔测序的聚合酶-模板复合物
EP3033435B1 (en) Method for fragmenting nucleic acid by means of transposase
US10590480B2 (en) Polymerase variants
EP2895618B1 (en) Sample preparation method
AU2008265691B2 (en) High throughput nucleic acid sequencing by expansion
US20220267847A1 (en) Crispr multi-target detection method and test kit therefor
ES2880331T3 (es) Variantes de polimerasa
US9994894B2 (en) Method and components for detecting nucleic acid chains
AU2014224432A1 (en) Enzyme stalling method
KR20170068540A (ko) 방법
CN102796728A (zh) 用于通过转座酶的dna片段化和标记的方法和组合物
CN107636004A (zh) 聚合酶变体及其用途
CN104136631A (zh) 使用xpd解旋酶表征多核苷酸的方法
JP2003535587A (ja) 低温感受性変異体dnaポリメラーゼ
CN112805393A (zh) 一种解旋酶及其应用
CN110114458A (zh) Pol6聚合酶变体
EA005141B1 (ru) Способ детекции нуклеотидного полиморфизма
CN113122517A (zh) 聚合酶突变体及其应用
CN112204154B (zh) Dna-孔隙-聚合酶复合物的酶促富集
KR100689795B1 (ko) 복합체 형성 방법
JP4453115B2 (ja) 標識されたdnaの調製方法
WO2023222657A1 (en) Method and adaptors
JP2004135628A (ja) Dnaの変異導入法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240422

Address after: California, USA

Applicant after: Roche sequencing solutions Co.

Country or region after: U.S.A.

Address before: California, USA

Applicant before: GENIA TECHNOLOGIES, Inc.

Country or region before: U.S.A.

TA01 Transfer of patent application right