CN1086742C - 镍-基超合金 - Google Patents

镍-基超合金 Download PDF

Info

Publication number
CN1086742C
CN1086742C CN97195550A CN97195550A CN1086742C CN 1086742 C CN1086742 C CN 1086742C CN 97195550 A CN97195550 A CN 97195550A CN 97195550 A CN97195550 A CN 97195550A CN 1086742 C CN1086742 C CN 1086742C
Authority
CN
China
Prior art keywords
alloy
nickel
base superalloy
low angle
monocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN97195550A
Other languages
English (en)
Other versions
CN1222199A (zh
Inventor
M·肯特
M·纽纳姆
C·特内斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of CN1222199A publication Critical patent/CN1222199A/zh
Application granted granted Critical
Publication of CN1086742C publication Critical patent/CN1086742C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种镍-基超合金,该合金特别适于制造大型单晶部件,其基本组成(以%(重量)计)为:6.0-6.8%Cr、8.0-10.0%Co、0.5-0.7%Mo、6.2-6.6%W、2.7-3.2%Re、5.4-5.8%Al、0.6-1.2%Ti、6.3-7.0%Ta、0.15-0.3%Hf、0.02-0.04%C、40-100ppm B、15-50ppmMg,其余为镍及杂质。

Description

镍-基超合金
发明领域
本发明涉及一种镍-基超合金,该合金特别适于制造单晶-部件。
发明背景
镍-基超合金用于制造单晶-部件或定向结晶部件,特别是气轮机的涡轮叶片。采用这种单晶部件可使高温下的材料强度达最高。由此可提高气轮机的入口温度,从而提高气轮机的效率。
单晶-合金含有混晶增强元素,诸如,Re、W、Mo、Co、Cr以及γ’相(即L10型Ni3Al基金属间相)组成元素,诸如Al、Ta、和Ti。无缺陷的单晶-超合金铸件之特点在于其较高的蠕变强度、疲劳强度及抗氧化能力。另一方面,制造无缺陷的单晶部件,特别是气轮机的叶片,甚为困难,特别是在部件大,几何形状复杂的情况下尤为困难。因此,形成小角度晶界是大型单晶-部件的特征性缺陷。
通常的单晶-超合金,诸如公布于US 4,459,160、US 4,643,782和EP 076 360的超合金,选择了尽可能小的碳和硼含量(C≤150ppm,B≤30ppm),避免使用另一些晶界硬化元素,诸如Zr、Ce等,以便使单晶-超合金具有大的热处理窗(Wrmebehandlungsfenster)。在这种合金中小角晶界甚弱,因而不可接受。用C和B含量低的合金制成之大型单晶-部件的横向力学性能甚差,因此,甚至在铸造时部件可能发生断裂。小角晶界在此起了氧化和腐蚀过程中扩散途径的作用。
这种合金曾为飞机用涡轮机研制的,因而只对短期和中期性能进行优化,即其使用寿命设计为20000小时。为对该合金在高温和高压力下的蠕变压力进行最优化,应使其具有正的热处理窗,即无需合金的局部初熔就可使初级γ’相完全溶解。
与前言所述之合金相反,诸如GB 2 234 521,EP 240 451和EP 208645所公开的,C-,B-和Hf-含量较高的单晶-超合金明显有较高的横向断裂物性。小角晶界的抗氧化和抗腐蚀性仍然是低的。此外,纵向LCF(低荷载循环次数疲劳)性能比前述合金低10%,其原因在于生成条状碳化物的有害影响。
WO-A-93/24683描述了一种镍-基超合金,该合金选择性地含有达0.1%(重量)C,和达0.5%(重量)Hf和5-200ppm Mg,但不含B。添加Mg以改善抗氧化能力。
发明概述
本发明之目的在于,在镍-基超合金情况下,特别是用于制造前言中所提及类型的大型单晶-部件以及在大铸件时,提高纵向和横向疲劳强度,同时得到良好的抗氧化和抗腐蚀能力。
本发明通过第一权利要求的特征部分达到上述目的。
因此,本发明的核心在于,该镍-基超合金的基本组成(以%(重量)计)如下:6.0-6.8% Cr、8.0-10.0% Co、0.5-0.7% Mo、6.2-6.6% W、2.7-3.2% Re、5.4-5.8% Al、0.6-1.2% Ti、6.3-7.0% Ta、0.15-0.3% Hf、0.02-0.04% C、40-100ppm B、15-50ppm Mg、0-400ppm Y,其余为镍及杂质。
在本发明的优点中值得指出,合金所含诸如C、B、Hf等晶界-元素的量对小角晶界具有有利的影响,所生成的碳化物非常精细并呈岛形。而且碳化物主要分布在小角晶界,从而使单晶-部件的纵向和横向力学性能和疲劳强度得到有效的改进。
添加Mg与B,C和Hf相组合,会阻碍沿小角晶界的扩散,从而提高小角晶界的抗氧化能力。
特别适宜的是使Hf=(8-12)×C,B=(0.18-0.25)×C,Mg=(0.08-0.2)×C或Hf∶C∶B∶Mg=100∶10∶2∶1(以重量%计)。从而对合金的纵向和横向力学性能、疲劳强度、小角晶界的抗氧化能力产生有利的影响。
本发明的其它有利特点列于各从属权利要求。发明的实施途径
与前言提及的US 4,459,160、US 4,643,782和EP 076 360的合金相反,设计寿命为75000小时的工业气轮机部件的只进行部分固溶液处理,这样可保留部分初级γ’相,这对于阻碍单晶-结构的再结晶是必要的。因此采用一种热处理,它使初级γ’相溶解90-97%,这就可能采用晶界-元素,而这些元素通常基于其具有降低局部初熔温度的倾向而在单晶-超合金中不采用。这些晶界元素,诸如C、B、Hf和Mg对小角晶界具有利影响。
与前言中提及的GB 2 234 541、EP 240 451和EP 208 645的合金相反,本发明不仅使横向力学性能,而且还使小角晶界的抗腐蚀和抗氧化能力以及疲劳强度得到改善。
本发明的合金是为铸造定向结晶的大型单晶-部件研制的,其基本组成(以%(重量)计)为:
Cr  6.0-6.8
Co  8.0-10.0
Mo  0.5-0.7
W   6.2-6.6
Re  2.7-3.2
Al  5.4-5.8
Ti  0.6-1.2
Ta  6.3-7.0
Hf  0.15-0.3
C   0.02-0.04
B   40-100ppm
Mg  15-50ppm
Ni余量,以及不可避免的杂质
其中Hf=(8-12)×C,优选10×C;
    B=(0.18-0.25)×C,优选0.2×C;
    Mg=(0.08-0.2)×C,优选0.1×C;
或  Hf∶C∶B∶Mg=100∶10∶2∶1
表1将从本发明范围内选出的合金L1和L2与几种参比合金VL10-VL17进行对比。参比合金的化学组成在本发明的化学组成范围之外。参比合金VL16和VL17是市售的合金“CMSX-4”和“René N5”,它取自表1中所列出版文件US 4,643,782和US 5,270,123。
表2将本发明的合金L1和L2的LCF-性质与某些参比合金进行对比。表2列出了对称LCF循环R=-1、总拉伸Δεtot=1.2%下直至失效的循环数Nf。
表3将本发明的合金L1和L2的循环抗氧化能力与某些参比合金进行对比。
参比合金VL10是GB 2 234 521、EP 240 451和EP 208 645所公布合金的典型例子,该合金的C-、B-、和Hf-含量较高。由于沿小角晶界生成碳-硼化物,VL10的横向力学性能有所改善。对用参比合金VL10制造的大型涡轮叶片进行的金属学研究表明,生成的碳化物为条状结构并几乎均匀分布在体积中。因此,只有结合在小角晶界的碳-硼化物中的少量碳对其力学行为具有有利作用。其余份额的C在合金中形成条状碳化物,从表2可以看出,这种碳化物使其纵向疲劳强度降低。
少量合金元素Mg,约为碳含量的10-20%,与双倍量的B和Hf相组合,可大大改变单晶-超合金中的碳化物生成过程。本发明合金L1和L2中的碳化物极为精细并呈岛状,与之相反,在参比合金VL10中碳化物呈薄片状。碳化物在合金体积中的分布是不均匀地集中在小角晶界处。强烈地向晶界偏析的Mg影响碳化物形成元素Hf,Ta和Ti的偏析,并且Mg与这些元素进行相互作用。Mg的较大原子半径大使小角晶界的晶格发生强烈的畸变,从而使C在小角晶界上的偏析容易进行。由此沿晶界生成的精细和密集的碳-硼化物结构使单晶-部件的横向性能和疲劳强度同时得到改善。与此相反,参比合金VL10中由于形成薄片状碳化物而使疲劳强度降低。
从表2的参比例VL11可以看出,当Mg的含量超过50ppm,其横向力学性能急剧下降。其原因在于沿晶界形成了粗粒碳化物和Ni-Mg化合物。
在B含量(相当于参比合金VL12)或Hf含量(相当于参比合金VL13),不足的情况下,析出有害的粗粒碳化物。它导致表2中VL12和VL13的低劣LCF-性能。
如果B-和Hf-含量过高,则生成低熔点共晶,参比合金VL14就是这种情况,它导致低劣的LCF性能。
如果C的含量过高(相当于参比合金VL15),在横向强度方面无任何改善,还使其纵向性能变坏。
小角晶界的存在亦有害于单晶-部件的抗氧能力。小角晶界对于氧化产物起扩散途径的作用,沿小角晶界的氧化比无缺陷单晶-超合金更为剧烈。从表3可以看出,相当于VL10添加B、C和Hf只稍微提高小角晶界的抗氧化能力。
相当于合金L1和L2添加Mg与B、C和Hf相组合,导致非常有利的小角晶界的抗氧化能力。这可通过镁“俘获”氧-和硫-原子,生成Mg-O-S化合物来解释,该化合物阻碍了沿小角晶界的扩散。
还可添加另一元素钇。含量达400ppm,特别是含量为10-400ppm的钇能改善抗氧化和抗腐蚀能力。提高Y含量使延展性降低。但掺杂Y的合金要求专门的铸造技术以防止铸模和金属之间发生反应。
本发明之合金特别适于热处理,其处理工序如下:在850-1100℃下退火,特别是在930-970℃处理1-4小时和在1030-1070℃下处理2-20小时;再加热到1200℃;以小于或等于1℃/min的加热速度加热到1200℃<T≤1300℃,特别是以约0.5℃/min的加热速度;在1300℃≤T≤1315℃的温度下进行多级匀质化和固溶过程,特别是在约1300℃下处理约2小时,再在1310℃下处理6-12小时。
在热处理的优点中值得指出,通过本方法排除了位错源,从而阻碍另一位错的产生。另外,避免了加热过程中的再结晶及促使位错网络的湮灭。通过多级匀质化和固溶过程可使材料工件具有很高的匀质度。残留的1-4%(体积)的共晶足以牵制再结晶晶粒的晶界。
当然,本发明不限于所列举和所描述的实施例。本发明之合金亦可用于制造在高温下需要保持稳定的结构和良好力学性能的其它机器的大型部件。
      元素含量%(重量)合金    Cr    Co    Mo    W    Re    Al    Ti    Ta     Hf   C,ppm   Bppm  Mg,ppm
    L1  6.3  9.5  0.6  6.6   3   5.7   0.8   6.7   0.25   250   50   25
    L2  6.3  9.5  0.6  6.6   3   5.7   0.8   6.7   0.3   300   60   40
    VL10  6.3  9.5  0.6  6.6   3   5.7   0.8   6.7   0.2   330   50   -
    VL11  6.3  9.5  0.6  6.6   3   5.7   0.8   6.7   0.25   250   50   60
    VL12  6.5  9.5  0.6  6.6   3   5.7   0.8   6.7   0.25   250   25   40
    VL13  6.5  9.5  0.6  6.5   3   5.6   0.9   6.7   0.1   250   40   40
    VL14  6.5  9.5  0.6  6.5   3   5.6   0.9   6.7   0.35   250   80   40
    VL15  6.3  9.5  0.6  6.6   3   5.7   0.8   6.7   0.3   500   60   40
  VL16(CMSX-4,US 4,643,782)  6.4  9.7  0.6  6.4   2.9   5.65   1.0   6.5   0.1   30   -   -
  VL17(RenéN5,US 5,270,123)  7  7.5  1.5  5   3   6.2   -   6.5   0.15   500   40   -
表1:合金的化学组成,其余为Ni
   合金      1000℃,6%/min.,R=-1,Δεtot=1.2%时的循环次数Nf
  纵向<001>                 横向<010>,小角晶界7-8°
    L1    1442                 1261
    L2    1430                 1338
   VL10    1160                 1020
   VL11     -                 575
   VL12     -                 545
   VL13     -                 877
   VL14     -                 766
   VL15    1197                 1108
   VL16    1494                 387
表2:单晶-超合金的LCF-性质
        合金 1000循环、RT/1000℃、1循环/小时后,含小角晶界7-8°的合金中受损区域的深度
         L1             150(沿小角晶界)
         L2             130(沿小角晶界)
        VL10             290(沿小角晶界)
        VL16             380(沿小角晶界)
        VL16(小部件无小角晶界)                   60(无小角晶界)
表3:单晶-超合金直循环下的抗氧化能力

Claims (10)

1.一种镍-基超合金,该合金特别适于制造单晶部件,该合金包含(以%(重量)计):
6.0-6.8% Cr、8.0-10.0% Co、0.5-0.7% Mo、6.2-6.6% W、2.7-3.2%Re、5.4-5.8% Al、0.6-1.2% Ti、6.3-7.0% Ta、0.15-0.3% Hf、0.02-0.04%C、40-100ppm B、15-50ppm Mg、0-400ppm Y,其余为镍和杂质。
2.权利要求1的镍-基超合金,其特征在于,其组成为(以%(重量)计):
6.2-6.4% Cr、9.4-9.6% Co、0.6% Mo、6.5-6.7% W、2.9-3.1% Re、5.7% Al、0.7-0.9% Ti、6.6-6.8% Ta、0.25-0.3% Hf、0.02-0.03% C、50-60ppm B、25-40ppm Mg,其余为镍及杂质。
3.权利要求1的镍-基超合金,其特征在于,Hf=(8-12)×C、B=(0.18-0.25)×C、Mg=(0.08-0.2)×C、或Hf∶C∶B∶Mg=100∶10∶2∶1(以%(重量)计)。
4.权利要求3的镍-基超合金,其特征在于,Hf=10×C和/或B=0.2×C和/或Mg=0.1×C。
5.权利要求1-4中任一项的镍-基超合金,其特征在于,Y的含量为10-400ppm。
6.一种镍-基超合金-单晶部件,其组成为(以%(重量)计):
6.0-6.8% Cr、8.0-10.0% Co、0.5-0.7% Mo、6.2-6.6% W、2.7-3.2%Re、5.4-5.8% Al、0.6-1.2% Ti、6.3-7.0% Ta、0.15-0.3% Hf、0.02-0.04%C、40-100ppm B、15-50ppm Mg、0-400ppm Y,其余为镍及杂质。
7.权利要求6的镍-基超合金-单晶部件,其特征在于,其组成为(以%(重量)计):
6.2-6.4% Cr、9.4-9.6% Co、0.6% Mo、6.5-6.7% W、2.9-3.1% Re、5.7% Al、0.7-0.9% Ti、6.6-6.8% Ta、0.25-0.3% Hf、0.02-0.03% C、50-60ppm B、25-40ppm Mg,其余为镍及杂质。
8.权利要求6的镍-基超合金-单晶部件,其特征在于,Hf=(8-12)×C、B=(0.18-0.25)×C、Mg=(0.08-0.2)×C、或Hf∶C∶B∶Mg=100∶10∶2∶1(以%(重量)计)。
9.权利要求8的镍-基超合金-单晶部件,其特征在于,Hf=10×C和/或B=0.2×C和/或Mg=0.1×C。
10.权利要求6-9中任一项的镍-基超合金-单晶部件,其特征在于,该单晶部件为气轮机的叶片。
CN97195550A 1996-06-17 1997-06-09 镍-基超合金 Expired - Lifetime CN1086742C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19624056A DE19624056A1 (de) 1996-06-17 1996-06-17 Nickel-Basis-Superlegierung
DE19624056.5 1996-06-17

Publications (2)

Publication Number Publication Date
CN1222199A CN1222199A (zh) 1999-07-07
CN1086742C true CN1086742C (zh) 2002-06-26

Family

ID=7797126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97195550A Expired - Lifetime CN1086742C (zh) 1996-06-17 1997-06-09 镍-基超合金

Country Status (7)

Country Link
US (1) US5759301A (zh)
EP (1) EP0914484B1 (zh)
JP (1) JP4024304B2 (zh)
CN (1) CN1086742C (zh)
AU (1) AU2947797A (zh)
DE (2) DE19624056A1 (zh)
WO (1) WO1997048828A1 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69821945T2 (de) * 1998-11-10 2005-07-14 Alstom Technology Ltd Gasturbineteil
US20020007877A1 (en) * 1999-03-26 2002-01-24 John R. Mihalisin Casting of single crystal superalloy articles with reduced eutectic scale and grain recrystallization
EP1054072B1 (de) * 1999-05-20 2003-04-02 ALSTOM (Switzerland) Ltd Nickel-Basis-Superlegierung
US6444057B1 (en) 1999-05-26 2002-09-03 General Electric Company Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys
EP1078996B1 (en) 1999-08-09 2004-02-11 ALSTOM (Switzerland) Ltd Process to strengthen the grain boundaries of a component made from a Ni based superalloy
US20020164263A1 (en) * 2001-03-01 2002-11-07 Kenneth Harris Superalloy for single crystal turbine vanes
US7011721B2 (en) * 2001-03-01 2006-03-14 Cannon-Muskegon Corporation Superalloy for single crystal turbine vanes
EP1251191B1 (en) 2001-04-21 2004-06-02 ALSTOM Technology Ltd A method of repairing a ceramic coating
EP1258545B1 (en) 2001-05-14 2004-12-01 ALSTOM Technology Ltd Method for isothermal brazing of single crystal components
EP1295970A1 (en) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd MCrAlY type alloy coating
EP1295969A1 (en) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Method of growing a MCrAIY-coating and an article coated with the MCrAIY-coating
DE50214977D1 (de) * 2001-11-09 2011-05-05 Alstom Technology Ltd Wärmebehandlungsverfahren für werkstoffkörper aus einer nickel-basis-superlegierung
EP1327702A1 (en) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd Mcraiy bond coating and method of depositing said mcraiy bond coating
US6986034B2 (en) * 2002-04-11 2006-01-10 Dell Products L.P. Setting a system indication in response to a user when execution of the system setup program is desired
US20040042927A1 (en) * 2002-08-27 2004-03-04 O'hara Kevin Swayne Reduced-tantalum superalloy composition of matter and article made therefrom, and method for selecting a reduced-tantalum superalloy
EP1398393A1 (en) * 2002-09-16 2004-03-17 ALSTOM (Switzerland) Ltd Property recovering method
EP1411210A1 (en) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Method of depositing an oxidation and fatigue resistant MCrAIY-coating
US7010987B2 (en) * 2002-10-31 2006-03-14 Alstom (Switzerland) Ltd Non-destructive method of detecting defects in braze-repaired cracks
EP1426759B1 (en) * 2002-12-06 2011-11-16 Alstom Technology Ltd A non-destructive testing method of determining the depletion of a coating
EP1428982B1 (en) * 2002-12-06 2009-02-04 ALSTOM Technology Ltd A method of depositing a local MCrAIY-coating
EP1426760A1 (en) * 2002-12-06 2004-06-09 ALSTOM Technology Ltd A non-destructive testing method of determining the service metal temperature of a component
EP1426458B1 (en) * 2002-12-06 2008-03-12 ALSTOM Technology Ltd Method of locally depositing a MCrAlY coating
EP1428897A1 (de) * 2002-12-10 2004-06-16 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Bauteils mit verbesserter Schweissbarkeit und/oder mechanischen Bearbeitbarkeit aus einer Legierung
CA2440573C (en) * 2002-12-16 2013-06-18 Howmet Research Corporation Nickel base superalloy
EP1447457A1 (en) * 2003-02-17 2004-08-18 ALSTOM Technology Ltd Process for strengthen grain boundaries of an article made from a Ni based superalloy
US8241560B2 (en) * 2003-04-28 2012-08-14 Howmet Corporation Nickel base superalloy and single crystal castings
JP4449337B2 (ja) * 2003-05-09 2010-04-14 株式会社日立製作所 高耐酸化性Ni基超合金鋳造物及びガスタービン部品
US20050000603A1 (en) * 2003-06-25 2005-01-06 John Corrigan Nickel base superalloy and single crystal castings
CN100482824C (zh) * 2005-04-30 2009-04-29 中国科学院金属研究所 一种含铼镍基单晶高温合金及其制备工艺
CN100396806C (zh) * 2005-07-15 2008-06-25 中国航空工业第一集团公司北京航空材料研究院 一种高温模具用镍基铸造高温合金
US8771440B2 (en) * 2006-09-13 2014-07-08 National Institute For Materials Science Ni-based single crystal superalloy
US8876989B2 (en) * 2007-08-31 2014-11-04 General Electric Company Low rhenium nickel base superalloy compositions and superalloy articles
CN100557092C (zh) * 2007-12-17 2009-11-04 北京航空航天大学 采用籽晶法与螺旋选晶法组合制备Ni基单晶高温合金的方法
US20100034692A1 (en) * 2008-08-06 2010-02-11 General Electric Company Nickel-base superalloy, unidirectional-solidification process therefor, and castings formed therefrom
CN101857931A (zh) * 2010-06-09 2010-10-13 中国科学院金属研究所 一种高强度抗腐蚀镍基单晶高温合金
CN103539349B (zh) * 2012-07-16 2016-08-03 苏州宏久航空防热材料科技有限公司 一种非铂族耐高温合金漏板及其制备方法
CN103570241B (zh) * 2012-07-24 2016-08-03 苏州宏久航空防热材料科技有限公司 一种高温玻璃液流量在线自动控制装置及其控制方法
EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
DE102013213386B3 (de) * 2013-07-09 2014-08-14 MTU Aero Engines AG Strömungsmaschinen-Keramikbauteil
EP2949768B1 (en) 2014-05-28 2019-07-17 Ansaldo Energia IP UK Limited Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
US20160184888A1 (en) * 2014-09-05 2016-06-30 General Electric Company Nickel based superalloy article and method for forming an article
ITUA20161551A1 (it) * 2016-03-10 2017-09-10 Nuovo Pignone Tecnologie Srl Lega avente elevata resistenza all’ossidazione ed applicazioni di turbine a gas che la impiegano
CN107675026A (zh) * 2017-09-30 2018-02-09 东方电气集团东方汽轮机有限公司 一种低成本、综合性能优良的镍基单晶高温合金
US10668571B2 (en) 2017-12-14 2020-06-02 General Electric Company Nanoparticle powders, methods for forming braze pastes, and methods for modifying articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155827A2 (en) * 1984-03-19 1985-09-25 Cannon-Muskegon Corporation Alloy for single crystal technology

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035958A (en) * 1983-12-27 1991-07-30 General Electric Company Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superaloys
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
US5100484A (en) * 1985-10-15 1992-03-31 General Electric Company Heat treatment for nickel-base superalloys
CA1291350C (en) * 1986-04-03 1991-10-29 United Technologies Corporation Single crystal articles having reduced anisotropy
GB2235697B (en) * 1986-12-30 1991-08-14 Gen Electric Improved and property-balanced nickel-base superalloys for producing single crystal articles.
FR2640814B1 (fr) * 1988-12-16 1991-03-15 Radiotechnique Compelec Circuit integre presentant un transistor vertical
US5470371A (en) * 1992-03-12 1995-11-28 General Electric Company Dispersion strengthened alloy containing in-situ-formed dispersoids and articles and methods of manufacture
WO1993024683A1 (en) * 1992-05-28 1993-12-09 United Technologies Corporation Oxidation resistant single crystal superalloy castings
US5443789A (en) * 1992-09-14 1995-08-22 Cannon-Muskegon Corporation Low yttrium, high temperature alloy
US5549765A (en) * 1993-03-18 1996-08-27 Howmet Corporation Clean single crystal nickel base superalloy
US5549756A (en) * 1994-02-02 1996-08-27 Applied Materials, Inc. Optical pyrometer for a thin film deposition system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155827A2 (en) * 1984-03-19 1985-09-25 Cannon-Muskegon Corporation Alloy for single crystal technology

Also Published As

Publication number Publication date
CN1222199A (zh) 1999-07-07
EP0914484B1 (de) 2000-08-30
EP0914484A1 (de) 1999-05-12
WO1997048828A1 (de) 1997-12-24
AU2947797A (en) 1998-01-07
US5759301A (en) 1998-06-02
JP4024304B2 (ja) 2007-12-19
DE19624056A1 (de) 1997-12-18
JP2000512342A (ja) 2000-09-19
DE59702292D1 (de) 2000-10-05

Similar Documents

Publication Publication Date Title
CN1086742C (zh) 镍-基超合金
CN1078621C (zh) 镍-基超合金
US9945019B2 (en) Nickel-based heat-resistant superalloy
EP1184473B1 (en) Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
US7473326B2 (en) Ni-base directionally solidified superalloy and Ni-base single crystal superalloy
EP2796578A1 (en) Cast nickel-based superalloy including iron
EP2612936A2 (en) Rhenium-free single crystal superalloy for turbine blades and vane applications
EP2128284A1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND TURBINE VANE USING THE SAME
EP2612935B1 (en) Low rhenium single crystal superalloy for turbine blades and vane applications
RU2295585C2 (ru) Высокопрочный, стойкий к высокотемпературной коррозии и окислению суперсплав на основе никеля и направленно отвержденное изделие из этого суперсплава
KR102437409B1 (ko) Ni기 합금, 가스 터빈재, 및 Ni기 합금의 제조 방법
US10024174B2 (en) Ni-based casting superalloy and cast article therefrom
US6159314A (en) Nickel-base single-crystal superalloys, method for manufacturing the same, and gas turbine parts prepared therefrom
CN112593121A (zh) 一种高强抗高温氧化无铼第二代镍基单晶高温合金及其热处理工艺
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
CN114164357B (zh) 一种低成本、低密度镍基单晶高温合金
KR102332018B1 (ko) 고온용 타이타늄 합금 및 그 제조방법
JP4028122B2 (ja) Ni基超合金、その製造方法およびガスタービン部品
JP2905473B1 (ja) Ni基一方向凝固合金の製造方法
EP1715068B1 (en) Nickel-based super-heat-resistant alloy and gas turbine component using same
JPH10317080A (ja) Ni基耐熱超合金、Ni基耐熱超合金の製造方法及びNi基耐熱超合金部品
CN115537604B (zh) 一种抗蠕变、抗氧化的镍基高温合金及其制备方法和应用
JPH0920600A (ja) Ni基単結晶超合金、その製造方法およびガスタービン部品
JPH07300639A (ja) 高耐食性ニッケル基単結晶超合金およびその製造方法
CN117305658A (zh) 一种镍基粉末高温合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ALSTOM SWITZERLAND LTD.

Free format text: FORMER OWNER: ALSTOM

Effective date: 20120727

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120727

Address after: Baden, Switzerland

Patentee after: Alstom Technology Ltd.

Address before: Paris France

Patentee before: Alstom

C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Swiss Baden 5400 Bulangbo Fairui Street No. 7

Patentee after: ALSTOM TECHNOLOGY LTD

Address before: Baden, Switzerland

Patentee before: Alstom Technology Ltd.

CX01 Expiry of patent term

Granted publication date: 20020626

CX01 Expiry of patent term