CN108659255A - 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用 - Google Patents

核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用 Download PDF

Info

Publication number
CN108659255A
CN108659255A CN201810209467.5A CN201810209467A CN108659255A CN 108659255 A CN108659255 A CN 108659255A CN 201810209467 A CN201810209467 A CN 201810209467A CN 108659255 A CN108659255 A CN 108659255A
Authority
CN
China
Prior art keywords
aptamer
magnetic microsphere
molecular engram
preparation
microballoon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810209467.5A
Other languages
English (en)
Other versions
CN108659255B (zh
Inventor
胡小刚
巫宝霞
张晓婷
马艳霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201810209467.5A priority Critical patent/CN108659255B/zh
Publication of CN108659255A publication Critical patent/CN108659255A/zh
Application granted granted Critical
Publication of CN108659255B publication Critical patent/CN108659255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种核酸适配体‑分子印迹协同识别磁性微球及其制备方法和应用。本发明所述的核酸适配体‑分子印迹协同识别磁性微球,包括磁性微球内核和核酸适配体‑分子印迹协同识别外壳,所述核酸适配体‑分子印迹协同识别外壳具有分子印迹聚合物刚性识别空穴,该分子印迹聚合物刚性识别空穴结构稳定、不易变形,特异性吸附强,所述核酸适配体不易酶解。

Description

核酸适配体-分子印迹协同识别磁性微球及其制备方法和 应用
技术领域
本发明属于化学分析测试技术领域,涉及固相微萃取技术,尤其涉及核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用。
背景技术
样品前处理是样品分析的第一步,也是整个分析过程中的关键步骤,直接影响样品分析的准确度和精密度。样品前处理主要目的在于分离和富集样品中的待测组分,减小基体或杂质干扰,满足后续测试仪器对样品形态、浓度、洁净程度等的要求。传统样品前处理技术如液液萃取、溶剂提取、索氏提取、柱色谱等,普遍存在耗时、低效、有毒有机溶剂用量大或操作较繁琐等问题,导致样品前处理成为整个分析过程中最费时费力的环节,占样品分析时间的60%~70%,同时分析过程中产生的误差至少三分之一来自于样品前处理。因此,急需发展简单、快速、高效、绿色、自动化的样品前处理技术。对于复杂样品如血浆、尿液、动植物组织等而言,由于基体干扰的多样性和复杂性,痕量或超痕量待测组分的分离、富集更为需要的是高亲和力、高选择性的样品前处理技术。
进入二十一世纪以来,日益突出的环境污染问题及民众对食品、药品安全意识的提高使仪器分析技术得到快速发展,仪器灵敏度大幅提高,对测试的样品提出了更高要求,因而样品前处理技术受到了越来越多的关注与重视。一些新的样品前处理技术如微波辅助萃取、加压溶剂萃取、超临界流体萃取、凝胶渗透色谱、吹扫捕集、膜分离、固相萃取、基质固相分散萃取、液相微萃取、固相微萃取等纷纷涌现。其中,固相微萃取由于集采样、萃取、浓缩及进样于一体,具有耗时少、操作简单、效率高、无溶剂或少溶剂、易与色谱仪器联用等优点,成为国内外样品前处理技术领域的研究热点,在环境、生物、食品及药物分析等领域中获得了广泛应用。传统固相微萃取技术采用石英纤维萃取头,操作简便,但石英纤维在使用过程中容易折断,且涂层体积及比表面积较小,使用寿命及萃取容量受到较大限制。为此,国内外研究者们开发了搅拌棒式、毛细管式及磁性微球式固相微萃取技术。其中,磁性微球固相微萃取技术通过在磁性纳米粒子表面包裹涂层材料,所制得的纳米、亚微米级微球具有比表面积大、萃取容量高等特性,且在磁场下可快速、定向分离,操作简便,受到普遍关注。选择性差是目前商品化固相萃取柱存在的主要问题,为了实现特异性吸附,相关研究者选择在吸附剂材料修饰选择性识别功能团如冠醚、杯芳烃、分子印迹聚合物、抗体等。其中具有选择性高、稳定性好、制备简单等特点的分子印迹聚合物(Molecularly imprintedpolymer,MIP)成为固相微萃取涂层材料的研究热点。MIP由于具有类似于酶-底物的“钥匙-锁”相互作用识别原理,选择性有进一步提高。但由于分子印迹技术自身的特点,尚存在极性溶剂干扰、“刚性识别空穴”易被破坏或变形等不足,在生物样品(常以水溶液形式存在)分析中的应用受到较大限制。
核酸适配体是通过指数富集配基的系统进化技术(SELEX)经体外筛选得到的一段短的单链寡核苷酸序列(DNA或RNA),基于单链核酸结构和空间构象的多样性,适配体通过链内某些互补碱基间的配对和静电作用、氢键作用等自身发生适应性折叠形成稳定的三维结构,如发夹、假结、凸环、G2四分体等,通过空间构型互补与配体分子高亲和力、高特异性结合。高分辨三维结构研究发现,核酸适配体与配体能通过范德华力、氢键作用、静电作用及形状匹配等各种相互作用产生高特异性的结合力。通过化学改性技术可修饰于固体吸附剂表面,在固相萃取技术中具备极大的应用潜力。
适配体亲和力高、特异性强以及相对于抗体、酶生物大分子识别体系的诸多优点使其在固相微萃取技术方面具有广阔的应用潜力,但有研究结果表明核酸适配体在复杂样品如血浆、尿液中存在酶解问题,限制了其使用寿命,同时纤维状固相微萃取头适配体键合量有限,萃取容量低(小于1ng),制约了方法的应用。
发明内容
针对上述问题,本发明提供一种核酸适配体-分子印迹协同识别磁性微球,具有稳定的分子印迹聚合物刚性识别空穴和强特异性识别、吸附能力,而且其中的核酸适配体稳定性好、不易酶解。
本发明的技术方案如下:
一种核酸适配体-分子印迹协同识别磁性微球,包括磁性微球内核和核酸适配体-分子印迹协同识别外壳,微球内核和核酸适配体-分子印迹协同识别外壳之间通过化学键连接,所述核酸适配体-分子印迹协同识别外壳具有分子印迹聚合物刚性识别空穴。
所述核酸适配体-分子印迹协同识别磁性微球的制备方法,包括以下步骤:
(1)制备氨基修饰磁性微球:制备Fe3O4微球,并对所得Fe3O4微球进行SiO2包裹,得到SiO2/Fe3O4微球,然后加入氨基硅烷化试剂对SiO2/Fe3O4微球进行氨基改性,得到氨基修饰磁性微球;
(2)制备核酸适配体修饰磁性微球:将步骤(1)所得的氨基修饰磁性微球分散于缓冲溶液中,加入EDC/NHS溶液活化,然后加入核酸适配体溶液,振荡反应,得到核酸适配体修饰磁性微球;
(3)制备核酸适配体-分子印迹涂层磁性微球:将步骤(2)所得的核酸适配体修饰磁性微球分散于缓冲溶液中,加入模板分子及功能单体,振荡孵育;然后加入交联剂及引发剂,在无氧条件下进行自由基聚合反应,得到核酸适配体-分子印迹涂层磁性微球;
(4)制备核酸适配体-分子印迹协同识别磁性微球:采用洗脱溶剂洗脱除去步骤(3)所得微球中的模板分子,形成分子印迹聚合物刚性识别空穴,得到核酸适配体-分子印迹协同识别磁性微球。
进一步,在步骤(1)中,所述的氨基硅烷化试剂为3-氨丙基三乙氧基硅烷;所述的氨基硅烷化试剂与SiO2/Fe3O4微球的摩尔比为25:1~75:1。
进一步,在步骤(2)和步骤(3)中,所述的缓冲溶液为Tris-HCl(三(羟甲基)氨基甲烷-盐酸)缓冲溶液,其pH值为4.5~8.5。优选地,所述Tris-HCl缓冲溶液的pH值为7.5。
进一步,在步骤(2)中,所述EDC/NHS溶液中的EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)与NHS(N-羟基琥珀酰亚胺)的摩尔比为4:1~1:4。优选地,所述EDC/NHS溶液中的EDC与NHS的摩尔比为1:4。
进一步,在步骤(2)中,所述的核酸适配体为赭曲霉毒素A核酸适配体(OTA核酸适配体)。所述的核酸适配体与氨基修饰磁性微球的摩尔比为75:1~150:1。
进一步,在步骤(3)中,所述的振荡孵育包括以下步骤:a)将核酸适配体修饰磁性微球分散于缓冲溶液中,加入模板分子,在室温下振荡孵育;b)经磁分离后,用缓冲溶液清洗,除去未结合的模板分子;c)加入功能单体,在室温下振荡孵育。
进一步,在步骤(3)中,所述的模板分子为赭曲霉毒素A(OTA),所述的模板分子与核酸适配体修饰磁性微球的摩尔比为5:1~15:1;所述的功能单体为α-甲基丙烯酸、N-异丙基丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺中任意一种,所述的功能单体与核酸适配体修饰磁性微球的摩尔比为1:1~6:1。优选地,所述的功能单体为α-甲基丙烯酸。
进一步,在步骤(3)中,所述的交联剂为N,N-亚甲基双丙烯酰胺;所述的引发剂为过硫酸铵溶液与四甲基乙二胺的混合物。
进一步,在步骤(4)中,所述的洗脱溶剂为甲醇与乙酸的混合溶液,其中,甲醇与乙酸的体积比为50:50~90:10。
本发明所述的核酸适配体-分子印迹协同识别磁性微球可用于分散固相微萃取技术,对复杂样品中痕量或超痕量物质组分进行分离和富集。
本发明利用SiO2包裹的Fe3O4微球作为磁性内核,不仅能够提高磁性微球的比表面积,大大提高核酸适配体的键合量,而且SiO2包覆层含有丰富的羟基,有利于进行后续的表面改性。使用氨基硅烷化试剂对SiO2/Fe3O4微球进行氨基改性,使得磁性内核表面增加活性氨基,氨基能够与带羧基的核酸适配体进行酰胺化反应,从而使核酸适配体牢固地衔接到磁性内核表面,使核酸适配体不易酶解,提高了核酸适配体的稳定性,亦提高了核酸适配体的利用率。在此基础上加入模板分子和功能单体进行孵育,形成适配体-模板-单体复合物,模板分子为后续分子印迹聚合物刚性识别空穴的形成提供基础,功能单体能够提供与模板分子相互识别的作用位点,对分子印迹聚合物的识别性能起着至关重要的作用。通过加入交联剂和引发剂与适配体-模板-单体复合物进行自由基聚合反应,使之形成牢固的交联骨架结构,能够提高适配体-模板-单体复合物的稳定性,并使核酸适配体在交联骨架结构中保持识别构象,维持核酸适配体的活性和稳定性。最后通过洗脱剂将模板分子脱除,原模板分子位置形成了与模板分子空间结构相匹配的分子印迹聚合物刚性识别空穴,核酸适配体和功能单体中留下能与模板分子精准识别的作用位点,使最终得到的核酸适配体-分子印迹协同识别磁性微球对模板分子具有极强的特异性识别、吸附能力。同时,洗脱剂并不与自由基、核酸适配体、功能单体发生作用,因此自由基与核酸适配体、功能单体仍然保持牢固连接,自由基聚合反应所形成的牢固的交联骨架结构并不受洗脱过程的影响,使得最终形成的分子印迹聚合物刚性识别空穴不易发生溶胀、变形,具有很好的稳定性。
本发明所制得的核酸适配体-分子印迹协同识别磁性微球,具有稳定的分子印迹聚合物刚性识别空穴,特异性识别、吸附能力强,在水相体系中的选择性高,而且在分子印迹聚合物骨架结构中实现了多点支撑交联固载结构,所固载的核酸适配体稳定性好、不易酶解。同时本发明所提供的制备方法,具有环保、操作简单、产率高等优点。
本发明的核酸适配体-分子印迹协同识别磁性微球作为分散固相微萃取吸附剂,相比于传统的吸附剂,具有背景压力低、接触面积大、传质速率快等优点,可提高复杂样品的萃取选择性,增大萃取容量,提高富集效率,加快分析速度。其与高效液相色谱法结合,还能实现复杂生物样品中痕量、超痕量物质快速、高效、高选择性分离富集及检测。
附图说明
图1为本发明核酸适配体-分子印迹协同识别磁性微球的制备过程示意图;
图2为Fe3O4磁性微球透射电子显微镜照片;
图3为SiO2/Fe3O4微球透射电子显微镜照片;
图4为OTA核酸适配体-分子印迹协同识别磁性微球的透射电子显微镜照片;
图5为实施例五萃取容量结果图;
图6为实施例六八种萃物物的结构式;
图7为实施例六萃取容量对比图。
具体实施方式
本发明所述核酸适配体-分子印迹协同识别磁性微球的制备过程可参阅图1,下面通过具体实施例来详细说明该制备过程及结果。
实施例一:制备氨基修饰磁性微球
称量2.00g PEG-6000,2.40g NaOH于100mL烧杯中,加入50mL煮沸并冷却的去离子水溶解,转移到500mL两口烧瓶中。再称量2.70g FeCl3·6H2O和1.96g FeCl2·4H2O于250mL烧杯中,加入100mL煮沸并冷却的去离子水溶解后滴加至PEG-6000与NaOH的混合物中。保持水浴温度为40℃,搅拌反应1h后得Fe3O4磁性微球。
将所得的Fe3O4磁性微球置于盛有50mL正丙醇的烧瓶中,超声15min后加入5mL氨水,间隔10min后加入1ml TEOS,搅拌反应12h,然后加入10mL 10%HCl对其进行超声酸洗,最后加入10mL无水乙醇进行醇洗,得到SiO2/Fe3O4磁性微球。
将上述所得的SiO2/Fe3O4磁性微球置于75mL乙醇溶液中,然后加入1mL 3-氨丙基三乙氧基硅烷,置于50℃水浴中机械搅拌6h,得到氨基修饰SiO2/Fe3O4磁性微球。
参阅图2,其是所得Fe3O4磁性微球的透射电子显微镜照片。本发明使用反滴定法制得的Fe3O4磁性微球均一性好、比表面积大,而且本方法不使用有机溶剂,还具有绿色环保、操作简单、产率高等优点。
参阅图3,其是所得SiO2/Fe3O4磁性微球的透射电子显微镜照片,本发明使用溶胶凝胶法制得的SiO2/Fe3O4磁性微球保持着良好的分散性和均一性。由于SiO2具有良好的生物相容性及抗分解能力,在Fe3O4磁性微球表面包裹一层SiO2后,能极大地降低粒子的零电点和屏蔽磁偶极子的相互作用,使粒子具有良好的水溶性、化学稳定性及生物相容性,且SiO2表面存在丰富的羟基,可使复合粒子容易进一步生物功能化。
将SiO2/Fe3O4磁性微球表面进行氨基修饰,方便通过化学键合方式进行下一步的固载操作。
实施例二:制备OTA核酸适配体修饰磁性微球
称取5mg实施例一所得氨基修饰SiO2/Fe3O4磁性微球,加入800μL Tris-HCl缓冲溶液(PH为7.5,含0.1mol/L NaCl、50mmol/L Tris、1mmol/L MgCl2),超声10min。再加入1.2mLEDC/NHS混合液(摩尔比EDC:NHS=1:4),静置活化10min后加入40μL OTA适配体溶液(6.5μg/mL),在25℃下振荡反应16h,得到OTA核酸适配体修饰磁性微球,标记为Apt-SF。
实施例三:制备OTA核酸适配体-分子印迹涂层磁性微球
将实施例二所得的OTA核酸适配体修饰磁性微球分散在5mL Tris-HCl缓冲溶液(PH为7.5,含0.1mol/L NaCl、50mmol/L Tris、1mmol/L MgCl2)中,加入0.205μmol/L模板分子OTA,振荡孵育90min后进行磁力分离,然后用缓冲溶液反复清洗,以除去未结合的模板分子。接着加入145μmol功能单体MAA(甲基丙烯酸),常温下振荡反应30min。
接着,在反应混合液中加入11.1mg N,N-亚甲基双丙烯酰胺及33.3μL 0.0438mol/L过硫酸铵与1μL四甲基乙二胺,在25℃无氧条件下振荡反应4h,得到OTA核酸适配体-分子印迹涂层磁性微球。
实施例四:制备OTA核酸适配体-分子印迹协同识别磁性微球
在实施例三所得OTA核酸适配体-分子印迹涂层磁性微球中加入甲醇-乙酸(80:20,V/V),振荡洗脱15min,共15次,得到OTA核酸适配体-分子印迹协同识别磁性微球,标记为Apt-MIP SF。
参阅图4,其是所得Apt-MIP SF的透射电子显微镜照片。与Fe3O4磁性微球、SiO2/Fe3O4磁性微球相比,Apt-MIP SF颗粒发生明显聚集,粒径增大;并且可观察到Apt-MIP SF包含实心内核和外壳。
实施例五:Apt-MIP SF萃取实验
配制一系列浓度范围为2~22μg/L的OTA标准溶液,分别用5mg实施例四所得Apt-MIP SF进行萃取,萃取结果见图5。
根据图5可以发现,在OTA标准溶液浓度在2~15μg/L范围内,萃取量随着浓度的增加呈近线性增长,在15μg/L之后萃取量趋于平衡,最高萃取量约为37.5ng。
实施例六:选择性萃取比较实验
(1)制备羧基及双键修饰核酸适配体制备的适配体-分子印迹协同识别磁性微球
将OTA适配体进行羧基及双键修饰,修饰后得到羧基及双键修饰核酸适配体,所述羧基及双键修饰核酸适配体为5′-COOH-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGGACA-3′;然后以羧基及双键修饰核酸适配体替代OTA适配体,运用实施例一至实施例四的方法制备得到羧基及双键修饰核酸适配体制备的适配体-分子印迹协同识别磁性微球,标记为CHCH-Apt-MIP-SF。
(2)制备OTA为模板分子制备的分子印迹聚合物
称取5mg OTA核酸适配体,分散在5mL Tris-HCl缓冲溶液(PH为7.5,含0.1mol/LNaCl、50mmol/L Tris、1mmol/L MgCl2)中,加入0.205μmol/L模板分子OTA,振荡孵育90min后进行磁力分离,然后用缓冲溶液反复清洗,以除去未结合的模板分子。接着加入145μmol功能单体MAA(甲基丙烯酸),常温下振荡反应30min。接着,在反应混合液中加入11.1mg N,N-亚甲基双丙烯酰胺及33.3μL 0.0438mol/L过硫酸铵与1μL四甲基乙二胺,在25℃无氧条件下振荡反应4h。加入甲醇-乙酸(80:20,V/V),振荡洗脱15min,共15次,得到OTA为模板分子制备的分子印迹聚合物,标记为MIP。
(3)制备乱序单链DNA修饰适配体-分子印迹协同识别磁性微球
将本实施例步骤(1)中所述5′-COOH-GAT CGG GTG TGG GTG GCG TAA AGG GAGCAT CGG ACA-3′进行乱序处理,得到5′-COOH-GAG GAA TGA GGG TGA GGC CTT GCG AGCGTT AGG AGC-3′;然后以5′-COOH-GAG GAA TGA GGG TGA GGC CTT GCG AGC GTT AGG AGC-3′替代OTA适配体,运用实施例一至实施例四的方法制备得到乱序单链DNA修饰适配体-分子印迹协同识别磁性微球,标记为ScrApt-MIP-SF。
(4)萃取比较
分别称取5mg实施例四所得Apt-MIP-SF、本实施例步骤(1)所得CHCH-Apt-MIP-SF、本实施例步骤(2)所得MIP、实施例二所得Apt-SF、本实施例步骤(3)所得ScrApt-MIP-SF,分别萃取1μg/L OTA(赭曲霉毒素A)、OTB(赭曲霉毒素B)、AFB1(黄曲霉毒素B1)、AFB2(黄曲霉毒素B2)、AFG1(黄曲霉毒素G1)、AFG2(黄曲霉毒素G2)、AFM1(黄曲霉毒素M1)和ZEN(玉米赤霉烯酮)标准溶液,所述8种萃取物的结构参阅图6,萃取结果参阅图7。
参阅图7的萃取结果,在相同条件下,Apt-MIP SF对OTA的萃取量为36.8ng,是对其他结构类似物萃取量的1.9~60倍,说明Apt-MIP SF对OTA具有很高的选择性分离和富集能力;相比之下,CHCH-Apt-MIP-SF对OTA及其他7种结构类似物的萃取选择性较差,MIP、Apt-SF、ScrApt-MIP-SF对OTA及其他7种结构类似物的萃取选择性也较差。
本发明并不局限于上述实施方式,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些变形和改进都属于本发明的保护范围。因此本发明专利的保护范围应以所附权利要求为准。
序 列 表
<110> 华南师范大学
<120> 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用
<160> 13
<170> PatentIn version 3.1
<210> 1
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> OTA核酸适配体
<400> 1
gatcgggtgt gggtggcgta aagggagcat cggaca 36
<210> 2
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 乱序单链DNA
<400> 2
gaggaatgag ggtgaggcct tgcgagcgtt aggagc 36

Claims (10)

1.一种核酸适配体-分子印迹协同识别磁性微球的制备方法,包括以下步骤:
(1)制备氨基修饰磁性微球:制备Fe3O4微球,并对所得Fe3O4微球进行SiO2包裹,得到SiO2/Fe3O4微球,然后加入氨基硅烷化试剂对SiO2/Fe3O4微球进行氨基改性,得到氨基修饰磁性微球;
(2)制备核酸适配体修饰磁性微球:将步骤(1)所得的氨基修饰磁性微球分散于缓冲溶液中,加入EDC/NHS溶液活化,然后加入核酸适配体溶液,振荡反应,得到核酸适配体修饰磁性微球;
(3)制备核酸适配体-分子印迹涂层磁性微球:将步骤(2)所得的核酸适配体修饰磁性微球分散于缓冲溶液中,加入模板分子及功能单体,振荡孵育;然后加入交联剂及引发剂,在无氧条件下进行自由基聚合反应,得到核酸适配体-分子印迹涂层磁性微球;
(4)制备核酸适配体-分子印迹协同识别磁性微球:采用洗脱溶剂洗脱除去步骤(3)所得微球中的模板分子,形成分子印迹聚合物刚性识别空穴,得到核酸适配体-分子印迹协同识别磁性微球。
2.根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述的氨基硅烷化试剂为3-氨丙基三乙氧基硅烷;所述的氨基硅烷化试剂与SiO2/Fe3O4微球的摩尔比为25:1~75:1。
3.根据权利要求1所述的制备方法,其特征在于:在步骤(2)和步骤(3)中,所述的缓冲溶液为Tris-HCl缓冲溶液,其pH值为4.5~8.5。
4.根据权利要求1所述的制备方法,其特征在于:在步骤(2)中,所述EDC/NHS溶液中的EDC与NHS的摩尔比为4:1~1:4。
5.根据权利要求1所述的制备方法,其特征在于:在步骤(2)中,所述的核酸适配体为赭曲霉毒素A核酸适配体;所述的核酸适配体与氨基修饰磁性微球的摩尔比为1:75~1:150。
6.根据权利要求1所述的制备方法,其特征在于:在步骤(3)中,所述的振荡孵育包括以下步骤:a)将核酸适配体修饰磁性微球分散于缓冲溶液中,加入模板分子,在室温下振荡孵育;b)经磁分离后,用缓冲溶液清洗,除去未结合的模板分子;c)加入功能单体,在室温下振荡孵育。
7.根据权利要求1所述的制备方法,其特征在于:在步骤(3)中,所述的模板分子为赭曲霉毒素A,所述的功能单体为α-甲基丙烯酸、N-异丙基丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺中任意一种;所述的交联剂为N,N-亚甲基双丙烯酰胺;所述的引发剂为过硫酸铵溶液与四甲基乙二胺的混合物;所述的模板分子与核酸适配体修饰磁性微球的摩尔比为5:1~15:1;所述的功能单体与核酸适配体修饰磁性微球的摩尔比为1:1~6:1。
8.根据权利要求1所述的制备方法,其特征在于:在步骤(4)中,所述的洗脱溶剂为甲醇与乙酸的混合溶液,其中,甲醇与乙酸的体积比为50:50~90:10。
9.由权利要求1至8其中之一所述的制备方法制得的核酸适配体-分子印迹协同识别磁性微球,其特征在于:包括磁性微球内核和核酸适配体-分子印迹协同识别外壳,微球内核和核酸适配体-分子印迹协同识别外壳之间通过化学键连接,所述核酸适配体-分子印迹协同识别外壳具有分子印迹聚合物刚性识别空穴。
10.权利要求9所述的核酸适配体-分子印迹协同识别磁性微球在分散固相微萃取中的应用。
CN201810209467.5A 2018-03-14 2018-03-14 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用 Active CN108659255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810209467.5A CN108659255B (zh) 2018-03-14 2018-03-14 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810209467.5A CN108659255B (zh) 2018-03-14 2018-03-14 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108659255A true CN108659255A (zh) 2018-10-16
CN108659255B CN108659255B (zh) 2020-12-22

Family

ID=63785188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810209467.5A Active CN108659255B (zh) 2018-03-14 2018-03-14 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108659255B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605104A (zh) * 2019-08-08 2019-12-24 福州大学 特异性识别赭曲霉毒素a的核酸适配体-印迹整体柱及其制备方法
CN111693617A (zh) * 2020-05-09 2020-09-22 华南师范大学 一种核酸适配体分子印迹协同识别不锈钢网片的制备方法
CN113670700A (zh) * 2021-08-10 2021-11-19 南京师范大学 一种富集分离黄曲霉毒素b1的磁性光子晶体微球及其制备方法和应用
CN114522445A (zh) * 2022-01-04 2022-05-24 广东省科学院测试分析研究所(中国广州分析测试中心) 一种核-壳结构复合材料固相微萃取探针的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145279A (zh) * 2010-02-05 2011-08-10 华中科技大学 磁响应性极高吸附容量溶菌酶分子印迹纳米粒子制备方法
CN102520039A (zh) * 2011-12-29 2012-06-27 济南大学 用于海产品中有机砷化物检测的基于核酸适配子的分子印迹膜电极的制备方法及应用
CN102558438A (zh) * 2011-12-29 2012-07-11 济南大学 基于核酸适配子的海产品中有机砷分子印迹聚合物及其制备方法和应用
CN102590307A (zh) * 2012-01-19 2012-07-18 济南大学 用于海产品中有机砷化物检测的基于核酸适配子的分子印迹膜电极及其制备方法
CN103649753A (zh) * 2011-06-30 2014-03-19 皇家飞利浦有限公司 用于具有低非特异性结合的亲和测定的磁性颗粒上的分子结构
CN103990423A (zh) * 2014-03-27 2014-08-20 华南师范大学 一种单链dna核酸适配体修饰二氧化硅/四氧化三铁磁性微球的制备方法
CN107446929A (zh) * 2017-08-31 2017-12-08 天津科技大学 特异识别赭曲霉毒素a的核酸适配体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145279A (zh) * 2010-02-05 2011-08-10 华中科技大学 磁响应性极高吸附容量溶菌酶分子印迹纳米粒子制备方法
CN103649753A (zh) * 2011-06-30 2014-03-19 皇家飞利浦有限公司 用于具有低非特异性结合的亲和测定的磁性颗粒上的分子结构
CN102520039A (zh) * 2011-12-29 2012-06-27 济南大学 用于海产品中有机砷化物检测的基于核酸适配子的分子印迹膜电极的制备方法及应用
CN102558438A (zh) * 2011-12-29 2012-07-11 济南大学 基于核酸适配子的海产品中有机砷分子印迹聚合物及其制备方法和应用
CN102590307A (zh) * 2012-01-19 2012-07-18 济南大学 用于海产品中有机砷化物检测的基于核酸适配子的分子印迹膜电极及其制备方法
CN103990423A (zh) * 2014-03-27 2014-08-20 华南师范大学 一种单链dna核酸适配体修饰二氧化硅/四氧化三铁磁性微球的制备方法
CN107446929A (zh) * 2017-08-31 2017-12-08 天津科技大学 特异识别赭曲霉毒素a的核酸适配体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANLI JIANG ET AL.: "An antibody-free and signal-on type electrochemiluminescence sensor diethylstilbestrol detection based on magnetic molecularly imprinted polymers-quantum dots labeled aptamer conjugated probes", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605104A (zh) * 2019-08-08 2019-12-24 福州大学 特异性识别赭曲霉毒素a的核酸适配体-印迹整体柱及其制备方法
CN111693617A (zh) * 2020-05-09 2020-09-22 华南师范大学 一种核酸适配体分子印迹协同识别不锈钢网片的制备方法
CN111693617B (zh) * 2020-05-09 2022-10-14 华南师范大学 一种核酸适配体分子印迹协同识别不锈钢网片的制备方法
CN113670700A (zh) * 2021-08-10 2021-11-19 南京师范大学 一种富集分离黄曲霉毒素b1的磁性光子晶体微球及其制备方法和应用
CN114522445A (zh) * 2022-01-04 2022-05-24 广东省科学院测试分析研究所(中国广州分析测试中心) 一种核-壳结构复合材料固相微萃取探针的制备方法及其应用
CN114522445B (zh) * 2022-01-04 2023-09-08 广东省科学院测试分析研究所(中国广州分析测试中心) 一种核-壳结构复合材料固相微萃取探针的制备方法及其应用

Also Published As

Publication number Publication date
CN108659255B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN108659255A (zh) 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用
Li et al. Preparation of magnetic molecularly imprinted polymers functionalized carbon nanotubes for highly selective removal of aristolochic acid
Lu et al. Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of chrysoidine in food samples
CN106540668B (zh) 磁性亲水分子印迹复合材料及其制备方法
Ma et al. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea
US9308582B2 (en) Solution stable and chemically reactive metallic nanoparticles
Zhang et al. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine
Wang et al. The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum
CN105107482A (zh) 一种分子印迹材料的制备方法及由其制备的分子印迹材料
CN103570871A (zh) 介孔分子筛sba-15复合纳米表面印迹聚合物及其制备方法
CN107200812A (zh) 一种磁性分子印迹材料的制备方法
CN104258833B (zh) 基于核酸适配体/纳米金/多孔聚合物涂层新型固相微萃取纤维的制备方法
CN102012372A (zh) 利用磁性印迹表面增强拉曼光谱技术检测药物分子的方法
CN102489273B (zh) 一种雌激素纳米硅胶表面树枝状分子印记聚合物磁珠的制备方法
CN103275273A (zh) 一种核壳型分子印迹纳米材料的制备方法及其应用
CN103833942A (zh) 己烯雌酚分子印迹磁性微球的制备方法及其应用
Cui et al. Facile construction of magnetic hydrophilic molecularly imprinted polymers with enhanced selectivity based on dynamic non-covalent bonds for detecting tetracycline
CN102532408A (zh) 一种温敏型磁性蛋白质印迹纳米球的制备方法
CN104402003A (zh) 用于偶联含伯氨基生物配基的磁性微球及其制备方法
CN108452781A (zh) 核壳磁性γ-环糊精聚合物复合材料的制备方法与应用
CN106512958B (zh) 一种核酸适配体修饰壳聚糖纳米纤维的制备方法及应用
CN106883346B (zh) 一种地塞米松磁性分子印迹聚合物的制备方法
Gao et al. Fabrication of acid-resistant imprinted layer on magnetic nanomaterials for selective extraction of chlorogenic acid in Honeysuckle
CN107033302A (zh) 一种双模板抗原决定基磁性印迹聚合物的制备方法
CN101824477B (zh) 一种基底、基因芯片及其制备方法以及检测靶标的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant