CN108642861A - 一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法 - Google Patents

一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法 Download PDF

Info

Publication number
CN108642861A
CN108642861A CN201810528071.7A CN201810528071A CN108642861A CN 108642861 A CN108642861 A CN 108642861A CN 201810528071 A CN201810528071 A CN 201810528071A CN 108642861 A CN108642861 A CN 108642861A
Authority
CN
China
Prior art keywords
nano
film
spinning
metal
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810528071.7A
Other languages
English (en)
Other versions
CN108642861B (zh
Inventor
郝润龙
赵毅
毛星舟
柳苏
童鑫
徐春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201810528071.7A priority Critical patent/CN108642861B/zh
Publication of CN108642861A publication Critical patent/CN108642861A/zh
Application granted granted Critical
Publication of CN108642861B publication Critical patent/CN108642861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/28Halides of elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with hydrogen peroxide or peroxides of metals; with persulfuric, permanganic, pernitric, percarbonic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/22Polymers or copolymers of halogenated mono-olefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本发明公开了一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法。其包括:(1)将高分子稳定剂和纳米金属氧化物溶解于有机溶剂中;(2)将高聚物前体物加入步骤(1)所得溶液中,搅拌,得到纺丝原液;(3)将步骤(2)得到的纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜;(4)将步骤(3)得到的吸附膜浸入氧化剂溶液中剥离;(5)将步骤(4)剥离的吸附膜进行界面聚合,在氧化改性膜表面和内部原位生长得到聚吡咯‑纳米纤维核壳结构,从而得到导电吸附膜原膜;(6)清洗步骤(5)得到的导电吸附膜原膜。所制备的导电吸附复合膜的纤维为350‑800纳米,电导率为900‑3700S/m、在3h内可将40mg/L的染料全部吸附在膜表面,而后通过电催化氧化过程,可将染料完全降解。

Description

一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜 方法
技术领域
本发明属于膜材料技术领域,具体涉及一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法。
背景技术
静电纺丝技术是一种高效纳米纤维纺织技术,制备得到的纳米纤维具有比表面积高、机械稳定性好和纤维连续性好等优点。其应用已涉及过滤、分离、吸声、能源、组织工程、传感器等领域。近年来,静电纺丝制得的纳米纤维也已在空气净化、电池隔膜和生物医学方面有重要应用。近十年来,人们尝试以静电纺丝技术制备水过滤膜组件,主要目标为大通量小阻力的微滤或超滤膜。与传统的膜技术相比,静电纺丝所制备的纳米纤维结构的膜具有孔径可控、孔隙率高、孔的连通性好以及通量大的优点。此外,静电纺丝纳米纤维膜还具有较强的吸附能力,将其用于饮用水的过滤净化,不仅可以拦截水中的小颗粒、悬浮物、细菌等,还可以有效吸附去除对人体有害的微量重金属离子,在某种程度上有望同时替代传统的纳滤和纳滤预处理的微滤技术,对提高饮用水处理的简洁性和安全性具有重要意义。
近年来,利用静电纺丝制备导电纳米纤维膜已初具规模,其主要集中在利用聚苯胺作为纺丝原液进行纺丝制膜,这是由于经过樟脑磺酸、盐酸、硫酸等掺杂的聚苯胺可溶于有机溶剂中制成制膜液。也有学者利用PEO、碳纳米管、二氧化钛、聚甲基丙烯酸甲酯等改性聚苯胺制膜液,来提高聚苯胺导电膜的电导率、机械强度等特性。然而关于聚吡咯制备静电纺丝导电纳米纤维膜的报道较少,其主要是由于聚吡咯不熔不溶的特性导致其难以溶解于纺丝制模液中,而据报道聚吡咯的电导率和环境稳定性均优于聚苯胺,因此开发一种环境友好、兼具催化功能的聚吡咯纳米纤维导电吸附膜具有重要意义。
本发明提出了一种新型聚吡咯纳米纤维导电吸附膜制备方法,本质上来说,本发明是一种纺丝制膜+界面聚合相耦合的方法。本发明所制备的聚吡咯纳米纤维导电吸附膜具有高电导率、可吸附染料、通电后可降解燃料、机械强度好等特性。
发明内容
本发明提供一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法,依次的主要步骤和工艺为:
(1)首先将高分子稳定剂和纳米金属氧化物溶解于有机溶剂中,超声分散1-3h,待其变成均一溶液后,将高聚物前体物加入其中,在温度60-70℃,搅拌时间8-24h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为25-35℃,纺丝电压为10-20kV,纺丝溶液流速为1-10mL,纺丝接收距离为10-15cm,接收棍电极转速为300-1000rpm,针头来回走速20-40cm/min,纺丝时间24-72h;
(3)而后通过氧化剂溶液剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维核壳结构,从而得到导电吸附膜原膜;所述氧化剂为六水合氯化铁和过硫酸铵中的一种,其摩尔浓度为0.5-2.0mol/L。
(4)最后通过丙酮、盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
所制备的导电吸附复合膜的纤维为350-800纳米,电导率为900-3700S/m、在3h内可将40mg/L的染料全部吸附在膜表面,而后通过电催化氧化过程,可将染料完全降解。
所述步骤1中的高分子稳定剂为聚乙烯吡咯烷酮或聚乙二醇中的一种,其质量分数为5-10%;
所述步骤1中的纳米颗粒为特定粒径的纳米金属氧化物,如纳米磁性铁、纳米二氧化钛和纳米碳管中的一种,其质量分数为0.5-1.0%;
所述步骤1中的高聚物前体物为聚丙烯腈和聚偏氟乙烯中的一种,其质量分数为12~18%;
所述步骤1中的有机溶剂为N,N-二甲基甲酰胺和二甲基乙酰胺中的一种,其质量分数为71~82.5%;
所述步骤3中的氧化剂溶液为六水合氯化铁和过硫酸铵中的一种,其摩尔浓度为0.5-2.0mol/L。
所述步骤3中的界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为0.5-2.0mol/L,稳定剂为十二烷基磺酸钠和十八烷基磺酸钠中的一种,其与吡咯的摩尔比为0.5:1。
本发明静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜是一种多功能微滤膜,具有较高的纯水通量,由于其表面积大,因而具有较好的絮凝物、大分子有机物、重金属离子等的吸附能力,可截留大部分工业废水中的废物。其次,由于膜表面原位生长了聚吡咯聚合物导电高分子,从而使该纳米纤维膜可以作为电极材料使用,当通电后,由于电化学氧化特性和静电排斥力的作用,该膜具有抗污染和氧化降解部分有机物的双重功能,这意味着该膜在截留污染物的同时可以实现膜的自清洁和水体净化功能。综上,这种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜具备多种功能,在功能耦合度方面远优于目前的微滤、超滤和纳滤膜,具有广泛的应用前景。
具体实施方式
下面结合实施例对本发明进一步详细说明。
实施例1
(1)将聚乙烯吡咯烷酮(5%)溶解于N,N-二甲基甲酰胺中,溶解温度为25℃,搅拌溶解2h;而后将0.2g纳米磁性铁颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间1h;而后将聚偏氟乙烯加入其中,质量分数为12%,在温度60℃,搅拌时间12h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为25℃,纺丝电压为15kV,纺丝溶液流速为5mL,纺丝接收距离为10cm,接收棍电极转速为500rpm,针头来回走速20cm/min,纺丝时间24h;
(3)而后通过1.0mol/L的氯化铁溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为1.0mol/L,稳定剂为十二烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为530nm,电导率2770S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为87%。
实施例2
(1)将聚乙烯吡咯烷酮(10%)溶解于N,N-二甲基甲酰胺中,溶解温度为25℃,搅拌溶解1h;而后将0.6g纳米磁性铁颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间1h;而后将聚偏氟乙烯加入其中,质量分数为12%,在温度70℃,搅拌时间8h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为25℃,纺丝电压为10kV,纺丝溶液流速为1mL,纺丝接收距离为15cm,接收棍电极转速为1000rpm,针头来回走速40cm/min,纺丝时间72h;
(3)而后通过2.0mol/L的氯化铁溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为2.0mol/L,稳定剂为十二烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为350nm,电导率3700S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为98%。
实施例3
(1)将聚乙二醇(5%)溶解于N,N-二甲基甲酰胺中,溶解温度为20℃,搅拌溶解2h;而后将0.2g纳米二氧化钛颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间2h;而后将聚偏氟乙烯加入其中,质量分数为15%,在温度60℃,搅拌时间12h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为25℃,纺丝电压为15kV,纺丝溶液流速为5mL,纺丝接收距离为10cm,接收棍电极转速为300rpm,针头来回走速40cm/min,纺丝时间48h;
(3)而后通过0.5mol/L的氯化铁溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为1.5mol/L,稳定剂为十八烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为460nm,电导率3270S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为82%。
实施例4
(1)将聚乙二醇(10%)溶解于N,N-二甲基甲酰胺中,溶解温度为30℃,搅拌溶解2h;而后将0.6g纳米二氧化钛颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间2h;而后将聚丙烯腈加入其中,质量分数为15%,在温度70℃,搅拌时间24h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为30℃,纺丝电压为20kV,纺丝溶液流速为10mL,纺丝接收距离为15cm,接收棍电极转速为1000rpm,针头来回走速20cm/min,纺丝时间48h;
(3)而后通过2.0mol/L的氯化铁溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为0.5mol/L,稳定剂为十八烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为490nm,电导率1170S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为63%。
实施例5
(1)将聚乙烯吡咯烷酮(8%)溶解于二甲基乙酰胺中,溶解温度为20℃,搅拌溶解2h;而后将0.2g纳米碳管颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间2h;而后将聚偏氟乙烯加入其中,质量分数为18%,在温度65℃,搅拌时间18h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为25℃,纺丝电压为10kV,纺丝溶液流速为8mL,纺丝接收距离为10cm,接收棍电极转速为300rpm,针头来回走速30cm/min,纺丝时间24h;
(3)而后通过0.5mol/L的过硫酸铵溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为0.5mol/L,稳定剂为十二烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为770nm,电导率900S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为59%。
实施例6
(1)将聚乙烯吡咯烷酮(10%)溶解于二甲基乙酰胺中,溶解温度为20℃,搅拌溶解2h;而后将0.6g纳米碳管颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间2h;而后将聚偏氟乙烯加入其中,质量分数为18%,在温度70℃,搅拌时间8h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为30℃,纺丝电压为20kV,纺丝溶液流速为10mL,纺丝接收距离为15cm,接收棍电极转速为800rpm,针头来回走速40cm/min,纺丝时间72h;
(3)而后通过0.5mol/L的过硫酸铵溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为1.0mol/L,稳定剂为十八烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为800nm,电导率2850S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为95%。
实施例7
(1)将聚乙二醇(5%)溶解于二甲基乙酰胺中,溶解温度为20℃,搅拌溶解1h;而后将0.1g纳米磁性铁颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间1h;而后将聚丙烯腈加入其中,质量分数为12%,在温度60℃,搅拌时间24h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为30℃,纺丝电压为20kV,纺丝溶液流速为3mL,纺丝接收距离为15cm,接收棍电极转速为800rpm,针头来回走速30cm/min,纺丝时间72h;
(3)而后通过2.0mol/L的过硫酸铵溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为1.5mol/L,稳定剂为十二烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为440nm,电导率3120S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为81%。
实施例8
(1)将聚乙二醇(5%)溶解于二甲基乙酰胺中,溶解温度为25℃,搅拌溶解2h;而后将0.1g纳米二氧化钛颗粒加入上述溶液中,利用超声震荡方式分散纳米颗粒至均一,超声时间2h;而后将聚偏氟乙烯加入其中,在温度60℃,搅拌时间18h,至溶液均一稳定,得到纺丝原液;
(2)而后将纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜,静电纺丝条件为:温度为25℃,纺丝电压为10kV,纺丝溶液流速为1mL,纺丝接收距离为10cm,接收棍电极转速为800rpm,针头来回走速30cm/min,纺丝时间72h;
(3)而后通过2.0mol/L的过硫酸铵溶液浸渍并剥离得到氧化改性吸附膜,而后通过界面聚合手段,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维层‘核-壳’结构,从而得到导电吸附膜原膜;界面聚合过程用的导电高分子前体为吡咯,其摩尔浓度为1.5mol/L,稳定剂为十二烷基磺酸钠,其与吡咯的摩尔比为0.5:1;
(4)最后通过30%的丙酮、1mol/L的盐酸和去离子水反复清洗得到最终的纳米金属氧化物掺杂的导电吸附复合膜。
制得的纳米金属氧化物掺杂的导电吸附复合膜纤维直径为630nm,电导率2570S/m,3h内对40mg/L的甲基蓝的吸附效率为100%,经过6h通电降解,甲基蓝的降解效率为90%。
上述实施例对本发明的技术方案进行了详细说明。显然,本发明并不局限于所描述的实施例。基于本发明中的实施例,熟悉本技术领域的人员还可据此做出多种变化,但任何与本发明等同或相类似的变化都属于本发明保护的范围。

Claims (9)

1.一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜的方法,其特征在于,包括以下步骤:
(1)将高分子稳定剂和纳米金属氧化物溶解于有机溶剂中;
(2)将高聚物前体物加入步骤(1)所得溶液中,搅拌,得到纺丝原液;
(3)将步骤(2)得到的纺丝原液进行电纺,得到纳米金属氧化物掺杂的吸附膜;
(4)将步骤(3)得到的吸附膜浸入氧化剂溶液中剥离;
(5)将步骤(4)剥离的吸附膜进行界面聚合,在氧化改性膜表面和内部原位生长得到聚吡咯-纳米纤维核壳结构,从而得到导电吸附膜原膜;
(6)清洗步骤(5)得到的导电吸附膜原膜。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中所述高分子稳定剂为聚乙烯吡咯烷酮或聚乙二醇中的一种,其质量分数为5-10%;所述纳米金属氧化物为纳米磁性铁、纳米二氧化钛和纳米碳管中的一种,其质量分数为0.5-1.0%;所述有机溶剂为N,N-二甲基甲酰胺和二甲基乙酰胺中的一种。
3.根据权利要求1所述的方法,其特征在于:步骤(1)中进行超声分散1-3h。
4.根据权利要求1所述的方法,其特征在于:步骤(2)中所述高聚物前体物为聚丙烯腈和聚偏氟乙烯中的一种,其质量分数为12~18%。
5.根据权利要求1所述的方法,其特征在于:步骤(2)中所述搅拌时的温度60-70℃,搅拌的时间8-24h。
6.根据权利要求1所述的方法,其特征在于:步骤(3)中所述静电纺丝条件为:温度25-35℃,纺丝电压10-20kV,纺丝溶液流速1-10mL,纺丝接收距离10-15cm,接收棍电极转速300-1000rpm,针头来回走速20-40cm/min,纺丝时间24-72h。
7.根据权利要求1所述的方法,其特征在于:步骤(4)中所述氧化剂为六水合氯化铁和过硫酸铵中的一种,其摩尔浓度为0.5-2.0mol/L。
8.根据权利要求1所述的方法,其特征在于:步骤(5)所述界面聚合使用吡咯作为导电高分子前体,其摩尔浓度为0.5-2.0mol/L,使用十二烷基磺酸钠和十八烷基磺酸钠中的一种作为稳定剂,其与吡咯的摩尔比为0.5:1。
9.根据权利要求1所述的方法,其特征在于:步骤(6)所述清洗使用丙酮、盐酸和去离子水反复清洗。
CN201810528071.7A 2018-05-29 2018-05-29 一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法 Active CN108642861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810528071.7A CN108642861B (zh) 2018-05-29 2018-05-29 一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810528071.7A CN108642861B (zh) 2018-05-29 2018-05-29 一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法

Publications (2)

Publication Number Publication Date
CN108642861A true CN108642861A (zh) 2018-10-12
CN108642861B CN108642861B (zh) 2022-07-12

Family

ID=63758303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810528071.7A Active CN108642861B (zh) 2018-05-29 2018-05-29 一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法

Country Status (1)

Country Link
CN (1) CN108642861B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594132A (zh) * 2018-11-12 2019-04-09 江苏奥净嘉环保科技有限公司 一种静电纺丝制备光催化无纺布的方法
CN112546882A (zh) * 2020-11-18 2021-03-26 中国科学院生态环境研究中心 一种聚吡咯导电膜及其制备方法和应用
CN114855368A (zh) * 2022-05-23 2022-08-05 安徽工业大学 一种具备吸附性能的纳米纤维膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352547A (zh) * 2011-07-15 2012-02-15 沈健芬 一种导电超疏水碳纳米管/聚合物复合薄膜及其制备方法
CN102872729A (zh) * 2012-08-28 2013-01-16 三达膜环境技术股份有限公司 一种聚偏氟乙烯/聚丙烯腈有机-无机杂化中空纤维膜及其制备方法
CN102899898A (zh) * 2012-10-31 2013-01-30 东华大学 制备柔性超级电容器电极用导电聚吡咯复合织物的方法
CN103572606A (zh) * 2012-08-07 2014-02-12 嘉兴学院 具有核-壳结构的复合多孔纤维及双重孔结构膜制备方法
US20150017421A1 (en) * 2013-07-02 2015-01-15 The University Of Connecticut Electrically conductive synthetic fiber and fibrous substrate, method of making, and use thereof
CN106592110A (zh) * 2016-12-29 2017-04-26 嘉兴德扬生物科技有限公司 一种高强度碳纳米管‑聚丙烯腈杂化纳米纤维膜的制备及应用
CN106955678A (zh) * 2017-05-15 2017-07-18 南京大学 一种去除重金属阴离子的多孔纳米复合纤维膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352547A (zh) * 2011-07-15 2012-02-15 沈健芬 一种导电超疏水碳纳米管/聚合物复合薄膜及其制备方法
CN103572606A (zh) * 2012-08-07 2014-02-12 嘉兴学院 具有核-壳结构的复合多孔纤维及双重孔结构膜制备方法
CN102872729A (zh) * 2012-08-28 2013-01-16 三达膜环境技术股份有限公司 一种聚偏氟乙烯/聚丙烯腈有机-无机杂化中空纤维膜及其制备方法
CN102899898A (zh) * 2012-10-31 2013-01-30 东华大学 制备柔性超级电容器电极用导电聚吡咯复合织物的方法
US20150017421A1 (en) * 2013-07-02 2015-01-15 The University Of Connecticut Electrically conductive synthetic fiber and fibrous substrate, method of making, and use thereof
CN106592110A (zh) * 2016-12-29 2017-04-26 嘉兴德扬生物科技有限公司 一种高强度碳纳米管‑聚丙烯腈杂化纳米纤维膜的制备及应用
CN106955678A (zh) * 2017-05-15 2017-07-18 南京大学 一种去除重金属阴离子的多孔纳米复合纤维膜的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594132A (zh) * 2018-11-12 2019-04-09 江苏奥净嘉环保科技有限公司 一种静电纺丝制备光催化无纺布的方法
CN112546882A (zh) * 2020-11-18 2021-03-26 中国科学院生态环境研究中心 一种聚吡咯导电膜及其制备方法和应用
CN114855368A (zh) * 2022-05-23 2022-08-05 安徽工业大学 一种具备吸附性能的纳米纤维膜的制备方法

Also Published As

Publication number Publication date
CN108642861B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN104289042B (zh) 一种静电纺纳米纤维驻极过滤材料及其制备方法
WO2020221286A1 (zh) 一种β-FeOOH/聚丙烯腈的复合纳米纤维膜及其制备方法与应用
CN103774345B (zh) 一种高效低阻抗菌空气净化滤膜的制备方法
CN108642861A (zh) 一种静电纺丝制备纳米金属氧化物掺杂的导电吸附复合膜方法
CN101250770B (zh) 一种碳纳米管增强的聚丙烯腈基碳纤维的制备方法
CN101724919A (zh) 磁化静电纺丝法制备取向排列聚砜酰胺超细纤维的装置及方法
CN104695040A (zh) 一种高强聚丙烯腈纳米复合纤维的制备方法
CN108611704B (zh) 一种纳米碳纤维及其制备方法
CN106390766B (zh) 一种具有自清洁功能的仿鼻腔纤毛结构过滤材料
CN106178975A (zh) 一种聚偏氟乙烯/聚丙烯腈共混中空纤维膜
CN108993171A (zh) 凹凸棒石在提高聚偏氟乙烯超滤膜过滤通量中的应用
CN108315877A (zh) 一种石墨烯无纺布及其生产制造工艺
CN107021549A (zh) 石墨烯/碳纳米管/碳纳米纤维膜三元复合电容型脱盐电极的制备方法
CN112999895B (zh) 一种聚偏氟乙烯亲水拉伸膜的制备方法
CN111962183B (zh) 一种中空碳球纤维的制备方法
CN108847492A (zh) 一种n掺杂金属钴碳纳米纤维复合材料及其制备方法和应用
CN110975651B (zh) 一种多功能高效污水处理膜及其制备方法
CN104480560A (zh) 一种聚偏氟乙烯的静电纺丝液及其配制方法
CN107029693B (zh) 一种碳点掺杂二氧化钛复合微管及其制备方法
CN107354589A (zh) 一种耐磨、耐高温多孔纤维膜的制备方法
CN105780299B (zh) 一种超分子吸附滤网的制备方法
CN108691225B (zh) 一种高效集雾的浸润性复合加捻纤绳及其制备方法
CN110257944A (zh) 一种功能化纳米复合膜的制备方法及应用
CN111545180B (zh) 一种醋酸纤维素改性蒙脱土复合纳米纤维的制备方法
CN110523282A (zh) 一种UiO-66复合正渗透膜及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant