CN108641708B - 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 - Google Patents

基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 Download PDF

Info

Publication number
CN108641708B
CN108641708B CN201810604913.2A CN201810604913A CN108641708B CN 108641708 B CN108641708 B CN 108641708B CN 201810604913 A CN201810604913 A CN 201810604913A CN 108641708 B CN108641708 B CN 108641708B
Authority
CN
China
Prior art keywords
melamine
rhodamine
silver nanoclusters
compound
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810604913.2A
Other languages
English (en)
Other versions
CN108641708A (zh
Inventor
桂日军
付永鑫
金辉
卜祥宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201810604913.2A priority Critical patent/CN108641708B/zh
Publication of CN108641708A publication Critical patent/CN108641708A/zh
Priority to PCT/CN2019/076942 priority patent/WO2019237769A1/zh
Priority to US16/612,416 priority patent/US10913892B1/en
Application granted granted Critical
Publication of CN108641708B publication Critical patent/CN108641708B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于贵金属纳米材料和比率荧光探针的制备技术领域,具体涉及一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法。采用静电自组装构建了银纳米簇/罗丹明6G复合物;三聚氰胺与银纳米簇表面DNA中胸腺嘧啶形成氢键,使罗丹明6G从银纳米簇表面解离,荧光共振能量转移被破坏,银纳米簇荧光恢复。此过程对罗丹明6G荧光的影响甚微,作为参比信号,银纳米簇荧光作为响应信号。拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建出三聚氰胺比率荧光探针。该探针的制备工艺简单、成本低、产品灵敏度高,可发展为一种新颖的三聚氰胺比率荧光探针,用于实际样品中三聚氰胺的有效检测。

Description

基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
技术领域:
本发明属于贵金属纳米材料和比率荧光探针的制备技术领域,具体涉及一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法,其制备的探针可用于三聚氰胺的高灵敏度检测。
背景技术:
三聚氰胺是一种三嗪含氮杂环有机化合物,氮含量高达66%,常用于塑料、杀虫剂和肥料等诸多行业。添加1%的三聚氰胺可在食品中增加4%以上的蛋白含量,某些企业使用三聚氰胺代替蛋白质来获得高额利润。美国食品和药物管理局和中国卫生部对婴幼儿配方奶粉的安全限值为1毫克/千克,成人食品为2.5毫克/千克。检测日常食品中三聚氰胺的含量对人们的健康成长具有重要的意义。目前,检测三聚氰胺的方法主要包括高效液相色谱法、气相色谱与质谱联用法、分光光度法、表面增强拉曼散射法等。这些传统的检测方法普遍存在样品制备耗时、操作复杂、仪器昂贵、检测成本高等问题,发展一种低成本、简单、快速和高效的三聚氰胺检测方法已成为当前亟待解决的关键技术问题。
荧光法是利用物质本身或其表面修饰的官能团与检测物反应引起荧光强度或谱线位置发生变化,从而进行物质鉴别和含量测定的分析方法。该方法具有操作简便、灵敏度高等优点。文献检索表明:Wu等利用上转换纳米粒与金纳米粒之间荧光共振能量转移检测三聚氰胺(An upconversion fluorescence resonance energy transfer nanosensorfor one step detection of melamine in raw milk,Qiongqiong Wu,Qian Long,HaitaoLi,Youyu Zhang,Shouzhuo Yao,Talanta,2015,136,47-53);Kalaiyarasa等基于金纳米簇设计了三聚氰胺荧光传感器(Melamine dependent fluorescence of glutathioneprotected gold nanoclusters and ratiometric quantification of melamine incommercial cow milk and infant formula,Gopi Kalaiyarasan,Anusuya K,JamesJoseph,Appl.Surf.Sci.,2017,420,963-969);姜翠凤等报道了一种基于双光子激发荧光检测三聚氰胺的方法(专利公开号CN105158225A)。
比率荧光法是一种利用双发射荧光探针与检测物反应,以两个不同波长处荧光强度比值来定量检测的方法。比率荧光法具有自校准功能,可消除体系本身和环境因素产生的荧光干扰,有效提升了目标物检测结果的准确性和可靠性。银纳米簇具有独特的理化特性,如荧光发射强,光稳定性好,生物相容性高、亚纳米尺寸等优点,可用于纳米医学、生物成像、药物运载、生化传感等诸多领域。罗丹明6G是一种广泛使用的有机染料,具有光稳定性高、pH不敏感和高荧光量子产率等优点。尽管有关三聚氰胺荧光检测的文献已有报道,本发明首次构建了基于DNA稳定银纳米簇/罗丹明6G复合物的双发射荧光探针,并将其应用于实际样品中三聚氰胺的比率荧光检测。迄今,尚未有基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的国内外文献和专利报道。
发明内容:
本发明的目的在于克服上述现有技术存在的不足,设计一种方法简单易得、成本低廉、灵敏度高的基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针。
为了实现上述目的,本发明涉及的一种基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法其制备工艺包括以下步骤:
(1)制备DNA稳定的银纳米簇:在0℃下,向1毫升二次蒸馏水中加入一定量的硝酸银溶液与DNA溶液,磁力搅拌20分钟以形成均质混合液,然后加入新配制的硼氢化钠溶液,在避光处剧烈搅拌反应20分钟。所得产物溶液采用0.4微米的滤膜过滤,滤液经截留分子量为5000道尔顿的透析袋透析处理,以去除未反应的实验原料,将透析袋中溶液进行旋蒸处理以去除90%溶剂,再进行冷冻干燥得到银纳米簇干样,在4℃避光条件下储存备用;
(2)制备银纳米簇/罗丹明6G复合物:将步骤(1)中制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液混匀,再加入100微升不同浓度的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物;
(3)将步骤(2)中制得的复合物分散在100微升柠檬酸盐水缓冲液中,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比;
(4)在室温和缓慢磁力搅拌下,向步骤(3)中制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针。
本发明涉及的步骤(1)中所述的银纳米簇尺寸为6~12纳米,硝酸银、DNA和硼氢化钠的摩尔浓度分别为5~10毫摩尔/升、200~600微摩尔/升和5~10毫摩尔/升;步骤(2)中所述的柠檬酸盐水缓冲液pH为5.5~6.5,罗丹明6G摩尔浓度为0.1~2纳摩尔/升;步骤(3)中所述的复合物溶液质量浓度为1~5毫克/毫升;步骤(4)中所述的三聚氰胺的浓度范围为0.5~15微摩尔/升,检测限为0.05~0.2微摩尔/升。
本发明与现有技术相比,采用静电自组装技术构建了DNA稳定的银纳米簇/罗丹明6G复合物,罗丹明6G的吸收光谱与银纳米簇的荧光发射光谱部分重叠,二者发生荧光共振能量转移,引起银纳米簇荧光猝灭,而罗丹明6G荧光增强。外加的三聚氰胺可与DNA稳定的银纳米簇表面胸腺嘧啶形成强烈的氢键作用,使罗丹明6G从银纳米簇表面解离,供体与受体间距离增大,荧光共振能量转移减弱,从而使银纳米簇荧光恢复。此过程对罗丹明6G荧光的影响甚微,可作为参比信号,而银纳米簇荧光作为响应信号。通过拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,可构建出三聚氰胺比率荧光探针。该探针的制备工艺简单、成本低、产品灵敏度高,可发展为一种新颖的三聚氰胺比率荧光探针,用于实际样品中三聚氰胺的有效检测。
附图说明:
图1为本发明涉及的一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法示意图;
图2为随着罗丹明6G摩尔浓度增大对DNA稳定的银纳米簇与罗丹明6G复合物荧光发射峰强度的响应;
图3为随着三聚氰胺摩尔浓度增大对DNA稳定的银纳米簇与罗丹明6G复合物荧光发射峰强度的响应;
图4为DNA稳定的银纳米簇与罗丹明6G复合物的荧光峰强度比率与三聚氰胺摩尔浓度之间拟合的线性关系。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1
本实施例涉及的一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法,其制备工艺与三聚氰胺比率荧光检测原理参见图1所示,具体工艺步骤为:
制备DNA稳定的银纳米簇:在0℃下,向1毫升二次蒸馏水中加入一定量的硝酸银溶液与DNA溶液,磁力搅拌20分钟以形成均质混合液,然后加入新配制的硼氢化钠溶液,在避光处剧烈搅拌反应20分钟,其中硝酸银、DNA和硼氢化钠的摩尔浓度分别为5毫摩尔/升、200微摩尔/升和5毫摩尔/升。所得产物溶液采用0.4微米的滤膜过滤,滤液经截留分子量为5000道尔顿的透析袋透析处理,以去除未反应的实验原料,将透析袋中溶液进行旋蒸处理以去除90%溶剂,再进行冷冻干燥得到银纳米簇干样,在4℃避光条件下储存备用;
制备银纳米簇/罗丹明6G复合物:将制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液(pH 5.5)混匀,再加入100微升0.1~0.5纳摩尔/升的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物;
将制得的复合物分散在100微升柠檬酸盐水缓冲液中,复合物的质量浓度为1~2毫克/毫升,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比(参见图2);
在室温和缓慢磁力搅拌下,向制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱(参见图3),拟合银纳米簇与罗丹明6G荧光发射峰强度比率FDNA-Ag NCs/FRh 6G与三聚氰胺摩尔浓度CMA之间的线性关系为:FDNA-Ag NCs/FRh 6G=0.06014CMA+0.5612(R2=0.9959)(参见图4),构建三聚氰胺比率荧光探针,其中检测三聚氰胺的线性浓度范围为2~10微摩尔/升,三聚氰胺的检测极限为0.2微摩尔/升。
实施例2
本实施例中的制备DNA稳定的银纳米簇其具体工艺步骤同实施例1,其中硝酸银、DNA和硼氢化钠的摩尔浓度分别为8毫摩尔/升、400微摩尔/升和7毫摩尔/升。将制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液(pH 6.0)混匀,再加入100微升0.2~1纳摩尔/升的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物。将制得的复合物分散在100微升柠檬酸盐水缓冲液中,复合物的质量浓度为1~4毫克/毫升,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比。在室温和缓慢磁力搅拌下,向制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针,其中检测三聚氰胺的线性浓度范围为0.5~10微摩尔/升,三聚氰胺的检测极限为0.05微摩尔/升。
实施例3
本实施例中的制备DNA稳定的银纳米簇其具体工艺步骤同实施例1,其中硝酸银、DNA和硼氢化钠的摩尔浓度分别为10毫摩尔/升、600微摩尔/升和10毫摩尔/升。将制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液(pH 6.5)混匀,再加入100微升0.2~2纳摩尔/升的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物。将制得的复合物分散在100微升柠檬酸盐水缓冲液中,复合物的质量浓度为2~5毫克/毫升,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比。在室温和缓慢磁力搅拌下,向制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针,其中检测三聚氰胺的线性浓度范围为2~15微摩尔/升,三聚氰胺的检测极限为0.1微摩尔/升。
实施例4
本实施例涉及到实施例1制备的三聚氰胺比率荧光探针的应用,将其用于实际样品如牛奶中三聚氰胺的检测。将牛奶与不同浓度的三聚氰胺和乙腈混合,30分钟超声处理后制得混合物,然后以14000转/分钟的速度离心15分钟,取上清液过滤,滤液进一步稀释25倍并收集用于进一步检测,其中三聚氰胺摩尔浓度检测范围为0.5~15微摩尔/升,检测限达0.09微摩尔/升,检测回收率99.8~100.5%,相对标准偏差1.1~2.1%。与现有技术相比,如先前文献Talanta,2015,136,47-53和Appl.Surf.Sci.,2017,420,963-969采用单一或比率荧光方法检测三聚氰胺,对牛奶样品中三聚氰胺的检测回收率为94.0~102.0%,相对标准偏差为1.2~3.2%。本发明比率荧光探针的检测回收率更高,相对标准偏差更低,且制备工艺简便、成本低、产品灵敏度高,能够发展成为一种新颖的三聚氰胺比率荧光探针,适用于不同实际样品中三聚氰胺的高效检测。

Claims (1)

1.一种基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法,其特征在于,该方法具体包括以下步骤:
(1)制备DNA稳定的银纳米簇:在0℃下,向1毫升二次蒸馏水中加入一定量的硝酸银溶液与DNA溶液,磁力搅拌20分钟以形成均质混合液,然后加入新配制的硼氢化钠溶液,在避光处剧烈搅拌反应20分钟,所得产物溶液采用0.4微米的滤膜过滤,滤液经截留分子量为5000道尔顿的透析袋透析处理,以去除未反应的实验原料,将透析袋中溶液进行旋蒸处理以去除90%溶剂,再进行冷冻干燥得到银纳米簇干样,在4℃避光条件下储存备用;
(2)制备银纳米簇/罗丹明6G复合物:将步骤(1)中制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液混匀,再加入100微升不同浓度的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物;
(3)将步骤(2)中制得的复合物分散在100微升柠檬酸盐水缓冲液中,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比;
(4)在室温和缓慢磁力搅拌下,向步骤(3)中制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针;
步骤(1)中所述的银纳米簇尺寸为6~12纳米,硝酸银、DNA和硼氢化钠的摩尔浓度分别为5~10毫摩尔/升、200~600微摩尔/升和5~10毫摩尔/升;步骤(2)中所述的柠檬酸盐水缓冲液pH为5.5~6.5,罗丹明6G摩尔浓度为0.1~2纳摩尔/升;步骤(3)中所述的复合物溶液质量浓度为1~5毫克/毫升;步骤(4)中所述的三聚氰胺的浓度范围为0.5~15微摩尔/升,检测限为0.05~0.2微摩尔/升。
CN201810604913.2A 2018-06-13 2018-06-13 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 Expired - Fee Related CN108641708B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810604913.2A CN108641708B (zh) 2018-06-13 2018-06-13 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
PCT/CN2019/076942 WO2019237769A1 (zh) 2018-06-13 2019-03-05 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
US16/612,416 US10913892B1 (en) 2018-06-13 2019-03-05 Method for preparing ratiometric fluorescent probe for melamine based on silver nanocluster complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810604913.2A CN108641708B (zh) 2018-06-13 2018-06-13 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Publications (2)

Publication Number Publication Date
CN108641708A CN108641708A (zh) 2018-10-12
CN108641708B true CN108641708B (zh) 2019-07-12

Family

ID=63752219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810604913.2A Expired - Fee Related CN108641708B (zh) 2018-06-13 2018-06-13 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Country Status (3)

Country Link
US (1) US10913892B1 (zh)
CN (1) CN108641708B (zh)
WO (1) WO2019237769A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641708B (zh) 2018-06-13 2019-07-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
CN109827938A (zh) * 2019-03-25 2019-05-31 广州城市职业学院 一种测定三聚氰胺的生物传感方法
CN110699452B (zh) * 2019-09-30 2023-05-26 湘潭大学 一种基于银纳米簇对和G-三链体检测microRNA-21的比率型荧光探针
CN111426833B (zh) * 2020-04-07 2021-04-23 青岛大学 可视化检测肿瘤外泌体的纳米杂化物探针的制备方法
CN111624183B (zh) * 2020-06-05 2022-08-26 深圳职业技术学院 基于金簇和金纳米颗粒的荧光阵列传感器及其制备方法及应用
CN111855631B (zh) * 2020-07-29 2022-12-02 西北大学 雪花形dna晶体/铜纳米簇及其在检测肌动蛋白方面的应用
CN113340865B (zh) * 2021-06-09 2024-04-26 佛山市奇妙岛科技有限公司 一种橡皮泥中硼砂含量检测的材料及其制备方法和应用
CN114346253B (zh) * 2021-07-12 2024-02-13 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米簇-钯复合纳米片的制备方法及其产品和应用
CN113552104B (zh) * 2021-07-20 2022-12-13 江南大学 一种dna三通结-银簇比率型荧光传感器及检测氯霉素的方法
CN113695585B (zh) * 2021-08-23 2023-07-28 南通大学 一种酪蛋白保护的金银纳米簇的制备方法及其在金霉素检测中的应用
CN113514438A (zh) * 2021-08-24 2021-10-19 重庆大学 一种左旋多巴的高灵敏荧光检测方法及试剂盒
CN113831912B (zh) * 2021-10-20 2023-08-04 广东石油化工学院 一种基于自身荧光增强的土霉素比率荧光探针及制备与应用
CN114478402B (zh) * 2021-12-29 2023-09-05 福州大学 一种光诱导合成近红外发光的埃罗替尼银纳米团簇及其制备方法
US11773322B2 (en) 2022-02-28 2023-10-03 Jiangsu University Preparation and application of dye-functionalized flexible upconversion-luminescence solid-phase sensor
CN114674791B (zh) * 2022-02-28 2023-01-17 江苏大学 一种染料功能化的柔性上转换发光固相传感器的制备方法及其应用
CN114790216B (zh) * 2022-03-09 2023-09-22 山西大学 红色荧光银纳米团簇及其制备方法和应用
CN115109584B (zh) * 2022-07-11 2024-07-12 北京石油化工学院 一种用于检测吡啶二羧酸和Cu2+的荧光纳米探针复合材料及其制备方法和应用
CN115684103A (zh) * 2022-09-15 2023-02-03 济南大学 一种利用比率式荧光探针定量检测水泥pH值的方法
CN115555576B (zh) * 2022-09-26 2024-03-12 青牧科技南京有限公司 一种等离子共振表面多层自组装小分子结构、组装方法
CN115572597B (zh) * 2022-09-30 2024-09-10 青岛大学 一种硫代巴比妥酸-金纳米簇及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602670A (zh) * 2013-08-06 2014-02-26 江苏大学 一种用于检测缺氧诱导因子的荧光纳米核酸银的制备方法
CN104611416A (zh) * 2014-12-09 2015-05-13 临沂大学 基于signal-off的表面增强拉曼技术检测细胞内端粒酶活性
CN106018366A (zh) * 2016-05-09 2016-10-12 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057212A1 (en) * 2008-11-17 2010-05-20 Oxonica Materials, Inc. Melamine assay methods and systems
CN105334258A (zh) 2014-08-16 2016-02-17 青岛蓝农谷农产品研究开发有限公司 一种纳米荧光探针测定三聚氰胺的方法
CN105158225B (zh) 2015-09-16 2017-11-17 盐城工学院 一种双光子激发荧光检测三聚氰胺的方法
CN108641708B (zh) 2018-06-13 2019-07-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602670A (zh) * 2013-08-06 2014-02-26 江苏大学 一种用于检测缺氧诱导因子的荧光纳米核酸银的制备方法
CN104611416A (zh) * 2014-12-09 2015-05-13 临沂大学 基于signal-off的表面增强拉曼技术检测细胞内端粒酶活性
CN106018366A (zh) * 2016-05-09 2016-10-12 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Melamine-Induced Decomposition and Anti-FRET Effect from a Self-Assembled Complex of Rhodamine 6G and DNA-Stabilized Silver Nanoclusters Used for Dual-Emitting Ratiometric and Naked-Eye-Visible Fluorescence Detection;Yongxin Fu等;《J.Agric.Food Chem.》;20180830;第66卷;第9819-9827页

Also Published As

Publication number Publication date
US20210047559A1 (en) 2021-02-18
US10913892B1 (en) 2021-02-09
CN108641708A (zh) 2018-10-12
WO2019237769A1 (zh) 2019-12-19

Similar Documents

Publication Publication Date Title
CN108641708B (zh) 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
US10895536B1 (en) Method for preparing a ratiometric fluorescent sensor for phycoerythrin based on a magnetic molecularly imprinted core-shell polymer
CN109181690B (zh) 基于双发射量子点/银纳米粒复合物的霜脲氰比率荧光探针的制备方法
Zeng et al. Determination of melamine by flow injection analysis based on chemiluminescence system
CN107082785B (zh) 一种检测氰根离子的荧光探针及其合成和应用方法
CN101458215B (zh) 一种多联吡啶钌络合物的电化学发光适配子传感器及制法
Yue et al. A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters
CN106085410B (zh) PEI修饰碳点-FITC复合物作为比率荧光pH探针和Cu2+荧光探针的应用
CN111141711B (zh) 一种基于氮化碳量子点的亚硝酸盐检测方法
CN110658168B (zh) 一种金纳米团簇-金纳米棒免疫传感器对睾酮的检测方法
CN108535236A (zh) 一种基于双重放大SERS信号系统超灵敏检测miRNA的方法
CN101482554B (zh) 用于生物分离和检测的磁性拉曼纳米复合材料及其制备方法
Yuan et al. An effective approach to enhanced energy-transfer efficiency from up-converting phosphors and increased assay sensitivity
Li et al. Alkaline phosphatase activity assay with luminescent metal organic frameworks-based chemiluminescent resonance energy transfer platform
CN107722968B (zh) 一种基于纳米复合物的环丙沙星比率荧光探针的制备方法
CN104049087B (zh) 一种检测l-组氨酸的生物传感器的制备方法及其应用
CN114636746A (zh) 一种检测Pb2+的羧基配体诱导的湮灭型比率电化学发光适配体传感方法
Hu et al. A new fluorescent biosensor based on inner filter effect and competitive coordination with the europium ion of non-luminescent Eu-MOF nanosheets for the determination of alkaline phosphatase activity in human serum
CN106370634A (zh) CdTe QD@ZIF‑8核‑壳纳米复合材料在检测氧化酶活性中的应用
CN113567658B (zh) 一种基于发夹自组装的有机磷农药多残留生物条形码免疫检测试剂盒及其应用
Kang et al. Recent progress and developments of iridium-based compounds as probes for environmental analytes
Tavallali et al. Dye/metal ion-based chemosensing ensemble towards l-histidine and l-lysine determination in water via different optical responses
CN105838790B (zh) 一种银纳米簇传感器及其制备方法和在检测病毒基因中的应用
CN114689561B (zh) 一种基于拉曼静默区sers成像快速检测食品及环境中双酚a的方法
CN115015342A (zh) 金属离子掺杂硼纳米片复合物用作外泌体比率电化学适体传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190712