WO2019237769A1 - 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 - Google Patents

基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 Download PDF

Info

Publication number
WO2019237769A1
WO2019237769A1 PCT/CN2019/076942 CN2019076942W WO2019237769A1 WO 2019237769 A1 WO2019237769 A1 WO 2019237769A1 CN 2019076942 W CN2019076942 W CN 2019076942W WO 2019237769 A1 WO2019237769 A1 WO 2019237769A1
Authority
WO
WIPO (PCT)
Prior art keywords
melamine
rhodamine
solution
silver
complex
Prior art date
Application number
PCT/CN2019/076942
Other languages
English (en)
French (fr)
Inventor
桂日军
付永鑫
金辉
卜祥宁
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Priority to US16/612,416 priority Critical patent/US10913892B1/en
Publication of WO2019237769A1 publication Critical patent/WO2019237769A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Definitions

  • the invention belongs to the technical field of preparation of precious metal nanomaterials and ratio fluorescent probes, and particularly relates to a method for preparing a melamine ratio fluorescent probe based on a DNA-stabilized silver nanocluster and a rhodamine 6G complex.
  • the prepared probe can be used for Highly sensitive detection of melamine.
  • Melamine is a triazine nitrogen-containing heterocyclic organic compound with a nitrogen content of up to 66%. It is commonly used in many industries such as plastics, pesticides and fertilizers. Adding 1% melamine can increase the protein content in food by more than 4%. Some companies use melamine instead of protein to obtain high profits.
  • the US Food and Drug Administration and the Chinese Ministry of Health have a safety limit of 1 mg / kg for infant formula and 2.5 mg / kg for adult food. Detection of melamine in daily food is of great significance to people's healthy growth.
  • the detection methods of melamine mainly include high performance liquid chromatography, gas chromatography and mass spectrometry, spectrophotometry, surface enhanced Raman scattering and so on. These traditional detection methods generally have the problems of time-consuming sample preparation, complicated operation, expensive instruments, and high detection costs.
  • the development of a low-cost, simple, fast, and efficient melamine detection method has become a key technical problem that needs to be solved urgently.
  • Fluorescence method is an analysis method that uses the substance itself or its surface-modified functional group to react with the detection substance to cause changes in the fluorescence intensity or the position of the spectral line, thereby performing substance identification and content determination.
  • This method has the advantages of simple operation and high sensitivity.
  • Literature search shows that Wu et al.
  • the ratio fluorescence method is a method that uses a dual-emission fluorescent probe to react with a detection substance and quantitatively detects the ratio of fluorescence intensity at two different wavelengths.
  • the ratio fluorescence method has a self-calibration function, which can eliminate the fluorescence interference caused by the system itself and environmental factors, effectively improving the accuracy and reliability of the detection results of the target.
  • Silver nanoclusters have unique physical and chemical properties, such as strong fluorescence emission, good light stability, high biocompatibility, and sub-nano size. They can be used in many fields such as nanomedicine, bioimaging, drug delivery, and biochemical sensing.
  • Rhodamine 6G is a widely used organic dye with the advantages of high light stability, pH insensitivity, and high fluorescence quantum yield.
  • the present invention first constructs a dual-emission fluorescent probe based on a DNA-stabilized silver nanocluster / rhodamine 6G complex and applies it to the ratio fluorescence detection of melamine in actual samples. So far, no domestic or foreign literature and patent reports on melamine ratio fluorescent probes based on DNA-stabilized silver nanoclusters and rhodamine 6G complexes have been published.
  • the purpose of the present invention is to overcome the shortcomings of the prior art described above, and to design a melamine ratio fluorescent probe based on a DNA-stabilized silver nanocluster and rhodamine 6G complex that is simple and easy to obtain, low cost, and high sensitivity.
  • the present invention relates to a method for preparing a melamine ratio fluorescent probe based on a silver nanocluster complex.
  • the preparation process includes the following steps:
  • step (3) Disperse the complex prepared in step (2) in 100 microliters of citrate water buffer, incubate in a dark place for 30 minutes, and measure the homogeneous solution of the complex under different rhodamine 6G molar concentrations. Fluorescence emission spectrum, optimize the intensity of the dual emission fluorescence peaks to determine the ratio of silver nanoclusters to rhodamine 6G;
  • the size of the silver nanoclusters described in step (1) according to the present invention is 6 to 12 nanometers, and the molar concentrations of silver nitrate, DNA, and sodium borohydride are 5 to 10 mmol / L and 200 to 600 ⁇ mol / L, respectively.
  • the pH of the citrate aqueous buffer described in step (2) is 5.5 to 6.5, and the molar concentration of rhodamine 6G is 0.1 to 2 nanomol / L; as described in step (3)
  • the mass concentration of the complex solution is 1 to 5 mg / ml; the concentration range of the melamine in step (4) is 0.5 to 15 micromoles / liter, and the detection limit is 0.05 to 0.2 micromoles / liter.
  • the present invention uses electrostatic self-assembly technology to construct a DNA-stabilized silver nanocluster / rhodamine 6G complex.
  • the absorption spectrum of rhodamine 6G and the fluorescence emission spectrum of the silver nanocluster partially overlap, and fluorescence occurs between the two.
  • Resonance energy transfer caused the fluorescence quenching of silver nanoclusters, while the rhodamine 6G fluorescence increased.
  • the added melamine can form a strong hydrogen bond with thymine on the surface of the DNA-stabilized silver nanocluster, dissociate rhodamine 6G from the surface of the silver nanocluster, increase the distance between the donor and the acceptor, and weaken the fluorescence resonance energy transfer.
  • a melamine ratio fluorescent probe can be constructed.
  • the preparation process of the probe is simple, the cost is low, and the product sensitivity is high.
  • the probe can be developed into a novel melamine ratio fluorescent probe for effective detection of melamine in actual samples.
  • FIG. 1 is a schematic diagram of a method for preparing a melamine ratio fluorescent probe based on a DNA-stabilized silver nanocluster and a rhodamine 6G complex according to the present invention
  • FIG. 2 shows the response to the fluorescence emission peak intensity of a DNA-stabilized silver nanocluster and rhodamine 6G complex as the molar concentration of rhodamine 6G increases;
  • FIG. 4 is a linear relationship between the fluorescence peak intensity ratio of the DNA-stabilized silver nanocluster and the rhodamine 6G complex and the molar concentration of melamine.
  • This embodiment relates to a method for preparing a melamine ratio fluorescent probe based on a DNA-stabilized silver nanocluster and a rhodamine 6G complex.
  • the preparation process and principle of melamine ratio fluorescence detection are shown in FIG. 1. The specific process steps are as follows:
  • DNA-stable silver nanoclusters At 0 ° C, add a certain amount of silver nitrate solution and DNA solution to 1 ml of secondary distilled water, magnetically stir for 20 minutes to form a homogeneous mixed solution, and then add freshly prepared sodium borohydride The solution was stirred and reacted for 20 minutes in a dark place.
  • the molar concentrations of silver nitrate, DNA and sodium borohydride were 5 mmol / L, 200 ⁇ mol / L and 5 mmol / L, respectively.
  • the obtained product solution was filtered through a 0.4 micron filter membrane, and the filtrate was dialyzed by a dialysis bag with a molecular weight cut-off of 5000 Daltons to remove unreacted experimental raw materials.
  • the solution in the dialysis bag was subjected to a rotary evaporation treatment to remove 90% of the solvent, and then Freeze-dried to obtain dry samples of silver nanoclusters, stored at 4 ° C and protected from light;
  • Preparation of silver nanocluster / rhodamine 6G complex dissolve the prepared silver nanocluster in 200 microliters of secondary distilled water, add 100 microliters of citrate water buffer (pH 5.5) and mix, and then add 100 microliters A rhodamine 6G solution of 0.1 to 0.5 nanomole / liter, the mixed solution is reacted in a dark place for 30 minutes, and the product solution is centrifuged, washed with ethanol, and dried under vacuum to obtain a silver nanocluster / rhodamine 6G complex;
  • the prepared complex was dispersed in 100 microliters of citrate water buffer solution, the mass concentration of the complex was 1 to 2 mg / ml, and incubated in a dark place for 30 minutes, and the rhodamine 6G molar concentrations were measured. Fluorescence emission spectrum of the homogeneous solution of the complex, and optimize the intensity of the dual emission fluorescence peaks to determine the ratio of silver nanoclusters to rhodamine 6G (see Figure 2);
  • the specific process steps for preparing DNA-stabilized silver nanoclusters in this example are the same as in Example 1.
  • the molar concentrations of silver nitrate, DNA, and sodium borohydride are 8 mmol / L, 400 ⁇ mol / L, and 7 mmol, respectively. /Rise.
  • the prepared silver nanoclusters were dissolved in 200 microliters of secondary distilled water, 100 microliters of citrate water buffer solution (pH 6.0) was added, and 100 microliters of 0.2 to 1 nanomole / liter of rhodamine 6G were added. The solution and the mixed solution were reacted in a dark place for 30 minutes.
  • the product solution was centrifuged, washed with ethanol, and dried under vacuum to obtain a silver nanocluster / rhodamine 6G complex.
  • the fluorescence emission spectrum of the homogeneous solution of the complex was optimized to optimize the intensity of the dual emission fluorescence peaks to determine the ratio of silver nanoclusters to rhodamine 6G.
  • the specific process steps for preparing DNA-stabilized silver nanoclusters in this example are the same as in Example 1.
  • the molar concentrations of silver nitrate, DNA, and sodium borohydride are 10 mmol / L, 600 ⁇ mol / L, and 10 mmol, respectively. /Rise.
  • the prepared silver nanoclusters were dissolved in 200 microliters of secondary distilled water, 100 microliters of citrate water buffer (pH 6.5) was added and mixed, and then 100 microliters of 0.2 to 2 nanomole / liter of rhodamine 6G were added. The solution and the mixed solution were reacted in a dark place for 30 minutes.
  • the product solution was centrifuged, washed with ethanol, and dried under vacuum to obtain a silver nanocluster / rhodamine 6G complex.
  • the fluorescence emission spectrum of the homogeneous solution of the complex was optimized to optimize the intensity of the dual emission fluorescence peaks to determine the ratio of silver nanoclusters to rhodamine 6G.
  • This embodiment relates to the application of the melamine ratio fluorescent probe prepared in Example 1, which is used for the detection of melamine in an actual sample such as milk.
  • Milk is mixed with melamine and acetonitrile with different concentrations, and the mixture is prepared by sonication for 30 minutes, and then centrifuged at 14000 rpm for 15 minutes. The supernatant is filtered and the filtrate is further diluted 25 times and collected for further testing.
  • the detection range of the melamine molar concentration is 0.5 to 15 micromoles / liter, the detection limit is 0.09 micromoles / liter, the detection recovery rate is 99.8 to 100.5%, and the relative standard deviation is 1.1 to 2.1%.
  • ratio fluorescence method is used to detect melamine, and the detection recovery of melamine in milk samples is It is 94.0 to 102.0%, and the relative standard deviation is 1.2 to 3.2%.
  • the ratio fluorescence probe of the invention has higher detection recovery rate, lower relative standard deviation, simple preparation process, low cost and high product sensitivity, and can be developed into a novel melamine ratio fluorescence probe, which is suitable for different practical samples. Efficient detection of melamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于贵金属纳米材料和比率荧光探针的制备技术领域,具体涉及一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法。采用静电自组装构建了银纳米簇/罗丹明6G复合物;三聚氰胺与银纳米簇表面DNA中胸腺嘧啶形成氢键,使罗丹明6G从银纳米簇表面解离,荧光共振能量转移被破坏,银纳米簇荧光恢复。此过程对罗丹明6G荧光的影响甚微,作为参比信号,银纳米簇荧光作为响应信号。拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建出三聚氰胺比率荧光探针。该探针的制备工艺简单、成本低、产品灵敏度高,可发展为一种新颖的三聚氰胺比率荧光探针,用于实际样品中三聚氰胺的有效检测。

Description

基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 技术领域
本发明属于贵金属纳米材料和比率荧光探针的制备技术领域,具体涉及一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法,其制备的探针可用于三聚氰胺的高灵敏度检测。
背景技术
三聚氰胺是一种三嗪含氮杂环有机化合物,氮含量高达66%,常用于塑料、杀虫剂和肥料等诸多行业。添加1%的三聚氰胺可在食品中增加4%以上的蛋白含量,某些企业使用三聚氰胺代替蛋白质来获得高额利润。美国食品和药物管理局和中国卫生部对婴幼儿配方奶粉的安全限值为1毫克/千克,成人食品为2.5毫克/千克。检测日常食品中三聚氰胺的含量对人们的健康成长具有重要的意义。目前,检测三聚氰胺的方法主要包括高效液相色谱法、气相色谱与质谱联用法、分光光度法、表面增强拉曼散射法等。这些传统的检测方法普遍存在样品制备耗时、操作复杂、仪器昂贵、检测成本高等问题,发展一种低成本、简单、快速和高效的三聚氰胺检测方法已成为当前亟待解决的关键技术问题。
荧光法是利用物质本身或其表面修饰的官能团与检测物反应引起荧光强度或谱线位置发生变化,从而进行物质鉴别和含量测定的分析方法。该方法具有操作简便、灵敏度高等优点。文献检索表明:Wu等利用上转换纳米粒与金纳米粒之间荧光共振能量转移检测三聚氰胺(An upconversion fluorescence resonance energy transfer nanosensor for one step detection ofmelamine in raw milk,Qiongqiong Wu,Qian Long,Haitao Li,Youyu Zhang,Shouzhuo Yao,Talanta,2015,136,47-53);Kalaiyarasa等基于金纳米簇设计了三聚氰胺荧光传感器(Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula, Gopi Kalaiyarasan,Anusuya K,James Joseph,Appl.Surf.Sci.,2017,420,963-969);姜翠凤等报道了一种基于双光子激发荧光检测三聚氰胺的方法(专利公开号CN105158225A)。
比率荧光法是一种利用双发射荧光探针与检测物反应,以两个不同波长处荧光强度比值来定量检测的方法。比率荧光法具有自校准功能,可消除体系本身和环境因素产生的荧光干扰,有效提升了目标物检测结果的准确性和可靠性。银纳米簇具有独特的理化特性,如荧光发射强,光稳定性好,生物相容性高、亚纳米尺寸等优点,可用于纳米医学、生物成像、药物运载、生化传感等诸多领域。罗丹明6G是一种广泛使用的有机染料,具有光稳定性高、pH不敏感和高荧光量子产率等优点。尽管有关三聚氰胺荧光检测的文献已有报道,本发明首次构建了基于DNA稳定银纳米簇/罗丹明6G复合物的双发射荧光探针,并将其应用于实际样品中三聚氰胺的比率荧光检测。迄今,尚未有基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的国内外文献和专利报道。
发明内容
本发明的目的在于克服上述现有技术存在的不足,设计一种方法简单易得、成本低廉、灵敏度高的基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针。
为了实现上述目的,本发明涉及的一种基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法其制备工艺包括以下步骤:
(1)制备DNA稳定的银纳米簇:在0℃下,向1毫升二次蒸馏水中加入一定量的硝酸银溶液与DNA溶液,磁力搅拌20分钟以形成均质混合液,然后加入新配制的硼氢化钠溶液,在避光处剧烈搅拌反应20分钟。所得产物溶液采用0.4微米的滤膜过滤,滤液经截留分子量为5000道尔顿的透析袋透析处理,以去除未反应的实验原料,将透析袋中溶液进行旋蒸处理以去除90%溶剂,再进行冷冻干燥得到银纳米簇干样,在 4℃避光条件下储存备用;
(2)制备银纳米簇/罗丹明6G复合物:将步骤(1)中制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液混匀,再加入100微升不同浓度的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物;
(3)将步骤(2)中制得的复合物分散在100微升柠檬酸盐水缓冲液中,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比;
(4)在室温和缓慢磁力搅拌下,向步骤(3)中制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针。
本发明涉及的步骤(1)中所述的银纳米簇尺寸为6~12纳米,硝酸银、DNA和硼氢化钠的摩尔浓度分别为5~10毫摩尔/升、200~600微摩尔/升和5~10毫摩尔/升;步骤(2)中所述的柠檬酸盐水缓冲液pH为5.5~6.5,罗丹明6G摩尔浓度为0.1~2纳摩尔/升;步骤(3)中所述的复合物溶液质量浓度为1~5毫克/毫升;步骤(4)中所述的三聚氰胺的浓度范围为0.5~15微摩尔/升,检测限为0.05~0.2微摩尔/升。
本发明与现有技术相比,采用静电自组装技术构建了DNA稳定的银纳米簇/罗丹明6G复合物,罗丹明6G的吸收光谱与银纳米簇的荧光发射光谱部分重叠,二者发生荧光共振能量转移,引起银纳米簇荧光猝灭,而罗丹明6G荧光增强。外加的三聚氰胺可与DNA稳定的银纳米簇表面胸腺嘧啶形成强烈的氢键作用,使罗丹明6G从银纳米簇表面解 离,供体与受体间距离增大,荧光共振能量转移减弱,从而使银纳米簇荧光恢复。此过程对罗丹明6G荧光的影响甚微,可作为参比信号,而银纳米簇荧光作为响应信号。通过拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,可构建出三聚氰胺比率荧光探针。该探针的制备工艺简单、成本低、产品灵敏度高,可发展为一种新颖的三聚氰胺比率荧光探针,用于实际样品中三聚氰胺的有效检测。
附图说明
图1为本发明涉及的一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法示意图;
图2为随着罗丹明6G摩尔浓度增大对DNA稳定的银纳米簇与罗丹明6G复合物荧光发射峰强度的响应;
图3为随着三聚氰胺摩尔浓度增大对DNA稳定的银纳米簇与罗丹明6G复合物荧光发射峰强度的响应;
图4为DNA稳定的银纳米簇与罗丹明6G复合物的荧光峰强度比率与三聚氰胺摩尔浓度之间拟合的线性关系。
具体实施方式
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1
本实施例涉及的一种基于DNA稳定的银纳米簇与罗丹明6G复合物的三聚氰胺比率荧光探针的制备方法,其制备工艺与三聚氰胺比率荧光检测原理参见图1所示,具体工艺步骤为:
制备DNA稳定的银纳米簇:在0℃下,向1毫升二次蒸馏水中加入一定量的硝酸银溶液与DNA溶液,磁力搅拌20分钟以形成均质混合液,然后加入新配制的硼氢化钠溶液,在避光处剧烈搅拌反应20分钟,其中硝酸银、DNA和硼氢化钠的摩尔浓度分别为5毫摩尔/升、200微摩尔/升和5毫摩尔/升。所得产物溶液采用0.4微米的滤膜过滤,滤液经 截留分子量为5000道尔顿的透析袋透析处理,以去除未反应的实验原料,将透析袋中溶液进行旋蒸处理以去除90%溶剂,再进行冷冻干燥得到银纳米簇干样,在4℃避光条件下储存备用;
制备银纳米簇/罗丹明6G复合物:将制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液(pH 5.5)混匀,再加入100微升0.1~0.5纳摩尔/升的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物;
将制得的复合物分散在100微升柠檬酸盐水缓冲液中,复合物的质量浓度为1~2毫克/毫升,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比(参见图2);
在室温和缓慢磁力搅拌下,向制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱(参见图3),拟合银纳米簇与罗丹明6G荧光发射峰强度比率F DNA-AgNCs/F Rh6G与三聚氰胺摩尔浓度C MA之间的线性关系为:F DNA-AgNCs/F Rh6G=0.06014C MA+0.5612(R 2=0.9959)(参见图4),构建三聚氰胺比率荧光探针,其中检测三聚氰胺的线性浓度范围为2~10微摩尔/升,三聚氰胺的检测极限为0.2微摩尔/升。
实施例2
本实施例中的制备DNA稳定的银纳米簇其具体工艺步骤同实施例1,其中硝酸银、DNA和硼氢化钠的摩尔浓度分别为8毫摩尔/升、400微摩尔/升和7毫摩尔/升。将制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液(pH 6.0)混匀,再加入100微升0.2~1纳摩尔/升的罗丹明6G溶液,混合液在避光处反应30分钟,产物 溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物。将制得的复合物分散在100微升柠檬酸盐水缓冲液中,复合物的质量浓度为1~4毫克/毫升,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比。在室温和缓慢磁力搅拌下,向制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针,其中检测三聚氰胺的线性浓度范围为0.5~10微摩尔/升,三聚氰胺的检测极限为0.05微摩尔/升。
实施例3
本实施例中的制备DNA稳定的银纳米簇其具体工艺步骤同实施例1,其中硝酸银、DNA和硼氢化钠的摩尔浓度分别为10毫摩尔/升、600微摩尔/升和10毫摩尔/升。将制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液(pH 6.5)混匀,再加入100微升0.2~2纳摩尔/升的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物。将制得的复合物分散在100微升柠檬酸盐水缓冲液中,复合物的质量浓度为2~5毫克/毫升,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比。在室温和缓慢磁力搅拌下,向制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率 与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针,其中检测三聚氰胺的线性浓度范围为2~15微摩尔/升,三聚氰胺的检测极限为0.1微摩尔/升。
实施例4
本实施例涉及到实施例1制备的三聚氰胺比率荧光探针的应用,将其用于实际样品如牛奶中三聚氰胺的检测。将牛奶与不同浓度的三聚氰胺和乙腈混合,30分钟超声处理后制得混合物,然后以14000转/分钟的速度离心15分钟,取上清液过滤,滤液进一步稀释25倍并收集用于进一步检测,其中三聚氰胺摩尔浓度检测范围为0.5~15微摩尔/升,检测限达0.09微摩尔/升,检测回收率99.8~100.5%,相对标准偏差1.1~2.1%。与现有技术相比,如先前文献Talanta,2015,136,47-53和Appl.Surf.Sci.,2017,420,963-969采用单一或比率荧光方法检测三聚氰胺,对牛奶样品中三聚氰胺的检测回收率为94.0~102.0%,相对标准偏差为1.2~3.2%。本发明比率荧光探针的检测回收率更高,相对标准偏差更低,且制备工艺简便、成本低、产品灵敏度高,能够发展成为一种新颖的三聚氰胺比率荧光探针,适用于不同实际样品中三聚氰胺的高效检测。

Claims (1)

  1. 一种基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法,其特征在于,该方法具体包括以下步骤:
    (1)制备DNA稳定的银纳米簇:在0℃下,向1毫升二次蒸馏水中加入一定量的硝酸银溶液与DNA溶液,磁力搅拌20分钟以形成均质混合液,然后加入新配制的硼氢化钠溶液,在避光处剧烈搅拌反应20分钟。所得产物溶液采用0.4微米的滤膜过滤,滤液经截留分子量为5000道尔顿的透析袋透析处理,以去除未反应的实验原料,将透析袋中溶液进行旋蒸处理以去除90%溶剂,再进行冷冻干燥得到银纳米簇干样,在4℃避光条件下储存备用;
    (2)制备银纳米簇/罗丹明6G复合物:将步骤(1)中制得的银纳米簇溶解在200微升二次蒸馏水中,加入100微升柠檬酸盐水缓冲液混匀,再加入100微升不同浓度的罗丹明6G溶液,混合液在避光处反应30分钟,产物溶液采用离心分离、乙醇洗涤和真空干燥处理,得到银纳米簇/罗丹明6G复合物;
    (3)将步骤(2)中制得的复合物分散在100微升柠檬酸盐水缓冲液中,在避光处孵化30分钟,分别测定不同罗丹明6G摩尔浓度下,复合物均质溶液的荧光发射光谱,优化双发射荧光峰强度以确定银纳米簇与罗丹明6G的配比;
    (4)在室温和缓慢磁力搅拌下,向步骤(3)中制得的优化配比复合物均质溶液中加入15微升不同浓度的三聚氰胺溶液,继续搅拌5分钟,使其充分反应形成复合物与三聚氰胺的均质溶液,测定不同的三聚氰胺摩尔浓度下,复合物与三聚氰胺均质溶液的荧光发射光谱,拟合银纳米簇与罗丹明6G荧光发射峰强度比率与三聚氰胺摩尔浓度之间的线性关系,构建三聚氰胺比率荧光探针。
    本发明涉及的步骤(1)中所述的银纳米簇尺寸为6~12纳米,硝酸银、DNA和硼氢化钠的摩尔浓度分别为5~10毫摩尔/升、200~600微摩尔/升和5~10毫摩尔/升;步骤(2)中所述的柠檬酸盐水缓冲液pH为5.5~6.5,罗丹明6G摩尔浓度为0.1~2纳摩尔/升;步骤(3)中所述的复 合物溶液质量浓度为1~5毫克/毫升;步骤(4)中所述的三聚氰胺的浓度范围为0.5~15微摩尔/升,检测限为0.05~0.2微摩尔/升。
PCT/CN2019/076942 2018-06-13 2019-03-05 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法 WO2019237769A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,416 US10913892B1 (en) 2018-06-13 2019-03-05 Method for preparing ratiometric fluorescent probe for melamine based on silver nanocluster complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810604913.2 2018-06-13
CN201810604913.2A CN108641708B (zh) 2018-06-13 2018-06-13 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Publications (1)

Publication Number Publication Date
WO2019237769A1 true WO2019237769A1 (zh) 2019-12-19

Family

ID=63752219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076942 WO2019237769A1 (zh) 2018-06-13 2019-03-05 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Country Status (3)

Country Link
US (1) US10913892B1 (zh)
CN (1) CN108641708B (zh)
WO (1) WO2019237769A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340865A (zh) * 2021-06-09 2021-09-03 浦江县富盛塑胶新材料有限公司 一种橡皮泥中硼砂含量检测方法和材料
CN113514438A (zh) * 2021-08-24 2021-10-19 重庆大学 一种左旋多巴的高灵敏荧光检测方法及试剂盒
CN113552104A (zh) * 2021-07-20 2021-10-26 江南大学 一种dna三通结-银簇比率型荧光传感器及检测氯霉素的方法
CN113831912A (zh) * 2021-10-20 2021-12-24 广东石油化工学院 一种基于自身荧光增强的土霉素比率荧光探针及制备与应用
CN114790216A (zh) * 2022-03-09 2022-07-26 山西大学 红色荧光银纳米团簇及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641708B (zh) * 2018-06-13 2019-07-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
CN109827938A (zh) * 2019-03-25 2019-05-31 广州城市职业学院 一种测定三聚氰胺的生物传感方法
CN110699452B (zh) * 2019-09-30 2023-05-26 湘潭大学 一种基于银纳米簇对和G-三链体检测microRNA-21的比率型荧光探针
CN111426833B (zh) * 2020-04-07 2021-04-23 青岛大学 可视化检测肿瘤外泌体的纳米杂化物探针的制备方法
CN111624183B (zh) * 2020-06-05 2022-08-26 深圳职业技术学院 基于金簇和金纳米颗粒的荧光阵列传感器及其制备方法及应用
CN111855631B (zh) * 2020-07-29 2022-12-02 西北大学 雪花形dna晶体/铜纳米簇及其在检测肌动蛋白方面的应用
CN114346253B (zh) * 2021-07-12 2024-02-13 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米簇-钯复合纳米片的制备方法及其产品和应用
CN113695585B (zh) * 2021-08-23 2023-07-28 南通大学 一种酪蛋白保护的金银纳米簇的制备方法及其在金霉素检测中的应用
CN114478402B (zh) * 2021-12-29 2023-09-05 福州大学 一种光诱导合成近红外发光的埃罗替尼银纳米团簇及其制备方法
CN114674791B (zh) * 2022-02-28 2023-01-17 江苏大学 一种染料功能化的柔性上转换发光固相传感器的制备方法及其应用
US11773322B2 (en) 2022-02-28 2023-10-03 Jiangsu University Preparation and application of dye-functionalized flexible upconversion-luminescence solid-phase sensor
CN115684103A (zh) * 2022-09-15 2023-02-03 济南大学 一种利用比率式荧光探针定量检测水泥pH值的方法
CN115555576B (zh) * 2022-09-26 2024-03-12 青牧科技南京有限公司 一种等离子共振表面多层自组装小分子结构、组装方法
CN115572597A (zh) * 2022-09-30 2023-01-06 青岛大学 一种硫代巴比妥酸-金纳米簇及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334258A (zh) * 2014-08-16 2016-02-17 青岛蓝农谷农产品研究开发有限公司 一种纳米荧光探针测定三聚氰胺的方法
CN106018366A (zh) * 2016-05-09 2016-10-12 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用
CN108641708A (zh) * 2018-06-13 2018-10-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574916B2 (en) * 2008-11-17 2013-11-05 Cabot Security Materials Inc. Melamine assay methods and systems
CN103602670A (zh) * 2013-08-06 2014-02-26 江苏大学 一种用于检测缺氧诱导因子的荧光纳米核酸银的制备方法
CN104611416A (zh) * 2014-12-09 2015-05-13 临沂大学 基于signal-off的表面增强拉曼技术检测细胞内端粒酶活性
CN105158225B (zh) 2015-09-16 2017-11-17 盐城工学院 一种双光子激发荧光检测三聚氰胺的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334258A (zh) * 2014-08-16 2016-02-17 青岛蓝农谷农产品研究开发有限公司 一种纳米荧光探针测定三聚氰胺的方法
CN106018366A (zh) * 2016-05-09 2016-10-12 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用
CN108641708A (zh) * 2018-06-13 2018-10-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANDRASEKHARAN ET AL.: "Dye-Capped Gold Nanoclusters: Photoinduced Morphological Changes in Gold/Rhodamine 6G Nanoassemblies", J. PHYS. CHEM. B, 26 October 2000 (2000-10-26), pages 11103 - 11109, XP055672754, ISSN: 1520-5207 *
FU YONGXIN: "Melamine-Induced Decomposition and Anti-FRET Effect from Self-Assembled Complex of Rhodamine 6G and DNA-Stabilized Silver Nanoclu- ;ters Used for Dual-Emitting Ratiometric and Naked-Eye-Visible Fluorescenc letection", AGRIC. FOOD CHEM., 30 August 2018 (2018-08-30), ISSN: 1520-5118 *
HAN SHUANG: "Oligonucleotide-Stabilized Fluorescent Silver Nanoclusters for turn-on Detection of Melamine", 3IOSENSORS AND BIOELECTRONICS, 26 April 2012 (2012-04-26), pages 267 - 270, XP028511823, ISSN: 1873-4235 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340865A (zh) * 2021-06-09 2021-09-03 浦江县富盛塑胶新材料有限公司 一种橡皮泥中硼砂含量检测方法和材料
CN113340865B (zh) * 2021-06-09 2024-04-26 佛山市奇妙岛科技有限公司 一种橡皮泥中硼砂含量检测的材料及其制备方法和应用
CN113552104A (zh) * 2021-07-20 2021-10-26 江南大学 一种dna三通结-银簇比率型荧光传感器及检测氯霉素的方法
CN113552104B (zh) * 2021-07-20 2022-12-13 江南大学 一种dna三通结-银簇比率型荧光传感器及检测氯霉素的方法
CN113514438A (zh) * 2021-08-24 2021-10-19 重庆大学 一种左旋多巴的高灵敏荧光检测方法及试剂盒
CN113831912A (zh) * 2021-10-20 2021-12-24 广东石油化工学院 一种基于自身荧光增强的土霉素比率荧光探针及制备与应用
CN114790216A (zh) * 2022-03-09 2022-07-26 山西大学 红色荧光银纳米团簇及其制备方法和应用
CN114790216B (zh) * 2022-03-09 2023-09-22 山西大学 红色荧光银纳米团簇及其制备方法和应用

Also Published As

Publication number Publication date
US10913892B1 (en) 2021-02-09
CN108641708A (zh) 2018-10-12
CN108641708B (zh) 2019-07-12
US20210047559A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2019237769A1 (zh) 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
Jalili et al. Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers
Jiang et al. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection
Chen et al. Inner filter effect-based fluorescent sensing systems: A review
WO2020093639A1 (zh) 一种基于磁性分子印迹核/壳聚合物的藻红蛋白比率荧光传感器的制备方法
Gunjal et al. Nitrogen doped waste tea residue derived carbon dots for selective quantification of tetracycline in urine and pharmaceutical samples and yeast cell imaging application
Peng et al. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer
Zhou et al. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots
Yuan et al. Triple-dimensional spectroscopy combined with chemometrics for the discrimination of pesticide residues based on ionic liquid-stabilized Mn-ZnS quantum dots and covalent organic frameworks
Dai et al. Green/red dual emissive carbon dots for ratiometric fluorescence detection of acid red 18 in food
Yue et al. A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters
Zhang et al. A ratiometric fluorometric epinephrine and norepinephrine assay based on carbon dot and CdTe quantum dots nanocomposites
Chen et al. A structure-dependent ratiometric fluorescence sensor based on metal-organic framework for detection of 2, 6-pyridinedicarboxylic acid
Xue et al. Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘‘turn-on’’fluorescence sensors for biothiols
Shokri et al. Virus-directed synthesis of emitting copper nanoclusters as an approach to simple tracer preparation for the detection of Citrus Tristeza Virus through the fluorescence anisotropy immunoassay
Huang et al. Surface enhanced FRET for sensitive and selective detection of doxycycline using organosilicon nanodots as donors
Lei et al. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins
Li et al. Glucose detection via glucose-induced disaggregation of ammonium-modified tetraphenylethylene from polyanion
Amalraj et al. Dual fluorometric biosensor based on a nanoceria encapsulated metal organic framework and a signal amplification strategy of a hybridization chain reaction for the detection of melamine and Pb 2+ ions in food samples
Hu et al. Dual-quenching electrochemiluminescence resonance energy transfer system from IRMOF-3 coreaction accelerator enriched nitrogen-doped GQDs to ZnO@ Au for sensitive detection of procalcitonin
Hu et al. A new fluorescent biosensor based on inner filter effect and competitive coordination with the europium ion of non-luminescent Eu-MOF nanosheets for the determination of alkaline phosphatase activity in human serum
Song et al. Ratiometric fluorescent detection of superoxide anion with polystyrene@ nanoscale coordination polymers
Guo et al. A novel fluorescent Si/CDs for highly sensitive Hg2+ sensing in water environment
Yang et al. One-step hydrothermal synthesis of near-infrared emission carbon quantum dots as fluorescence aptamer sensor for cortisol sensing and imaging
Jiang et al. Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819028

Country of ref document: EP

Kind code of ref document: A1