CN108624993A - 一种无劈裂结构高导热中间相沥青基碳纤维的制备方法 - Google Patents

一种无劈裂结构高导热中间相沥青基碳纤维的制备方法 Download PDF

Info

Publication number
CN108624993A
CN108624993A CN201810440812.6A CN201810440812A CN108624993A CN 108624993 A CN108624993 A CN 108624993A CN 201810440812 A CN201810440812 A CN 201810440812A CN 108624993 A CN108624993 A CN 108624993A
Authority
CN
China
Prior art keywords
mesophase pitch
based carbon
carbon fibers
pitch
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810440812.6A
Other languages
English (en)
Inventor
杨建校
胡含明
石奎
郭亚文
帅钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201810440812.6A priority Critical patent/CN108624993A/zh
Publication of CN108624993A publication Critical patent/CN108624993A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种解决高导热中间相沥青基碳纤维劈裂结构的调控方法:通过石墨烯对中间相沥青分子的杂化与导向作用,调控中间相沥青在熔融纺丝、预氧化、碳化以及石墨化过程中的微晶取向与排列,从而获得无劈裂结构的高导热中间相沥青基碳纤维,杂化的过程为:将石墨烯和中间相沥青按质量比例为0.025%~0.1%进行混合,同时加入两者混合物重量的5~20倍的有机溶剂,在不同有机溶剂的回流温度下进行回流处理。本发明能够为中间相沥青基碳纤维劈裂结构的问题提供一种解决方法,为中间相沥青基碳纤维复合材料的制备提供更为优异性能的碳纤维原材料。

Description

一种无劈裂结构高导热中间相沥青基碳纤维的制备方法
技术领域
本发明涉及碳纤维生产领域,具体涉及一种高性能中间相沥青基碳纤维的制备方法。
背景技术
随着电子器件向微型化、小型化方向的发展,以及电子芯片的集成度越来越高,电子器件工作效率和可靠性的提升越来越依赖于电子元件散热问题的解决。因此,研究新型的、高性能的散热材料解决电子器件的散热问题已然显得十分迫切,对集成电路进行热管理性能的优化也变得十分必要。中间相沥青基碳纤维具有高强度、高模量、低热膨胀系数、低密度、良好的导电导热性、耐高温、耐腐蚀等优良性能,被认为是一种理想的热管理材料领域的增强材料。现今,以高导热中间相沥青基碳纤维为增强相,制备的镀铜碳纤维复合材料可以获得高的导热性、低的热膨胀系数、良好的可加工性以及较合理的成本,在高性能散热材料方面具有很大的应用潜力和开发前景,其相应的研究与开发越来越受到众多研究者的关注。
然而,通常高导热中间相沥青基碳纤维的微观结构存在较为严重的劈裂现象,造成中间相沥青基碳纤维与镀铜层存在着严重的界面问题,严重地限制了镀铜碳纤维复合材料的工艺制备及结构性能。中间相沥青基碳纤维较为常见的结构有:放射状结构、无序结构、洋葱皮结构、皮芯结构以及劈裂结构等典型的结构特征。其微观结构的形成主要跟沥青的分子结构、纺丝工艺、热处理工艺等因素所决定。因此,如何调控中间相沥青基碳纤维的微观结构以及解决其劈裂问题,成为进一步提升中间相沥青基碳纤维性能中急需解决的关键性科学问题之一。以往研究主要是通过改善中间相沥青的纺丝工艺、预氧化工艺、碳化工艺条件来实现中间相沥青基碳纤维微观结构的调控。然而这些方法的可控性和重复性都较差,且这些方法所调制的无劈裂结构的碳纤维往往呈现出较低的导热性能。因此,本发明提出从中间相沥青前驱体的沥青分子取向与排列的调控出发,以及复合同样具有高热性能的石墨烯,在此基础上,优化其相应的制备工艺,尝试解决中间相沥青基碳纤维结构的劈裂问题,同时制备出高导热性能的中间相沥青基碳纤维。
发明内容
本发明的目的是提供一种无劈裂结构高导热中间相沥青基碳纤维的制备方法。
为了实现无劈裂结构高导热中间相沥青基碳纤维的研制,本发明的技术方案为:采用添加石墨烯于中间相沥青中,通过石墨烯对中间相沥青分子的导向和杂化作用,然后经熔融纺丝、预氧化、碳化、石墨化工艺制备得到无劈裂结构的高导热中间相沥青基碳纤维。
对于所述石墨烯与中间相沥青的杂化条件如下:将石墨烯和中间相沥青按质量比例0.025%~0.1%进行混合,并加入固体混合物的重量5~20倍的有机溶剂,在不同有机溶剂的回流温度下进行回流处理,经旋转蒸发、回收溶剂,所得混合物固体进行干燥得到石墨烯杂化中间相沥青。有机溶剂为乙醇、甲苯、四氢呋喃或者喹啉。
对于所述的熔融纺丝工艺,是指以所调制的石墨烯杂化中间相沥青为纺丝沥青前驱体,在高于其软化点30~70℃下,进行熔融纺丝制备其沥青纤维。其喷丝孔的长径比为0.4mm/0.2mm,沥青吐出量需控制在0.05~0.20g/min之间,收丝速度为200~600rpm之间,其沥青纤维的直径可以实现在10~20um左右。
对于所述的预氧化工艺,是指所制备的沥青纤维在空气气氛下,从室温以0.5℃/min或者1℃/min的升温速率升温至250~300℃保温1h得到预氧化纤维,其预氧化纤维的增重需控制在5~10%之间。
对于所述的碳化工艺,是指所指制备的预氧化纤维在氮气气氛下,从室温以5℃/min的升温速率升温至800~1200℃保温1h得到碳化纤维。
对于所述的石墨化工艺,是指所制备的碳化纤维在高温石墨化炉中进行2000~3000℃的高温石墨化,从而得到高性能的无劈裂结构的高导热中间相沥青基碳纤维。
本发明提供的一种无劈裂结构高导热中间相沥青基碳纤维的调控方法,以石墨烯为添加剂,对中间相沥青进行杂化处理,实现其对中间相沥青分子取向与排列的导向作用,同时兼具高导热性能石墨烯的复合,有利于进一步提高其热导率。而传统的方法主要是通过熔融纺丝工艺中喷丝孔的形状、大小等因素调节其微观结构,但是它们均比较难以解决中间相沥青基碳纤维的劈裂结构的问题,且所调制的无劈裂结构碳纤维的热导率往往有所下降。然而,本方法采用石墨烯杂化中间相沥青,可以更为高效地得到无劈裂结构的中间沥青基碳纤维,同时获得更高导热性能的中间相沥青基碳纤维。制备的无劈裂结构高导热中间相沥青基碳纤维,其热导率达到930W/m·K,提升了近29%,为中间相沥青基碳纤维复合材料的制备提供更为优异性能的碳纤维原材料。
附图说明
图1原始中间相沥青基碳纤维(CF)和本发明实施例1所制备的石墨烯杂化中间相沥青基碳纤维(G-CF-1)表面与断面的SEM照片对比图;
图2原始中间相沥青基碳纤维和本实施例1、2、3所制备的石墨烯杂化中间相沥青基碳纤维的热导率性能对比图。
具体实施方式
为了进一步了解本发明,下面结合实施例对本发明优先实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
以在四氢呋喃为溶剂中石墨烯杂化中间相沥青为例,其制备无劈裂结构的高导热中间相沥青基碳纤维的具体实施步骤如下:
首先,称取20g中间相沥青和0.01g石墨烯于250ml的烧瓶中,并加入200ml四氢呋喃溶剂,在50℃进行搅拌加热、回流处理3h。反应结束后,采用旋转蒸发回收四氢呋喃溶剂,并在60℃烘箱干燥12h,得到石墨烯杂化中间相沥青。
然后,以石墨烯杂化中间相沥青为前驱体,采用熔融纺丝机在纺丝温度330℃、纺丝压力0.8MPa、喷丝孔长径比为0.4mm/0.2mm、收丝速率400rpm下进行熔融纺丝,得到12um左右的沥青纤维。
接着,所制备的沥青纤维在200ml/min空气气氛下,以0.5℃/min的升温速率从室温升温至280℃、保温1h进行预氧化得到预氧化纤维,其预氧化纤维的增重为8.35%。进接下来,预氧化纤维在100ml/min氮气气氛下,以5℃/min的升温速从室温率升温至1000℃、保温1h得到碳化纤维,其收率为83.65%。进而,所制备的碳化纤维在高温石墨化炉中进行2800℃的高温石墨化5min,从而得到中间相沥青基碳纤维。
最后,采用SEM观察所指制备中间相沥青基碳纤维的微观结构和纤维直径,其断面呈现无劈裂结构,且发现石墨烯成功复合于碳纤维中;采用四电阻探针法测试中间相沥青基碳纤维的电阻率ρ,并根据经验公式λ=1261/ρ计算其热导率λ。本实施方案所制备的中间相沥青基碳纤维的热导率达到了930W/m·K,相对于未添加石墨烯的中间相沥青基碳纤维的热导率720W/m·K,提升了近29%。图1是原始中间相沥青基碳纤维(CF)和本实施例1所制备的石墨烯杂化中间相沥青基碳纤维(G-CF-1)表面与断面的SEM照片比对图,从SEM可以看出,原始中间相沥青基碳纤维存在明显的劈裂结构,而本实施例所制备的石墨烯杂化中间相沥青基碳纤维呈规则的圆柱形,且石墨微晶片层之间夹杂着添加的石墨烯片。
实施例2
以在乙醇为溶剂中石墨烯杂化中间相沥青为例,其制备无劈裂结构的高导热中间相沥青基碳纤维的具体实施步骤如下:
首先,称取20g中间相沥青和0.005g石墨烯于250ml的烧瓶中,并加入200ml乙醇溶剂,在70℃进行搅拌加热、回流处理3h。反应结束后,采用旋转蒸发回收乙醇溶剂,并在60℃烘箱干燥12h,得到石墨烯杂化中间相沥青。
然后,以石墨烯杂化中间相沥青为前驱体,采用熔融纺丝机在纺丝温度325℃、纺丝压力1.0MPa、喷丝孔长径比为0.4mm/0.2mm、收丝速率400rpm下进行熔融纺丝,得到16um左右的沥青纤维。
接着,所制备的沥青纤维在200ml/min空气气氛下,以0.5℃/min的升温速率从室温升温至280℃、保温1h进行预氧化得到预氧化纤维,其预氧化纤维的增重为10.58%。进接下来,预氧化纤维在100ml/min氮气气氛下,以5℃/min的升温速从室温率升温至1000℃、保温1h得到碳化纤维,其收率为80.65%。进而,所制备的碳化纤维在高温石墨化炉中进行2800℃的高温石墨化5min,从而得到中间相沥青基碳纤维。
最后,采用SEM观察所指制备中间相沥青基碳纤维的微观结构和纤维直径,其断面呈现无劈裂结构,且发现石墨烯镶嵌与微晶片层之间;采用四电阻探针法测试中间相沥青基碳纤维的电阻率ρ,并根据经验公式λ=1261/ρ计算其热导率λ。本实施方案所制备的中间相沥青基碳纤维的热导率达到了836W/m·K,相对于未添加石墨烯的中间相沥青基碳纤维的热导率720W/m·K,提升了近16%。
实施例3
以在喹啉为溶剂中石墨烯杂化中间相沥青为例,其制备无劈裂结构的高导热中间相沥青基碳纤维的具体实施步骤如下:
首先,称取20g中间相沥青和0.02g石墨烯于250ml的烧瓶中,并加入200ml喹啉溶剂,在160℃进行搅拌加热、回流处理3h。反应结束后,采用旋转蒸发回收乙醇溶剂,并在100℃烘箱干燥12h,得到石墨烯杂化中间相沥青。
然后,以石墨烯杂化中间相沥青为前驱体,采用熔融纺丝机在纺丝温度340℃、纺丝压力1.0MPa、喷丝孔长径比为0.4mm/0.2mm、收丝速率400rpm下进行熔融纺丝,得到16um左右的沥青纤维。
接着,所制备的沥青纤维在200ml/min空气气氛下,以0.5℃/min的升温速率从室温升温至280℃、保温1h进行预氧化得到预氧化纤维,其预氧化纤维的增重为11.36%。进接下来,预氧化纤维在100ml/min氮气气氛下,以5℃/min的升温速从室温率升温至1000℃、保温1h得到碳化纤维,其收率为78.38%。进而,所制备的碳化纤维在高温石墨化炉中进行2800℃的高温石墨化5min,从而得到中间相沥青基碳纤维。
最后,采用SEM观察所指制备中间相沥青基碳纤维的微观结构和纤维直径,其断面呈现无劈裂结构,且发现石墨烯镶嵌与微晶片层之间;采用四电阻探针法测试中间相沥青基碳纤维的电阻率ρ,并根据经验公式λ=1261/ρ计算其热导率λ。本实施方案所制备的中间相沥青基碳纤维的热导率达到了808W/m·K,相对于未添加石墨烯的中间相沥青基碳纤维的热导率720W/m·K,提升了近12%。
图2是原始中间相沥青基碳纤维和本发明实施例1、2、3所制备的石墨烯杂化中间相沥青基碳纤维的热导率性能对比图。其中CF为原始中间相沥青基碳纤维,G-CF-1、G-CF-2、G-CF-3分别为本实施例1、2、3所制备的石墨烯杂化中间相沥青基碳纤维。从结果可以看出,石墨烯杂化中间相沥青基碳纤维的热导率明显高于原始中间相沥青基碳纤维的热导率。

Claims (5)

1.一种无劈裂结构高导热中间相沥青基碳纤维的制备方法,其特征在于,通过石墨烯与中间相沥青的杂化作用调制纺丝沥青,杂化的过程为:将石墨烯和中间相沥青按质量比例为0.025%~0.1%进行混合,同时加入两者混合物重量的5~20倍的有机溶剂,在不同有机溶剂的回流温度下进行回流处理,经旋转蒸发、溶剂回收、干燥后得到石墨烯杂化中间相沥青,然后经熔融纺丝、预氧化、碳化和石墨化工艺制备得到无劈裂结构的高导热中间相沥青碳纤维;所述的有机溶剂为乙醇、甲苯、四氢呋喃或者喹啉。
2.权利要求1所述的无劈裂结构高导热中间相沥青基碳纤维的制备方法,其特征在于:以所调制的石墨烯杂化中间相沥青为纺丝沥青前驱体,在高于其软化点30~70℃下,进行熔融纺丝制备沥青纤维;喷丝孔的长径尺寸为0.4mm和0.2mm,沥青的吐出量为0.05~0.20g/min,收丝速度为200~600rpm,沥青纤维的直径为10~20um。
3.权利要求1所述的无劈裂结构高导热中间相沥青基碳纤维的制备方法,其特征在于:所述的预氧化工艺,是所制备的沥青纤维在空气气氛下,从室温以0.5℃/min或者1℃/min的升温速率升温至250~300℃保温1h得到预氧化纤维,预氧化纤维的增重为5~10%。
4.权利要求1所述的无劈裂结构高导热中间相沥青基碳纤维的制备方法,其特征在于:所述的碳化工艺,是将制备的预氧化纤维在氮气气氛下,从室温以5℃/min的升温速率升温至800~1200℃保温1h得到碳化纤维。
5.权利要求1所述的无劈裂结构高导热中间相沥青基碳纤维的制备方法,其特征在于:所述的石墨化工艺,是指将制备的碳化纤维在高温石墨化炉中进行2000~3000℃的高温石墨化,从而得到高性能的无劈裂结构的高导热中间相沥青基碳纤维。
CN201810440812.6A 2018-05-10 2018-05-10 一种无劈裂结构高导热中间相沥青基碳纤维的制备方法 Pending CN108624993A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810440812.6A CN108624993A (zh) 2018-05-10 2018-05-10 一种无劈裂结构高导热中间相沥青基碳纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810440812.6A CN108624993A (zh) 2018-05-10 2018-05-10 一种无劈裂结构高导热中间相沥青基碳纤维的制备方法

Publications (1)

Publication Number Publication Date
CN108624993A true CN108624993A (zh) 2018-10-09

Family

ID=63692309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810440812.6A Pending CN108624993A (zh) 2018-05-10 2018-05-10 一种无劈裂结构高导热中间相沥青基碳纤维的制备方法

Country Status (1)

Country Link
CN (1) CN108624993A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144643A (zh) * 2019-05-21 2019-08-20 湖南东映碳材料科技有限公司 一种高性能中间相沥青基石墨纤维的制备方法
CN110230126A (zh) * 2019-05-21 2019-09-13 湖南东映碳材料科技有限公司 一种中间相沥青纤维快速预氧化的方法
CN110629326A (zh) * 2019-10-29 2019-12-31 北京化工大学 一种高导热中间相沥青基碳纤维的制备方法
CN110983491A (zh) * 2019-12-17 2020-04-10 北京研韵新材料科技有限公司 一种低温制造高导热中间相沥青基碳纤维的方法
CN114805984A (zh) * 2022-04-25 2022-07-29 广东中讯通讯设备实业有限公司 一种高散热性hdpe电力导管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320901A (zh) * 2013-06-01 2013-09-25 青岛中科昊泰新材料科技有限公司 一种掺杂石墨烯的中间相沥青基碳纤维
CN104213253A (zh) * 2014-09-15 2014-12-17 北京化工大学常州先进材料研究院 一种新型中间相沥青基复合碳纤维的制备方法
CN106521713A (zh) * 2016-11-10 2017-03-22 过冬 一种石墨烯/中间相沥青基复合碳纤维的制备方法
JP2018031098A (ja) * 2016-08-26 2018-03-01 日本グラファイトファイバー株式会社 ピッチ系炭素繊維ミルド、熱伝導性成形体及びピッチ系炭素繊維ミルドの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320901A (zh) * 2013-06-01 2013-09-25 青岛中科昊泰新材料科技有限公司 一种掺杂石墨烯的中间相沥青基碳纤维
CN104213253A (zh) * 2014-09-15 2014-12-17 北京化工大学常州先进材料研究院 一种新型中间相沥青基复合碳纤维的制备方法
JP2018031098A (ja) * 2016-08-26 2018-03-01 日本グラファイトファイバー株式会社 ピッチ系炭素繊維ミルド、熱伝導性成形体及びピッチ系炭素繊維ミルドの製造方法
CN106521713A (zh) * 2016-11-10 2017-03-22 过冬 一种石墨烯/中间相沥青基复合碳纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张敏: "《现行道路与桥梁工程实用技术与标准规范大全 第2卷》", 31 October 1999, 长春出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144643A (zh) * 2019-05-21 2019-08-20 湖南东映碳材料科技有限公司 一种高性能中间相沥青基石墨纤维的制备方法
CN110230126A (zh) * 2019-05-21 2019-09-13 湖南东映碳材料科技有限公司 一种中间相沥青纤维快速预氧化的方法
CN110144643B (zh) * 2019-05-21 2021-05-25 湖南东映碳材料科技有限公司 一种高性能中间相沥青基石墨纤维的制备方法
CN110230126B (zh) * 2019-05-21 2021-09-07 湖南东映碳材料科技有限公司 一种中间相沥青纤维快速预氧化的方法
CN110629326A (zh) * 2019-10-29 2019-12-31 北京化工大学 一种高导热中间相沥青基碳纤维的制备方法
CN110629326B (zh) * 2019-10-29 2020-10-27 北京化工大学 一种高导热中间相沥青基碳纤维的制备方法
CN110983491A (zh) * 2019-12-17 2020-04-10 北京研韵新材料科技有限公司 一种低温制造高导热中间相沥青基碳纤维的方法
CN114805984A (zh) * 2022-04-25 2022-07-29 广东中讯通讯设备实业有限公司 一种高散热性hdpe电力导管及其制备方法
CN114805984B (zh) * 2022-04-25 2023-02-17 广东中讯通讯设备实业有限公司 一种高散热性hdpe电力导管及其制备方法

Similar Documents

Publication Publication Date Title
CN108624993A (zh) 一种无劈裂结构高导热中间相沥青基碳纤维的制备方法
CN105088420B (zh) 高导热沥青石墨纤维的制备方法
CN105502359B (zh) 一种低成本多孔石墨烯的制备方法
CN107304490B (zh) 一种石墨烯/聚酰亚胺复合碳纤维的制备方法
Liu et al. Development of pitch-based carbon fibers: a review
CN102605477B (zh) 聚酰亚胺基碳纤维及其制备方法
CN109576823B (zh) 一种具有皮芯纤维结构的相变储能材料及其制备方法
Guo et al. The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer
CN103184588B (zh) 一种12k四元聚丙烯腈基碳纤维的制造方法
CN102534858A (zh) 一种石墨烯/聚酰亚胺复合纤维的制备方法
CN105655542A (zh) 锂离子电池负极及其制备方法
CN105734720B (zh) 一种提高碳化硅纤维强度和模量的制备方法
CN106222803A (zh) 制备大丝束碳纤维的预氧化方法
CN114032071A (zh) 一种柔性疏水各向异性纤维素纳米纤维气凝胶相变复合材料及其制备方法
CN106083046A (zh) 一种石墨烯/聚酰亚胺共聚导热膜的制备方法
CN108584942A (zh) 一种石墨烯泡沫炭复合材料的制备方法
CN112574468B (zh) 具有多层次连续网络结构的导热高分子复合材料及制备方法
CN113666748B (zh) 一种石墨材料的制备方法及石墨材料
CN106567157A (zh) 一种石墨烯纳米带原位增韧纳米碳纤维的制备方法
CN109776103A (zh) 一种三维石墨烯/碳纳米管复合散热材料的制备方法
CN105696116A (zh) 一种新型高导热炭纤维的制备方法
CN109440231A (zh) 一种石墨烯/碳复合微纳米纤维及其制备方法
CN109627034A (zh) 一种高导热c/c复合材料的制备
CN103435766B (zh) 一种硼锆硅三元改性酚醛树脂及其制备方法
CN104562298A (zh) 纳米纤维的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009