CN108615581A - 一种柔性透明导电薄膜的加工工艺 - Google Patents

一种柔性透明导电薄膜的加工工艺 Download PDF

Info

Publication number
CN108615581A
CN108615581A CN201810299903.2A CN201810299903A CN108615581A CN 108615581 A CN108615581 A CN 108615581A CN 201810299903 A CN201810299903 A CN 201810299903A CN 108615581 A CN108615581 A CN 108615581A
Authority
CN
China
Prior art keywords
transparent conductive
conductive film
substrate
layer
flexible transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810299903.2A
Other languages
English (en)
Inventor
许小勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Yu Lin New Mstar Technology Ltd
Original Assignee
Suzhou Yu Lin New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Yu Lin New Mstar Technology Ltd filed Critical Suzhou Yu Lin New Mstar Technology Ltd
Priority to CN201810299903.2A priority Critical patent/CN108615581A/zh
Publication of CN108615581A publication Critical patent/CN108615581A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明公开了一种柔性透明导电薄膜的加工工艺,其包括如下步骤:(1)提供一基底,将基底进行消毒处理、清洁处理后得处理后的基底;(2)在处理完毕的基底上涂敷石墨烯分散液以获得石墨烯层,而后进行干燥、烘干工序;(3)在所述石墨烯层上涂敷PEDOT PH1000以获得50nm‑70nm的PEDOT PH1000层;(4)在PEDOT PH1000层上涂敷银纳米线悬浮液以获得银纳米线层,热压所述银纳米线层;(5)在银纳米线层上均匀涂有一层树脂层,热压树脂层;(6)撕下基底,得银纳米线、石墨烯复合柔性透明导电薄膜。本发明制备的薄膜具有高透光性和高导电性,表面平整,使用寿命较长,综合成本低等优点。

Description

一种柔性透明导电薄膜的加工工艺
技术领域
本发明涉及透明导电薄膜得制备方法,具体为一种柔性透明导电薄膜的加工工艺。
背景技术
透明导电薄膜被广泛应用于平板显示器、太阳能电池、光通信设备、固态照明等光电领域。透明导电薄膜目前最主要的应用还是在触摸屏技术上,触摸屏的使用在手机、平板、笔记本、移动端方面,目前商业化的透明导电薄膜为掺锡氧化铟(ITO)薄膜,虽然ITO具有较高的导电性与透光性,但铟资源可开采量有限,铟价格的上涨带动了ITO价格的上涨,同时ITO的延展性不足,无法满足柔性电子技术的发展需求。银纳米线的宽度只有头发丝的万分之一,足够细的好处就是可以在薄膜上保持透明,石墨烯是单原子厚的材料,是世界上最薄的二维材料,它们都是导电能力较好的材料。将银纳米线石墨烯复合并转移到柔性基底上,就可以形成一个透明、导电并具有柔性的薄膜,这种基于银纳米线/石墨烯复合透明导电薄膜能够广泛应用于平板显示器、太阳能电池、光通信设备、固态照明等光电领域。
现有技术方法制备的柔性透明导电薄膜导电性和透光率均较差,不能满足需求。
发明内容
本发明旨在至少在一定程度上解决上述技术问题之一。为此,本发明提供了一种柔性透明导电薄膜的加工工艺。
本发明的技术方案是提供一种柔性透明导电薄膜的加工工艺,其特征在于:所述工艺包括如下步骤:
(1)提供一基底,将基底进行消毒处理、清洁处理后得处理后的基底;
(2)在处理完毕的基底上涂敷浓度为1mg/mL-3mg/mL的石墨烯分散液以获得石墨烯层,而后进行干燥处理,干燥完毕后于烘箱中进行烘干工序得所述石墨烯层;
(3)在所述石墨烯层上涂敷PEDOT PH1000以获得50nm-70nm的PEDOT PH1000层;
(4)在所述PEDOT PH1000层上涂敷浓度为4mg/mL~7mg/mL的银纳米线悬浮液以获得银纳米线层,热压所述银纳米线层;
(5)在所述银纳米线层上均匀涂有一层树脂层,热压所述树脂层;
(6)撕下基底,得银纳米线、石墨烯复合柔性透明导电薄膜。
进一步的,所述步骤(1)中,消毒处理工序为将基底分别放入乙醇溶液内和丙酮溶液内静置5-10min,而后进行烘干清洁处理。
进一步的,所述步骤(2)中,所述涂敷方法包括旋涂、刮涂、浸涂或喷涂中的至少一种。
进一步的,所述步骤(2)中,进行静置干燥,而后于所述烘箱中处理时间为2min-4min。
进一步的,所述烘箱中温度为155℃-165℃。
进一步的,所述步骤(3)中,将基底上的石墨烯层和PEDOT PH1000层进行烘干工序,烘干温度120℃-140℃,烘干时间为1.5min-3min。
进一步的,所述步骤(4)和所述步骤(5)中,所述热压处理的温度为70-105℃,热压压力为10-25MPa。
进一步的,所述步骤(4)中,所述银纳米线悬浮液中银纳米线的直径为22-32nm,长度8-18μm。
本发明的有益效果是:本发明的一种柔性透明导电薄膜的加工工艺,本发明的加工工艺步骤简单,所制得的柔性透明导电薄膜导电性和透光率均有所提高,本发明具有高透光性和高导电性,表面平整,使用寿命较长,综合成本低等优点。
具体实施方式
下面详细描述本发明的实施例,下面实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面首先描述根据本发明实施例的一种柔性透明导电薄膜的加工工艺。
实施例1:
本发明的一种柔性透明导电薄膜的加工工艺,所述工艺包括如下步骤:
(1)提供一基底,将基底进行消毒处理、清洁处理后得处理后的基底;消毒处理工序为将基底分别放入乙醇溶液内和丙酮溶液内静置6min,而后进行烘干清洁处理。
(2)在处理完毕的基底上旋涂浓度为1mg/mL的石墨烯分散液以获得石墨烯层,而后进行静置干燥处理,干燥完毕后于烘箱中进行烘干工序得所述石墨烯层,于所述烘箱中处理时间为2min;所述烘箱中温度为155℃。
(3)在所述石墨烯层上涂敷PEDOT PH1000以获得50nm的PEDOT PH1000层;将基底上的石墨烯层和PEDOT PH1000层进行烘干工序,烘干温度120℃,烘干时间为3min。
(4)在所述PEDOT PH1000层上涂敷浓度为4mg/mL的银纳米线悬浮液以获得银纳米线层,热压所述银纳米线层;热压处理的温度为70℃,热压压力为10MPa;所述银纳米线悬浮液中银纳米线的直径为22nm,长度8μm。
(5)在所述银纳米线层上均匀涂有一层树脂层,热压所述树脂层;热压处理的温度为70,热压压力为25MPa。
(6)撕下基底,得银纳米线、石墨烯复合柔性透明导电薄膜。
实施例2:
本发明的一种柔性透明导电薄膜的加工工艺,所述工艺包括如下步骤:
(1)提供一基底,将基底进行消毒处理、清洁处理后得处理后的基底;消毒处理工序为将基底分别放入乙醇溶液内和丙酮溶液内静置9min,而后进行烘干清洁处理。
(2)在处理完毕的基底上喷涂浓度为3mg/mL的石墨烯分散液以获得石墨烯层,而后进行干燥处理,干燥完毕后于烘箱中进行烘干工序得所述石墨烯层;进行静置干燥,而后于所述烘箱中处理时间为4min;所述烘箱中温度为165℃。
(3)在所述石墨烯层上涂敷PEDOT PH1000以获得70nm的PEDOT PH1000层;将基底上的石墨烯层和PEDOT PH1000层进行烘干工序,烘干温度140℃,烘干时间为1.5min。
(4)在所述PEDOT PH1000层上涂敷浓度为7mg/mL的银纳米线悬浮液以获得银纳米线层,热压所述银纳米线层;热压处理的温度为105℃,热压压力为25MPa;所述银纳米线悬浮液中银纳米线的直径为32nm,长度18μm。
(5)在所述银纳米线层上均匀涂有一层树脂层,热压所述树脂层;热压处理的温度为105℃,热压压力为25MPa。
(6)撕下基底,得银纳米线、石墨烯复合柔性透明导电薄膜。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种柔性透明导电薄膜的加工工艺,其特征在于:所述工艺包括如下步骤:
(1)提供一基底,将基底进行消毒处理、清洁处理后得处理后的基底;
(2)在处理完毕的基底上涂敷浓度为1mg/mL-3mg/mL的石墨烯分散液以获得石墨烯层,而后进行干燥处理,干燥完毕后于烘箱中进行烘干工序得所述石墨烯层;
(3)在所述石墨烯层上涂敷PEDOT PH1000以获得50nm-70nm的PEDOT PH1000层;
(4)在所述PEDOT PH1000层上涂敷浓度为4mg/mL~7mg/mL的银纳米线悬浮液以获得银纳米线层,热压所述银纳米线层;
(5)在所述银纳米线层上均匀涂有一层树脂层,热压所述树脂层;
(6)撕下基底,得银纳米线、石墨烯复合柔性透明导电薄膜。
2.根据权利要求1所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述步骤(1)中,消毒处理工序为将基底分别放入乙醇溶液内和丙酮溶液内静置5-10min,而后进行烘干清洁处理。
3.根据权利要求1所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述步骤(2)中,所述涂敷方法包括旋涂、刮涂、浸涂或喷涂中的至少一种。
4.根据权利要求1所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述步骤(2)中,进行静置干燥,而后于所述烘箱中处理时间为2min-4min。
5.根据权利要求3所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述烘箱中温度为155℃-165℃。
6.根据权利要求1所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述步骤(3)中,将基底上的石墨烯层和PEDOT PH1000层进行烘干工序,烘干温度120℃-140℃,烘干时间为1.5min-3min。
7.根据权利要求1所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述步骤(4)和所述步骤(5)中,所述热压处理的温度为70-105℃,热压压力为10-25MPa。
8.根据权利要求1所述的一种柔性透明导电薄膜的加工工艺,其特征在于:所述步骤(4)中,所述银纳米线悬浮液中银纳米线的直径为22-32nm,长度8-18μm。
CN201810299903.2A 2018-04-04 2018-04-04 一种柔性透明导电薄膜的加工工艺 Pending CN108615581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810299903.2A CN108615581A (zh) 2018-04-04 2018-04-04 一种柔性透明导电薄膜的加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810299903.2A CN108615581A (zh) 2018-04-04 2018-04-04 一种柔性透明导电薄膜的加工工艺

Publications (1)

Publication Number Publication Date
CN108615581A true CN108615581A (zh) 2018-10-02

Family

ID=63659591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810299903.2A Pending CN108615581A (zh) 2018-04-04 2018-04-04 一种柔性透明导电薄膜的加工工艺

Country Status (1)

Country Link
CN (1) CN108615581A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366140A (zh) * 2020-11-11 2021-02-12 济南南知信息科技有限公司 一种用于5g智能设备的多存储芯片堆叠封装构件及其制备方法
CN113136046A (zh) * 2021-03-26 2021-07-20 上海大学 柔性透明探测用导电复合膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996455A (zh) * 2014-04-30 2014-08-20 天津宝兴威科技有限公司 一种纳米金属透明导电膜的制造方法
CN104091892A (zh) * 2014-06-13 2014-10-08 重庆绿色智能技术研究院 一种基于石墨烯电极的有机半导体光电器件
CN104492677A (zh) * 2014-12-12 2015-04-08 中国科学院重庆绿色智能技术研究院 一种石墨烯保护用透明电涂层的制备方法
CN105869719A (zh) * 2016-05-24 2016-08-17 重庆大学 Pet-石墨烯-银纳米线复合透明导电薄膜及其制备方法
CN106131984A (zh) * 2016-09-12 2016-11-16 南京工业大学 一种银纳米线氧化石墨烯复合导电薄膜加热器的制备方法
CN107799236A (zh) * 2017-10-31 2018-03-13 南京旭羽睿材料科技有限公司 一种石墨烯电极快速制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996455A (zh) * 2014-04-30 2014-08-20 天津宝兴威科技有限公司 一种纳米金属透明导电膜的制造方法
CN104091892A (zh) * 2014-06-13 2014-10-08 重庆绿色智能技术研究院 一种基于石墨烯电极的有机半导体光电器件
CN104492677A (zh) * 2014-12-12 2015-04-08 中国科学院重庆绿色智能技术研究院 一种石墨烯保护用透明电涂层的制备方法
CN105869719A (zh) * 2016-05-24 2016-08-17 重庆大学 Pet-石墨烯-银纳米线复合透明导电薄膜及其制备方法
CN106131984A (zh) * 2016-09-12 2016-11-16 南京工业大学 一种银纳米线氧化石墨烯复合导电薄膜加热器的制备方法
CN107799236A (zh) * 2017-10-31 2018-03-13 南京旭羽睿材料科技有限公司 一种石墨烯电极快速制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366140A (zh) * 2020-11-11 2021-02-12 济南南知信息科技有限公司 一种用于5g智能设备的多存储芯片堆叠封装构件及其制备方法
CN112366140B (zh) * 2020-11-11 2022-09-23 苏州钜升精密模具有限公司 一种用于5g智能设备的多存储芯片堆叠封装构件及其制备方法
CN113136046A (zh) * 2021-03-26 2021-07-20 上海大学 柔性透明探测用导电复合膜及其制备方法

Similar Documents

Publication Publication Date Title
Park et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells
Kim et al. Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires
Zhou et al. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes
Yun et al. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide
Cheong et al. Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes
Fan et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT: PSS electrodes on plastic substrates
Yu et al. All-solution-processed molybdenum oxide-encapsulated silver nanowire flexible transparent conductors with improved conductivity and adhesion
Huang et al. Highly thermostable, flexible, transparent, and conductive films on polyimide substrate with an AZO/AgNW/AZO structure
Kim et al. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells
Zhou et al. Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices
Park et al. Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics
Luo et al. High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics
Wei et al. A highly conductive and smooth AgNW/PEDOT: PSS film treated by hot-pressing as electrode for organic light emitting diode
Huang et al. Active and deformable organic electronic devices based on conductive shape memory polyimide
JP6465795B2 (ja) 銀ナノワイヤをベースとする透明導体材料の電気的および光学的性能の少なくともいずれかを改善する方法
Lee et al. Effective indium-doped zinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes
Wang et al. Modification of conductive polymer for polymeric anodes of flexible organic light-emitting diodes
Kim et al. Foldable transparent substrates with embedded electrodes for flexible electronics
Kang et al. Flexible and mechanically robust organic light-emitting diodes based on photopatternable silver nanowire electrodes
CN105280840B (zh) 一种柔性透明电极及其制备方法
Ham et al. ITO breakers: highly transparent conducting polymer/metal/dielectric (P/M/D) films for organic solar cells
Shen et al. Light scattering in nanoparticle doped transparent polyimide substrates
Li et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability
Nguyen et al. Facile fabrication of highly conductive, ultrasmooth, and flexible silver nanowire electrode for organic optoelectronic devices
Wang et al. Highly transparent, conductive, and bendable Ag nanowire electrodes with enhanced mechanical stability based on polyelectrolyte adhesive layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181002

RJ01 Rejection of invention patent application after publication