CN108611618A - 一种磁控溅射沉积铁膜和氧化铁膜的方法 - Google Patents
一种磁控溅射沉积铁膜和氧化铁膜的方法 Download PDFInfo
- Publication number
- CN108611618A CN108611618A CN201810817871.0A CN201810817871A CN108611618A CN 108611618 A CN108611618 A CN 108611618A CN 201810817871 A CN201810817871 A CN 201810817871A CN 108611618 A CN108611618 A CN 108611618A
- Authority
- CN
- China
- Prior art keywords
- iron
- film
- magnetron sputtering
- oxide film
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/085—Oxides of iron group metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种磁控溅射沉积铁膜和氧化铁膜的方法,通过在靶枪和铁靶中间安插一定厚度的非铁磁性的金属圆片,如铝圆片、铜圆片等,来降低铁靶的磁屏蔽效应,从而可成功地溅射沉积铁膜及氧化铁膜。本发明方法操作简单,制得的铁膜及氧化铁膜致密,且均匀性好,与基底的结合力好,制得的铁膜具有较好的铁电特性。
Description
技术领域
本发明属于溅射镀膜技术领域,具体涉及一种用磁控溅射制备铁膜及氧化铁膜的方法。
背景技术
磁控溅射技术可制备装饰薄膜、硬质薄膜、耐腐蚀摩擦薄膜、超导薄膜、磁性薄膜、光学薄膜,以及各种具有特殊功能的薄膜,是一种十分有效的薄膜沉积方法,在各个工业领域应用非常广泛。磁控溅射所得到的薄膜附着力强。磁控溅射的基本原理即是以磁场改变电子运动方向,束缚和延长电子的运动轨迹,提高了电子对工作气体的电离率和有效利用了电子的能量,使正离子对靶材轰击引起的靶材溅射更有效。但对于铁这种靶材而言,用常规磁控溅射方法难以沉积铁膜及氧化铁膜。这是由于其铁具有高导磁性,大部分磁场从铁靶材内部通过,严重的磁屏蔽使铁靶材表面的磁场过小,将导致无法进行磁控溅射沉积铁膜及氧化铁膜。
发明内容
本发明所要解决的技术问题在于解决上述磁控溅射制备铁膜和氧化铁膜所存在的铁靶磁屏蔽问题,提出在靶枪和铁靶中间安插一定厚度的非磁性的材料,来降低铁靶的磁屏蔽效应,从而可成功地溅射沉积铁膜及氧化铁膜。
解决上述技术问题所采用的技术方案是:在靶枪和铁靶之间放一个非铁磁性的金属圆片,采用磁控溅射在玻璃衬底上沉积一层铁膜或氧化铁膜。
上述非铁磁性的金属圆片具体可以是铝圆片、铜圆片等,其厚度为3~5mm,直径与铁靶相同。
采用本发明方法磁控溅射沉积铁膜的具体操作过程为:将清洗干净的玻璃衬底装在磁控溅射设备的样品夹具上,将非铁磁性的金属圆片放在靶枪上面,接着将铁靶放在非铁磁性的金属圆片上,关上磁控溅射设备的真空室盖子,用机械泵和分子泵将沉积室抽真空至5.0×10-4~7.0×10-4Pa,接着打开氩气通气阀,并打开质量流量计,控制氩气流速为25.0~30.0sccm,先调节沉积室压强至1.5~2.0Pa、溅射功率为28~30W启辉,再调节沉积室压强至0.5~0.6Pa、溅射功率至110~115W,预溅射1~2分钟以除去铁靶表面的污染,接着打开挡板开始沉积,沉积结束后自然冷却至室温,即得到铁膜。
采用本发明方法磁控溅射沉积氧化铁膜的具体操作过程为:将清洗干净的玻璃衬底装在磁控溅射设备的样品夹具上,将非铁磁性的金属圆片放在靶枪上面,接着将铁靶放在非铁磁性的金属圆片上,关上磁控溅射设备的真空室盖子,用机械泵和分子泵将沉积室抽真空至5.0×10-4~7.0×10-4Pa,接着打开氩气通气阀和氧气通气阀,并打开质量流量计,控制氧气流速为10.0~15.0sccm、氩气流速为15.0~20.0sccm,并控制氩气和氧气的总流速为25.0~30.0sccm,先调节沉积室压强至1.5~2.0Pa、溅射功率为28~30W启辉,再调节沉积室压强至0.5~0.6Pa、溅射功率至110~115W,预溅射1~2分钟以除去铁靶表面的污染,接着打开挡板开始沉积,沉积结束后自然冷却至室温,即得到氧化铁膜。
本发明的有益效果如下:
本发明通过在靶枪和铁靶中间安插一定厚度的非铁磁性的金属圆片,来降低铁靶的磁屏蔽效应,从而可成功地溅射沉积铁膜及氧化铁膜。本发明方法操作简单,制得的铁膜及氧化铁膜致密,且均匀性好,制得的铁膜具有较好的铁电特性。
附图说明
图1是实施例1所沉积的铁膜的X射线衍射图谱。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将玻璃衬底用蘸有乙醇的无尘纸擦拭干净,然后再将玻璃衬底依次在丙酮、乙醇中超声清洗30分钟,用氮气吹干,装在磁控溅射设备的样品夹具上。将3mm厚的铝圆片放在靶枪上面,接着将铁靶放在铝圆片上,铝圆片的大小与铁靶相同。关上磁控溅射设备的真空室盖子,用机械泵和分子泵将沉积室抽真空至5.0×10-4Pa,接着打开氩气通气阀,并打开质量流量计,控制氩气流速为30.0sccm,先调节沉积室压强至2.0Pa、溅射功率为30W启辉,再调节沉积室压强至0.6Pa、溅射功率至110W,预溅射1分钟以除去铁表面的污染,接着打开挡板开始沉积,沉积时间为25分钟,沉积结束后,自然冷却至室温,得到厚度为570~580nm的铁膜。图1是所沉积的铁膜的X射线衍射图谱。由图可见,在2θ角度为45.39°处出现了铁晶面(002)的衍射峰。
实施例2
本实施例中,打开氩气通气阀和氧气通气阀,并打开质量流量计,控制氧气流速为10.0sccm、氩气流速为20.0sccm,其他步骤与实施例1相同,得到厚度为570~580nm的氧化铁膜。
实施例3
本实施例中,用3mm厚的铜圆片替换实施例1中的铝圆片,其他步骤与实施例1相同,得到厚度为570~580nm的氧化铁膜。
实施例4
本实施例中,用3mm厚的铜圆片替换实施例2中的铝圆片,其他步骤与实施例2相同,得到厚度为570~580nm的氧化铁膜。
Claims (5)
1.一种磁控溅射沉积铁膜和氧化铁膜的方法,其特征在于:在靶枪和铁靶之间放一个非铁磁性的金属圆片,采用磁控溅射在玻璃衬底上沉积一层铁膜或氧化铁膜。
2.根据权利要求1所述的磁控溅射沉积铁膜和氧化铁膜的方法,其特征在于:所述非铁磁性的金属圆片为铝圆片或铜圆片。
3.根据权利要求2所述的磁控溅射沉积铁膜和氧化铁膜的方法,其特征在于:所述铝圆片或铜圆片的厚度为3~5mm,直径与铁靶相同。
4.根据权利要求1~3任意一项所述的磁控溅射沉积铁膜和氧化铁膜的方法,其特征在于磁控溅射沉积铁膜的具体操作过程为:将清洗干净的玻璃衬底装在磁控溅射设备的样品夹具上,将非铁磁性的金属圆片放在靶枪上面,接着将铁靶放在非铁磁性的金属圆片上,关上磁控溅射设备的真空室盖子,用机械泵和分子泵将沉积室抽真空至5.0×10-4~7.0×10-4Pa,接着打开氩气通气阀,并打开质量流量计,控制氩气流速为25.0~30.0sccm,先调节沉积室压强至1.5~2.0Pa、溅射功率为28~30W启辉,再调节沉积室压强至0.5~0.6Pa、溅射功率至110~115W,预溅射1~2分钟以除去铁靶表面的污染,接着打开挡板开始沉积,沉积结束后自然冷却至室温,即得到铁膜。
5.根据权利要求1~3任意一项所述的磁控溅射沉积铁膜和氧化铁膜的方法,其特征在于:其特征在于磁控溅射沉积氧化铁膜的具体操作过程为:将清洗干净的玻璃衬底装在磁控溅射设备的样品夹具上,将非铁磁性的金属圆片放在靶枪上面,接着将铁靶放在非铁磁性的金属圆片上,关上磁控溅射设备的真空室盖子,用机械泵和分子泵将沉积室抽真空至5.0×10-4~7.0×10-4Pa,接着打开氩气通气阀和氧气通气阀,并打开质量流量计,控制氧气流速为10.0~15.0sccm、氩气流速为15.0~20.0sccm,并控制氩气和氧气的总流速为25.0~30.0sccm,先调节沉积室压强至1.5~2.0Pa、溅射功率为28~30W启辉,再调节沉积室压强至0.5~0.6Pa、溅射功率至110~115W,预溅射1~2分钟以除去铁靶表面的污染,接着打开挡板开始沉积,沉积结束后自然冷却至室温,即得到氧化铁膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810817871.0A CN108611618A (zh) | 2018-07-23 | 2018-07-23 | 一种磁控溅射沉积铁膜和氧化铁膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810817871.0A CN108611618A (zh) | 2018-07-23 | 2018-07-23 | 一种磁控溅射沉积铁膜和氧化铁膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108611618A true CN108611618A (zh) | 2018-10-02 |
Family
ID=63666827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810817871.0A Pending CN108611618A (zh) | 2018-07-23 | 2018-07-23 | 一种磁控溅射沉积铁膜和氧化铁膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108611618A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401546A (en) * | 1981-03-27 | 1983-08-30 | Nihon Shinku Gijutsu Kabushiki Kaisha | Ferromagnetic high speed sputtering apparatus |
CN102330060A (zh) * | 2011-09-27 | 2012-01-25 | 中国科学院金属研究所 | 用于电弧离子镀沉积磁性材料涂层的复合结构靶材及应用 |
CN105603371A (zh) * | 2015-10-29 | 2016-05-25 | 杭州立昂微电子股份有限公司 | 一种磁性溅射靶材 |
-
2018
- 2018-07-23 CN CN201810817871.0A patent/CN108611618A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401546A (en) * | 1981-03-27 | 1983-08-30 | Nihon Shinku Gijutsu Kabushiki Kaisha | Ferromagnetic high speed sputtering apparatus |
CN102330060A (zh) * | 2011-09-27 | 2012-01-25 | 中国科学院金属研究所 | 用于电弧离子镀沉积磁性材料涂层的复合结构靶材及应用 |
CN105603371A (zh) * | 2015-10-29 | 2016-05-25 | 杭州立昂微电子股份有限公司 | 一种磁性溅射靶材 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110055496A (zh) | 一种在核用锆合金基底表面制备Cr涂层的制备工艺 | |
CN105177468B (zh) | 一种Cu‑Ag非晶合金薄膜及其制备方法 | |
CN101168836A (zh) | 一种采用共溅射沉积法制备碲化铋合金薄膜的方法 | |
JP2014062325A (ja) | コーティング装置および方法 | |
CN1718845A (zh) | 微颗粒表面真空镀金属膜工艺及其设备 | |
CN102965619A (zh) | 一种多元金属掺杂无氢类金刚石碳膜的制备方法 | |
TWI534279B (zh) | 鍍膜件及其製備方法 | |
Depla et al. | Rotating cylindrical magnetron sputtering: Simulation of the reactive process | |
CN108611613B (zh) | 一种纳米多层结构碳基薄膜的制备方法 | |
CN105970171A (zh) | 一种采用磁控溅射制备柔性稀土氧化物薄膜的方法 | |
CN110408903A (zh) | 刀具表面多元多层涂层制备方法 | |
CN108611617A (zh) | 一种磁控溅射沉积钴膜和氧化钴膜的方法 | |
CN108531878A (zh) | 一种磁控溅射沉积镍膜和氧化镍膜的方法 | |
CN103643075B (zh) | 纳米颗粒增强的铜基复合材料及其制备方法 | |
CN101135045A (zh) | 一种在SiC微颗粒表面磁控溅射镀铜膜的方法 | |
Austgen et al. | Sputter yield amplification by tungsten doping of Al2O3 employing reactive serial co-sputtering: process characteristics and resulting film properties | |
CN108611618A (zh) | 一种磁控溅射沉积铁膜和氧化铁膜的方法 | |
CN109763107A (zh) | 一种用于制备金属-高分子多层复合薄膜的真空镀膜系统 | |
Cheng et al. | Development of texture in TiN films deposited by filtered cathodic vacuum arc | |
CN103774092B (zh) | 一种在镁合金表面制备导电且耐腐蚀涂层的方法 | |
CN108330447A (zh) | 一种卷绕式pvd物理学沉积真空磁控溅射镀银铜合金层方法 | |
Wu et al. | CrNx films prepared using feedback-controlled high power impulse magnetron sputter deposition | |
CN208485945U (zh) | 一种双室高真空多靶磁控溅射装置 | |
CN101886243B (zh) | 一种铁薄膜的制备方法 | |
JPH08269705A (ja) | スパッタリング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181002 |