CN108604639B - 有机光电装置、这种装置的阵列以及制造这种阵列的方法 - Google Patents

有机光电装置、这种装置的阵列以及制造这种阵列的方法 Download PDF

Info

Publication number
CN108604639B
CN108604639B CN201680075746.6A CN201680075746A CN108604639B CN 108604639 B CN108604639 B CN 108604639B CN 201680075746 A CN201680075746 A CN 201680075746A CN 108604639 B CN108604639 B CN 108604639B
Authority
CN
China
Prior art keywords
layer
electron
collecting layer
collecting
optoelectronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680075746.6A
Other languages
English (en)
Other versions
CN108604639A (zh
Inventor
M·邦瓦迪赫
S·夏洛
J-Y·洛朗
J-M·韦里亚克
E·贝尔托
P·罗尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isorg SA
Trixell SAS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Isorg SA
Trixell SAS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isorg SA, Trixell SAS, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Isorg SA
Publication of CN108604639A publication Critical patent/CN108604639A/zh
Application granted granted Critical
Publication of CN108604639B publication Critical patent/CN108604639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/36Devices specially adapted for detecting X-ray radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Abstract

光电装置(1)包括布置在电绝缘的基底(2)上的层的堆叠,该堆叠至少包括:一个阴极(3),其由功函数为
Figure DDA0001704253720000011
的材料制成;电子收集层(4),其布置在所述阴极(3)之上,并且由功函数为
Figure DDA0001704253720000012
薄层电阻为R的材料制成;有源层(5),其包括至少一个p型有机半导体材料,所述p型有机半导体材料具有能级HO1,其特征在于:所述电子收集层(3)的所述功函数
Figure DDA0001704253720000013
与有源层(5)的所述能级HO1形成能够阻止空穴从所述阴极(3)注入所述有源层(5)的势垒,并且所述电子收集层(4)的所述薄层电阻R大于或等于108Ω。

Description

有机光电装置、这种装置的阵列以及制造这种阵列的方法
技术领域
本发明涉及有机光电装置,并且涉及这种装置的矩阵,即涉及光电探测器(像素化成像器)的矩阵或显示矩阵。本发明特别地(但不仅仅)适用于基于间接检测原理并且优选地使用有机半导体的大面积矩阵X射线成像器的生产,其可能的应用是医疗放射学、无损检测和安全筛查。
背景技术
在X射线成像领域,通常采用两种检测模式。第一种模式称为直接检测模式,其利用光电探测器的矩阵,每个光电探测器都能够将其吸收的X射线转换为电荷。第二种模式称为间接模式,其首先通过闪烁体将X射线转换为可见光子,然后利用光电探测器的矩阵将产生的可见光子转换为电荷。本发明涉及用于X射线的间接检测的像素的矩阵,每个像素都由联接至有机光电探测器的至少一个薄膜晶体管(TFT)组成。在每个像素中,晶体管通常连接至有机光电探测器的第一电极。
适用于光的光转换的层通常沉积在第一电极上。该层可以例如是有机的,并且包括p型和n型半导体的纳米结构混合物(Li,G.,Shrotriya,V.,Huang,J.,Yao,Y.,Moriarty,T.,Emery,K.,&Yang,Y.,2005,High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends,Nature materials,4(11),864-868)。然后,上电极沉积在光转换层上。
图1示意性地示出了根据现有技术的有机光电二极管的结构。该堆叠例如包括透明基底(由玻璃、聚萘二甲酸乙二醇酯(PEN)或聚对苯二甲酸乙二酯(PET)制成)。该基底由透明金属电极(例如由氧化铟锡(ITO)制成)覆盖,然后由在照射期间能够收集空穴的空穴收集层(HCL)覆盖,该层例如由聚(3,4-亚乙基二氧噻吩)-聚(苯乙烯磺酸酯)(PEDOT:PSS)制成。这些层由适用于光转换的层覆盖,所述适用于光转换的层称为有源层,并且如上所述进行制造。最后,有源层由电子收集层(ECL)覆盖,该电子收集层例如由铝制成。在图1所示的示例中,光电二极管通过透明基底而受到照射:该照射模式以及光电二极管的结构被称为是直接的。用于传输载流子的层电连接至用于收集载流子的层(HCL和ECL)。在图1中所示的直接结构中,空穴的传输通过ITO层而实现,而电子的传输通过铝层而实现。
图2示意性地示出了根据现有技术的所谓的倒装结构的有机光电二极管。所示出的光电二极管包括由透明电子传输层(ETL)覆盖的透明基底,该透明电子传输层本身由透明电子收集层(ECL)覆盖。这些层由有源层和空穴收集层(HCL)覆盖。HCL例如由银层覆盖,该银层的功能是允许空穴的传输(HTL),并反射来自基底的入射光。ECL例如由氧化锌(ZnO)或氧化钛(TiOx)制成,HCL例如由聚(苯乙烯磺酸酯)(PEDOT:PSS)制成或由金属氧化物如氧化钼、氧化钨或氧化钒制成。该类型的结构已被Jeong,J.等人,Inverted OrganicPhotodetectors With ZnO Electron-Collecting Buffer Layers and Polymer BulkHeterojunction Active Layers,Selected Topics in Quantum Electronics,IEEEJournal of,20(6),130-136公开。
在这两种直接或倒装光电二极管结构中,光可能被不同的层吸收,尤其被上电极和/或下电极吸收。
制造如上所述的倒装的有机光电二极管的矩阵以用于医疗成像应用是合乎需要的。这种类型的成像需要非常低的检测阈值。实现低检测阈值的方法之一是限制或甚至抑制光电二极管的暗电流,即,当光电二极管偏置时,在没有照射光的情况下的光电二极管的剩余电流。如果电子收集层的材料的功函数过高,则促进空穴从该层到有源层的给体中的寄生注入。现有技术的一个解决方案是用这样的金属制造下电极(与基底接触的电极):该金属的功函数低于常用的材料(通常为ITO)的功函数。例如,铝和铬的功函数低于ITO的功函数。由于这些材料容易氧化,因此这些材料具有在存在空气的情况下不稳定的缺点。
该技术问题可以(如Jeong,J.等人描述的)通过利用电子收集层(其在下电极和有源层之间的间隙中)而部分地得到解决,电子收集层的作用是降低与有源层进行接触的材料的功函数:为此可以使用氧化锌(ZnO)。所使用的ZnO是半导体:由于可能会在光电二极管的矩阵的不同像素间产生漏电流,因此其以全区域沉积(没有图案限定光刻步骤)的方式使用在技术上存在问题。有缺陷的像素(例如在功函数偶尔不适合于有源层的情况下)可能会在所有的相邻像素中引发漏电流,并且使围绕该有缺陷的像素的像素区域不适合于成像。使得电子收集层能够被刻蚀从而电分离各个像素的光刻步骤可以是一个技术方案。该步骤在制造工艺中是不合需要的,在该制造工艺中,具有太多所需的连续光刻步骤影响装置的生产和/或其制造产量。
发明内容
本发明旨在弥补现有技术的上述缺陷,并且更具体地,旨在制造漏电流得到最小化的矩阵有机光电装置,同时使得在制造这种装置期间进行的光刻步骤的数量能够受到限制。
能够完全或部分实现该目标的本发明的一个主题是一种光电装置,其包括布置在电绝缘基底上的平面薄层的堆叠,所述堆叠至少包括:
-一个阴极,其由功函数为ΦC的材料制成;
-一个电子收集层,其布置在所述阴极之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
-一个有源层,其包括至少一个p型有机半导体,以及n型半导体,所述层适合于发射或检测光,并且布置在所述电子收集层之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
-一个空穴收集层,其布置在所述有源层之上;以及
-一个阳极,其布置在所述空穴收集层之上;
其特征在于:
-所述电子收集层的所述功函数Φ1与所述有源层的所述能级HO1形成能够阻止空穴从所述阴极注入所述有源层的势垒;并且
-所述电子收集层的所述薄层电阻R大于或等于108Ω。
有利地,装置的所述电子收集层的所述功函数Φ1严格小于所述阴极的所述功函数ΦC
有利地,装置的所述电子收集层的所述材料选自氧化锌和氧化钛。
本发明的另一个主题是一种矩阵光电装置,其包括多个光电装置以及电子收集层,所述电子收集层对于所述光电装置的至少一部分是共用的,并且在所述光电装置的每一个之间实质上连续。
有利地,在所述共用的电子收集层的所述材料中,矩阵光电装置的所述共用的电子收集层的薄层电阻R能够阻止所述部分或多个部分的所述光电装置之间的载流子的电流。
有利地,所述矩阵光电装置的所述共用的电子收集层的所述材料的电阻率在所述电子收集层的厚度方向上比在所述电子收集层的主平面方向上更低。
有利地,所述矩阵光电装置的所述共用的电子收集层包括微晶,所述微晶成列布置在所述电子收集层的厚度方向中。
有利地,矩阵光电装置包括布置在所述共用的电子收集层与至少一个有源层之间的至少一个稳定层,其中,所述稳定层能够降低所述共用的电子收集层的材料的电阻率对亮度的相关性。
有利地,所述矩阵光电装置的所述稳定层的材料是优选地选自氧化锡和氧化钯的不透明氧化物。
有利地,所述矩阵光电装置的所述共用的电子收集层的材料包括p型掺杂物。
有利地,所述p型掺杂物选自钯、钴、铜和钼。
有利地,所述矩阵光电装置的至少一个所述电子收集层包括金属氧化物纳米微粒和极性聚合物,所述极性聚合物连接到所述金属氧化物纳米微粒上。
有利地,选自所述矩阵光电装置的基底、阴极、电子收集层、有源层、空穴收集层和阳极中的至少一个元件是透明的。
有利地,所述矩阵光电装置包括闪烁体材料层,所述闪烁体材料层布置在每一个所述阳极之上。
本发明的另一个主题是制造光电装置的工艺,所述光电装置包括布置在电绝缘基底上的平面薄层的堆叠,所述堆叠至少包括:
-一个阴极,其由功函数为ΦC的材料制成;
-一个电子收集层,其布置在所述阴极之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
-一个有源层,其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
-一个空穴收集层,其布置在所述有源层之上;以及
-一个阳极,其布置在所述空穴收集层之上;
所述工艺包括在包含至少1%并且优选地至少2%质量的分子氧的气氛中,在0℃和100℃之间的温度下,通过阴极溅射而沉积所述电子收集层的材料的至少一个步骤。
本发明的另一个主题是制造光电装置的工艺,所述光电装置包括布置在电绝缘基底上的平面薄层的堆叠,所述堆叠至少包括:
-一个阴极,其由功函数为ΦC的材料制成;
-一个电子收集层,其布置在所述阴极之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
-一个有源层,其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
-一个空穴收集层,其布置在所述有源层之上;以及
-一个阳极,其布置在所述空穴收集层之上;
所述工艺包括利用溶胶凝胶法来形成所述电子收集层的至少一个步骤,所述溶胶凝胶法包括沉积包含前体聚合物的溶液的步骤,所述前体聚合物选自金属醋酸盐、金属硝酸盐和金属氯化物。
有利地,所述溶液包括p型掺杂物。
本发明的另一个主题是制造矩阵光电装置的工艺,所述矩阵光电装置包括多个布置在图案中的光电装置,所述光电装置包括布置在电绝缘的基底上的平面薄层的堆叠,所述堆叠至少包括:
-一个阴极,其由功函数为ΦC的材料制成;
-一个共用的电子收集层,其包括第一子层和多个第二子层,所述共用的电子收集层布置在每一个所述阴极之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
-一个有源层,其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
-一个空穴收集层,其布置在所述有源层之上;以及
-一个阳极,其布置在所述空穴收集层之上;
所述工艺包括沉积所述电子收集层的至少两个子步骤,所述两个子步骤包括:
-沉积第一共用的电子收集子层;
-在与所述光电装置的所述图案相对应的图案中沉积多个第二子层。
附图说明
通过以下参照附图以示例的方式给出的解释性描述,将更好地理解本发明,并且本发明的其它优点、细节和特征将变得显然,其中:
-图3示意性地示出了根据本发明一个实施方案的倒装结构的光电装置的结构;
-图4示出了对应于根据现有技术的光电装置的结构的能带图;
-图5示出了对应于本发明一个实施方案的结构的能带图;
-图6示意性地示出了根据本发明一个实施方案的矩阵光电装置;
-图7示意性地示出了根据本发明一个实施方案的矩阵光电装置的俯视图;
-图8示意性地示出了光电装置的一部分的截面图,其包括包含微晶的电子收集层;
-图9示意性地示出了布置在根据本发明一个实施方案的矩阵光电装置的基底上的薄层;
-图10示出了归一化的溶胶凝胶反应的前体的浓度的变化的曲线图;
-图11示意性地示出了前体聚合物的尺寸对ZnO微粒之间的距离的影响;
-图12示意性地示出了在电子收集层中存在有机残留物时,电导率的减小;
-图13示意性地示出了电子收集层的电阻通过刻蚀所述层的步骤而增大的矩阵光电装置;以及
-图14示出了本发明的一个实施方案,在该实施方案中,矩阵光电装置包括闪烁体材料层。
具体实施方式
图1示意性地示出了现有技术的光电装置的结构。所示出的装置为如上所述的直接结构的光电二极管。
图2示意性地示出了根据现有技术的所谓的倒装结构的有机光电二极管。
图3示意性地示出了根据本发明一个实施方案的具有倒装结构的光电装置1的结构;光电装置1包括透明基底2,光电装置1可以从该透明基底2的下方受到照射。透明意指能够完全或部分地传输波长包含在可见光和/或近紫外和/或近红外范围内的电磁波。在图3中照射由向上的黑色箭头表示。基底2可以由玻璃、PEN或PET制成。部分地形成光电装置1的平面薄层的堆叠布置在基底2上。
阴极3布置在基底2之上。阴极3由功函数标记为ΦC的材料制成。在本发明实施方案中,阴极3可以由ITO制成。在该结构中,阴极3也可以作为电子传输层或ETL。
电子收集层4布置在阴极3之上。电子收集层4的材料的功函数标记为Φ1,并且电子收集层4的薄层电阻(以Ω/□和/或以Ω为单位进行测量)标记为R。在本发明的实施方案中,R严格大于108Ω,优选地严格大于1010Ω并且优选地严格大于1011Ω。电子收集层4可以由氧化钛(TiOx)或氧化锌(ZnO)制成。
有源层5布置在电子收集层4之上。有源层5包括至少一个p型有机半导体(其最高占据分子轨道的能级标记为HO1),以及n型半导体,并且适合于发射或检测光。有源层5布置在所述电子收集层4之上。有源层5例如包括聚合物和富勒烯的混合物。有源层5例如以1,3,5-三甲基苯的溶剂通过涂覆操作而沉积,其在热退火后的干燥厚度为200nm。该层是质量比为1:2的电子给体材料(头-尾连接聚(3-己基噻吩),称为P3HT RR)和电子受体材料(二[1,4]甲烷基萘并[1,2:2',3';56,60:2”,3”][5,6]-富勒烯-C60-Ih,称为ICBA)之间的纳米结构混合物。有源层5可以覆盖整个矩阵。也可以通过以氯苯型溶剂进行喷涂来沉积该有源层5,其热退火之后的干燥厚度为800nm。该层也可以是质量比为1:2的电子给体材料(聚[(4,8-双-(2-乙基己氧基)-苯并(1,2-b:4,5-b')二噻吩)-2,6-二基-交替-(4-(2-乙基己)-噻吩并[3,4-b]噻吩-)-2-6二基)],称为PBDTTT-C)和电子受体材料([6,6]-苯基-C71-丁酸甲酯,称为[70]PCBM)之间的纳米结构混合物。
空穴收集层(HCL)6布置在有源层5之上。在本发明的实施方案中,空穴收集层6由选自PEDOT:PSS、氧化钼(MoO3)、氧化钨(WO3)和氧化钒(V2O5)的材料制成。
阳极7布置在空穴收集层6之上。在本发明的一个实施方案中,阳极是例如由银制成的金属反射器,其具有提高光电装置1的效率的优点。阳极也可以作为空穴传输层HTL。
在本发明的实施方案中,电子收集层4的功函数Φ1和有源层5的p型材料的最高占据分子轨道的能级(其标记为HO1)形成了能够阻止空穴从阴极3注入有源层5的势垒。该势垒严格大于0.3eV,优选地严格大于0.4eV,并且优选地严格大于0.5eV。在图5中描述了该装置的不同层的能级的详细说明。
在本发明的一个实施方案中,光电装置适合于从上方受到照射。阳极7在这种情况下可以是透明的。该实施方案能够避免通过基底的入射光线的散射,并且在多个光电装置1进行矩阵排列的情况下能够获得更好的分辨率。
图4示出了对应于根据现有技术的光电装置的结构的能带图。阳极7的功函数(标记为ΦA)和阴极3的功函数(标记为ΦC)由各层的材料的费米能级与真空能级E0之间的能量差定义。有源层5的电子亲和势由有源层5的最低未占据分子轨道(称为BV或LUMO)与真空能级E0之间的能量差定义,并且对于有源层5的给体材料11和有源层5的受体材料12可以分别标记为χD和χA。有源层5的电离能由有源层5的最高占据分子轨道(称为HO或HOMO)与真空能级E0之间的能量差定义,并且对于有源层5的给体材料11和有源层5的受体材料12可以分别标记为EID和EIA。有源层5的给体11的HO标记为HO1。
图5示出了对应于本发明一个实施方案的结构的能带图。阴极3的特征是标记为ΦC的功函数。如果阴极3由ITO制成,则ΦC=4.7eV。电子收集层4的特征是电子亲和势χ4和电离能EI4。如果电子收集层4由ZnO制成,则χ4=4.2eV,Φ1=4.2eV并且EI4=7.5eV。有源层5的特征在于给体11的电子亲和势χD、给体11的电离能EID、受体12的电子亲和势χA以及受体的电离能EIA。对如图3所示的实施方案而言,这些能级可以对应于χD=3.7eV,EID=5.15eV,χA=3.9eV以及EIA=6.0eV。空穴收集层6的特征是功函数Φ6,如果该层由PEDOT:PSS制成,则该功函数Φ6可以在4.9eV和5.5eV之间。
光电装置1的接触部的功函数必须适用于优化注入,尤其是,在所描述的应用的背景下,优化对光生电荷的收集。理想地,阳极7的功函数与有源层5的给体11的HO HO1对齐,并且阴极3的功函数与有源层5的受体12的LUMO对齐。
在本发明的实施方案中,由ITO制成的阴极3具有在从4.6eV延伸到5eV的范围内的功函数(例如通过开尔文探针进行测量)。此外,现有技术的大多数给体材料11具有在从4.6eV延伸到5.4eV的范围内的电离电势。为了防止从由ITO制成的阴极3进入有源层5的给体材料11的空穴的寄生注入,一个技术方案是(例如通过在阴极3与有源层5之间沉积层,对应于电子收集层4)降低与有源层5进行接触的材料的功函数。
在光电装置1的该实施方案中,防止了从阴极3进入有源层5的寄生空穴的注入,因此,可以使光电装置1的暗电流最小化或得到抑制。因此,在本发明的实施方案中,电子收集层4的功函数Φ1严格小于阴极3的功函数ΦC:因此,可以使寄生空穴的注入最小化。一般而言,在本发明的一个实施方案中,在倒装的光电二极管结构中,电子收集层4使得一个或更多个势垒能够形成,该势垒能够阻止空穴从所述阴极3注入所述有源层5。该势垒可以处于有源层5与电子收集层4之间的界面,和/或处于电子收集层4与阴极3之间的界面。
乙氧基聚乙烯亚胺(PEIE)也可以用于制造电子收集层4。在本发明的实施方案中,可以使用蒸发银的层作为阳极7,并且可以使用选自PEDOT:PSS和诸如NixOy、CuxOy或MoxOy的金属氧化物的材料来制造空穴收集层6。
图6示意性地示出了根据本发明一个实施方案的矩阵光电装置8。根据本发明的矩阵光电装置8包括多个光电装置1。例如,在图6中示出了四个光电装置1。根据本发明一个实施方案的矩阵光电装置8包括电子收集层4,该电子收集层4对于光电装置1的至少一部分是共用的,并且在该部分的光电装置1的每一个之间实质上连续。在本发明的实施方案中,在所述共用的电子收集层4的所述材料中,共用的电子收集层4具有严格大于108Ω、优选地严格大于1010Ω并且优选地严格大于1011Ω的薄层电阻,并且能够阻止所述部分或多个部分的所述光电装置1之间的载流子的电流。以这种方式,能够防止给定矩阵的各个光电装置1之间的漏电流,同时沉积共用的电子收集层4,而不用额外的光刻步骤。
在本发明优选的实施方案中,共用的电子收集层4由ZnO制成。共用的电子收集层4的厚度可以大于1nm,优选地在5和500nm之间,并且优选地在10和40nm之间。共用的电子收集层4例如通过阴极溅射而沉积。
图7示意性地示出了根据本发明一个实施方案的矩阵光电装置8的俯视图。由导电材料制成的行13和列14连接至TFT矩阵20,从而能够多路复用光电装置1的每一个与矩阵光电装置8的外部之间的电连接,以便进行偏置和/或收集通过照射产生的电荷。
图7中示出的正方形灰色区域对应于布置在灰色部分中的光电装置1的界限。每个TFT 20都电连接至矩阵光电装置8的下电极,例如阴极3,所述阴极3的几何结构也由灰色正方形限定。黑色虚线正方形对应于共用的电子收集层4的示例沉积区域。该图示是示意性的,并且旨在使得该系统能够得到理解:共用的电子收集层4可以覆盖数百万个阴极3。
图8示意性地示出了在光电装置1的一部分的层的厚度方向上的截面图,该光电装置1包括包含微晶16的电子收集层4。微晶16成列布置在电子收集层4的厚度方向中。在本发明的一个实施方案中,共用的电子收集层4包括多个微晶16。有利地,沉积电子收集层4的材料,从而从阴极3成列地生长。以这种方式,电子收集层4的横向电导率(即,在电子收集层4的主平面的方向上)由于晶界17的存在而受限。在图8示出的实施方案中,相对于电子收集层4的材料的各向同性组织,电子收集层4的电导率在层的厚度方向上大体不变。相反,在层的主平面的方向上的电阻取决于晶界17和/或微晶16的密度。电子收集层4的材料的沉积温度也是该横向电阻所依赖的变量。沉积温度影响电子收集层4的微晶的尺寸。尤其是,当微晶16的尺寸增大时(例如当沉积温度升高时),微晶16之间的晶界17的密度减小并且横向电阻减小。相反,如果微晶16的尺寸减小,则来自微晶16的晶界17的散射变得突出,并且横向电阻增大。更一般地说,在本发明的实施方案中,相比在所述电子收集层4的主平面的方向上,共用的电子收集层4的材料在所述电子收集层4的厚度方向上的电阻率更低。更一般地说,电子收集层4的材料的电阻率在本发明的实施方案中是各向异性的。
在本发明的实施方案中,电子收集层4的材料的功函数(例如ZnO的功函数)对于ΦC=4.7eV,χD=3.7eV,EID=5.15eV而优选地在4eV和4.7eV之间。该材料的功函数低于4.7eV能够确保光电装置1的工作或者矩阵光电装置8的工作,并且功函数高于4eV能够使光电装置或矩阵光电装置8中的寄生载流子的注入得到最小化或者抑制。
通常,未掺杂的氧化锌被认为是n型半导体。电子收集层4沉积的工艺(尤其是当材料是ZnO时)使得电子收集层4的导电性质能够改变。对于室温沉积,以及对于包含大于1%质量的分子氧、并且优选地大于2%质量的分子氧的气氛,由ZnO制成的电子收集层4的电阻在109和1012Ω/□之间。对于在100℃和400℃之间的沉积温度,并且在存在分子氧的情况下,薄层电阻大体上恒定并且等于1Ω/□。
更一般地说,本发明的一个实施方案是制造光电装置1和/或矩阵光电装置8的工艺,该工艺包括下述至少一个步骤:利用物理薄膜沉积方法(例如阴极溅射)在0℃和100℃之间(包括0℃和100℃)的温度下、在包含至少1%质量的分子氧并且优选地包含2%质量的分子氧的气氛中沉积电子收集层4的材料。
沉积的层的电阻通过在沉积之后在0℃到100℃之间的温度下进行退火(热处理)而减小。例如,对于由ZnO制成的电子收集层4,200℃以上温度的热处理会得到在10Ω/□和109Ω/□之间的薄层电阻。通过进行热处理而实现的这种电阻降低可归因于在存在空气的情况下ZnO的氧化。电子收集层4的电阻可以通过所述层的沉积和退火工艺而得到调整。
图9示意性地示出了布置在根据本发明一个实施方案的矩阵光电装置8的基底上的薄层。尽管在本发明的一个实施方案中各个层进行直接接触,但是各个层被分开显示以使得该示意图能够得到理解。根据在矩阵光电装置8的制造中使用的工艺参数,电子收集层4的ZnO的电阻率可能不直接依赖于沉积温度或沉积后退火的温度。电子收集层4的材料的电阻率也可以取决于其环境。例如,在存在氧气的情况下,在电子收集层4的表面上发生吸附和解吸过程。处于气态的氧化分子,例如分子氧,可以吸附在ZnO的表面并且转化为负离子O2 -。根据等式1,该过程产生耗尽自由载流子的区域并且降低电子收集层4的表面的电导率:
O2 (气体)+e-→O2 -(吸附) (1)
在存在照射的情况下,光生空穴可朝向电子收集层4的表面移动并中和负氧离子。根据等式2,这导致在电子收集层4的表面处的电导率增加:
O2 -+h+→O2 (气体) (2)
如上所述,电子收集层4的材料的电阻率和功函数对光敏感。为了稳定电子收集层4,可以在电子收集层4之上设置稳定层10,其具有高的对于光稳定性。该稳定层10例如可以由氧化锡(SnOx)或氧化钯(PdOx)制成,其电阻较高,例如严格大于108Ω/□并且优选地严格大于1010Ω/□。更一般地说,稳定层10可以由不透明氧化物型的材料制成。稳定层10的厚度例如在1和500nm之间,并且优选地在10和50nm之间。一般而言,在本发明的一个实施方案中,矩阵光电装置8包括布置在共用的电子收集层4与至少一个有源层5之间的稳定层10,稳定层10能够降低共用的电子收集层4的材料的电阻率对亮度的相关性。在图9中,每个灰色正方形都对应于沉积以产生矩阵光电装置8的层:稳定层10沉积在共用的电子收集层4与一个或更多个有源层5之间。在本发明的实施方案中,电子收集层4、稳定层10、有源层5和/或空穴收集层6可以对于矩阵光电装置8的光电装置1的一部分或者所有光电装置1共用。
电子收集层4可以以p型杂质或元素掺杂。这些元素例如是铜、镍、钴、钯、钼、锰和/或铁。电子收集层4(例如由ZnO制成)中存在的p型杂质使得能够限制与阻止电流并且增大电子收集层4的材料的电阻的正载流子(空穴)相关联的电导率。通常,共用的电子收集层4可以包括p型元素,并且有利地包括钯、钴和/或铜,以便形成例如PdO、CoO或CuO的p型半导体或绝缘氧化物。
在本发明的实施方案中,使用溶胶凝胶法来制造电子收集层4。该溶胶凝胶沉积法具有实施简单并且廉价的优点。下文描述了溶胶凝胶法的实施。在本发明的一个实施方案中,制造光电装置1和/或矩阵光电装置8的工艺包括下述至少一个步骤:利用溶胶凝胶法形成所述电子收集层4,该溶胶凝胶法包括沉积包含前体聚合物15的溶液的步骤。所述前体聚合物15可以从金属乙酸盐、金属硝酸盐和/或金属氯化物获得。
与在部分真空中进行的溅射方法相比,溶胶凝胶法不需要特定的复杂设备。该方法包括用旋涂机或用印刷设备(喷墨印刷、丝网印刷)在基底上涂布包含溶剂和作为电子收集层4的材料(例如ZnO)的前体的聚合物15的溶液。然后蒸发溶剂,并且热处理可随后使形成的层结晶。通常,如果沉积后热处理的温度低于400℃,则沉积的层不是非常致密而具有非常高的电阻。在形成ZnO的情况下,电子收集层4含有ZnO和由合成留下的有机残留物(例如前体聚合物15、添加剂和/或溶剂)。这些合成残留物影响电子收集层4的电导率。
图10示出了在沉积后的热处理之后归一化的溶胶凝胶反应的前体聚合物15的浓度的变化的曲线图,该曲线图通过重量分析而获得。更确切地说,所示比率对应于1-(mf-mi)/mi,mf是给定物质的前体聚合物15的最终质量,mi是给定物质的前体聚合物15的初始质量。
曲线(a)(虚线)表示对于使用硝酸盐型前体聚合物15而言,该比率作为热处理温度的函数。曲线(b)(短划线)表示对于使用醋酸盐型前体聚合物15而言,该比率作为热处理温度的函数。曲线(c)(实线)表示对于使用氯化物型前体聚合物15而言,该比率作为热处理温度的函数。
图11示意性地示出了前体聚合物15的尺寸对ZnO微粒之间的距离的影响。所使用的前体聚合物15的化学性质是在溶胶凝胶法期间形成的各种微粒或ZnO的聚集体18之间的距离所依赖的变量。通常,电子收集层4的电阻随着ZnO的最邻近聚集体18之间的距离d而成比例地变化。在本发明的实施方案中,沉积后的热处理的温度和距离d可以进行调整,从而使电子收集层4的材料的最小薄层电阻大于108Ω/□。
图12示意性地示出了在电子收集层4中存在有机残留物19时,电导率的减小。短划线表示ZnO的聚集体18中的电流线:残留物19集中在聚集体18之间的边界处。在聚集体18之间形成的收缩部和在这些收缩部中的残留物19的存在易于使材料具有更大的电阻。
在本发明的一个实施方案中,可以使用溶胶凝胶沉积法,其可以作为“复杂聚合方法”的工艺。该工艺括以下步骤:
-将金属乙酸盐和/或金属硝酸盐和/或金属氯化物添加到2-甲氧基乙醇的溶剂中,并在50℃下搅拌直到其溶解在溶剂中;
-通过在70℃下向溶剂中加入乙醇胺乙酸来形成金属络合物。形成的离子是金属和乙酸根离子;
-在聚合反应期间等待,同时在70℃下搅拌溶剂,直到获得前体聚合物15;
-将前体聚合物15的溶液沉积在阴极3上。
该工艺的优点是适合于由常见金属盐如氯化物、醋酸盐和/或硝酸盐合成复杂或混合氧化物。有利地,选择在该工艺的实施中使用在前述段落中所述的乙酸盐:它们对于溶液中的水的存在不敏感,并且因此更加稳定。如果使用醋酸盐,则由此无需在惰性气体中实施该工艺。有利地,在电性稳定氧化物的部分分解之后形成醋酸盐。使用醋酸盐使得能够可再现地制造电子收集层4。使用醋酸使得能够避免在上述的溶胶凝胶法的第二步中的金属离子的析出,并且能够增加准备用于实施溶胶凝胶法的溶液的使用寿命。乙醇胺是一种络合剂,并且可稳定并促进该工艺的聚合步骤。
在一个实施方案中,可以在溶胶凝胶法期间添加p型掺杂物(Pd、Cu、Ni、Co),从而降低在热处理之后的电子收集层4的电导率。
在本发明的一个实施方案中,通过沉积由乙氧基化聚乙烯亚胺(PEIE)连接(greffées)的ZnO纳米微粒而形成电子收集层4。纳米微粒意指特征尺寸(例如球的直径)在0.1nm和100nm之间的微粒。由于PEIE是绝缘聚合物,所以利用由PEIE连接的ZnO纳米微粒制成的电子收集层4具有非常高的薄层电阻,例如高于1010Ω/□。PEIE可以通过羟基或胺基连接到ZnO微粒上。更一般地说,光电装置1和/或矩阵光电装置8可以包括金属氧化物纳米微粒以及连接到金属氧化物纳米微粒上的极性聚合物。
图13示意性地示出了矩阵光电装置8,其中,电子收集层4的电阻通过在两个沉积步骤中产生所述层(形成两种类型的子层)而增大。这两个子层通过图13中的短划线而分开。可以进行第一沉积,形成第一子层21,其厚度例如在10nm和15nm之间。该第一子层21是共用的,并且沉积在光电装置1之间(即在不同像素之间)。可以进行第二沉积,从而形成多个更厚的第二子层22。子层22的沉积在与光电装置1的布置的图案相对应的图案中进行。第二子层22的沉积可以通过在对应于光电装置1的位置处受到刻蚀的金属掩模来执行。
在制造矩阵光电装置8的一个工艺中,可以减小光电装置1之间的电子收集层4的厚度,从而局部增大电子收集层4的薄层电阻。
在本发明的一个实施方案中,选自基底2、阴极3、电子收集层4、有源层5、空穴收集层6和阳极7中的至少一个元件是透明的。
图14示出了本发明的一个实施方案,在该实施方案中,矩阵光电装置8包括闪烁体材料层23。在本发明的实施方案中,闪烁体材料层23可以布置在矩阵光电装置8的阳极7的每一个上。闪烁体材料意指在吸收电离辐射之后(例如在吸收x射线之后)能够发光(例如在可见光谱中)的材料。有利地,空穴收集层6和阳极7在该实施方案中都是透明的。因此,装置8能够对x射线进行成像。
在本发明的实施方案中,可以直接在有源层中进行x射线的检测。在这种情况下,基底2、阴极3、电子收集层4、空穴收集层6和/或阳极7不需要是透明的。

Claims (17)

1.一种光电装置(1),其包括布置在电绝缘的基底(2)上的平面薄层的堆叠,所述堆叠至少包括:
- 一个阴极(3),其由功函数为ΦC的材料制成;
- 一个电子收集层(4),其布置在所述阴极(3)之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
-一个有源层(5),其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层(4)之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
- 一个空穴收集层(6),其布置在所述有源层(5)之上;以及
- 一个阳极(7),其布置在所述空穴收集层(6)之上;
其特征在于:
- 所述电子收集层(4)的所述功函数Φ1与所述有源层(5)的所述能级HO1形成能够阻止空穴从所述阴极(3)注入所述有源层(5)的势垒;并且
- 所述电子收集层(4)的所述薄层电阻R大于或等于108 Ω,
- 所述电子收集层(4)连续并且包括微晶(16),所述微晶(16)成列布置在所述电子收集层(4)的厚度方向中,所述电子收集层(4)的所述材料的电阻率在所述电子收集层(4)的厚度方向上比在所述电子收集层(4)的主平面方向上更低。
2.根据权利要求1所述的光电装置(1),其中,所述电子收集层(4)的所述功函数Φ1严格小于所述阴极(3)的所述功函数ΦC
3.根据权利要求1或2中任一项所述的光电装置(1),其中,所述电子收集层(4)的所述材料选自氧化锌和氧化钛。
4.一种矩阵光电装置(8),其包括多个根据权利要求1至3中任一项所述的光电装置(1)以及电子收集层(4),所述电子收集层(4)对于所述光电装置(1)的至少一部分是共用的,并且在所述光电装置(1)的每一个之间实质上连续。
5.根据权利要求4所述的矩阵光电装置(8),其中,在所述共用的电子收集层(4)的所述材料中,所述共用的电子收集层(4)的所述薄层电阻R能够阻止所述部分或多个部分的所述光电装置(1)之间的载流子的电流。
6.根据权利要求4所述的矩阵光电装置(8),其包括布置在所述共用的电子收集层(4)与至少一个有源层(5)之间的至少一个稳定层(10),其中,所述稳定层(10)能够降低所述共用的电子收集层(4)的材料的电阻率对亮度的相关性。
7.根据权利要求6所述的矩阵光电装置(8),其中,所述稳定层(10)的材料是不透明氧化物。
8.根据权利要求7所述的矩阵光电装置(8),其中,所述不透明氧化物选自氧化锡和氧化钯。
9.根据权利要求4所述的矩阵光电装置(8),其中,所述共用的电子收集层(4)的材料包括p型掺杂物。
10.根据权利要求9所述的矩阵光电装置(8),其中,所述p型掺杂物选自钯、钴、铜和钼。
11.根据权利要求4所述的矩阵光电装置(8),其中,至少一个所述电子收集层包括金属氧化物纳米微粒和极性聚合物,所述极性聚合物连接至所述金属氧化物纳米微粒上。
12.根据权利要求4所述的矩阵光电装置(8),其中,选自基底(2)、阴极(3)、电子收集层(4)、有源层(5)、空穴收集层(6)和阳极(7)中的至少一个元件是透明的。
13.根据权利要求12所述的矩阵光电装置(8),其包括闪烁体材料层(23),所述闪烁体材料层布置在每个所述阳极(7)之上。
14.一种制造根据权利要求1至3中任一项所述的光电装置(1)或根据权利要求4至13中任一项所述的矩阵光电装置(8)的工艺,所述的光电装置包括布置在电绝缘的基底(2)上的平面薄层的堆叠,该堆叠至少包括:
- 一个阴极(3),其由功函数为ΦC的材料制成;
- 一个电子收集层(4),其布置在所述阴极(3)之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
- 一个有源层(5),其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层(4)之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
- 一个空穴收集层(6),其布置在所述有源层(5)之上;以及
- 一个阳极(7),其布置在所述空穴收集层(6)之上,
- 所述电子收集层(4)连续并且包括微晶(16),所述微晶(16)成列布置在所述电子收集层(4)的厚度方向中,所述电子收集层(4)的所述材料的电阻率在所述电子收集层(4)的厚度方向上比在所述电子收集层(4)的主平面方向上更低;
所述工艺包括下述至少一个步骤:在包含至少1%质量的分子氧的气氛中,在0°C和100°C之间的温度下,通过阴极溅射而沉积所述电子收集层(4)的材料。
15.一种制造根据权利要求1至3中任一项所述的光电装置(1)或根据权利要求4至13中任一项所述的矩阵光电装置(8)的工艺,所述光电装置包括布置在电绝缘的基底(2)上的平面薄层的堆叠,所述堆叠至少包括:
- 一个阴极(3),其由功函数为ΦC的材料制成;
- 一个电子收集层(4),其布置在所述阴极(3)之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
- 一个有源层(5),其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层(4)之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
- 一个空穴收集层(6),其布置在所述有源层(5)之上;以及
- 一个阳极(7),其布置在所述空穴收集层(6)之上,
- 所述电子收集层(4)连续并且包括微晶(16),所述微晶(16)成列布置在所述电子收集层(4)的厚度方向中,所述电子收集层(4)的所述材料的电阻率在所述电子收集层(4)的厚度方向上比在所述电子收集层(4)的主平面方向上更低;
所述工艺包括下述至少一个步骤:利用溶胶凝胶法来形成所述电子收集层(4),所述溶胶凝胶法包括沉积包含前体聚合物(15)的溶液的步骤,所述前体聚合物(15)选自金属醋酸盐、金属硝酸盐和金属氯化物。
16.根据权利要求15所述的工艺,其中,所述溶液包括p型掺杂物。
17.一种制造根据权利要求4至13中任一项所述的矩阵光电装置(8)的工艺,所述矩阵光电装置(8)包括多个布置在图案中的根据权利要求1至3中任一项所述的光电装置(1),所述光电装置(1)包括布置在电绝缘的基底(2)上的平面薄层的堆叠,所述堆叠至少包括:
- 一个阴极(3),其由功函数为ΦC的材料制成;
- 一个共用的电子收集层(4),其包括第一共用的电子收集子层(21)和多个第二子层(22),所述共用的电子收集层布置在所述阴极(3)之上,并且由功函数为Φ1、薄层电阻为R的材料制成;
- 一个有源层(5),其包括至少一个p型有机半导体,以及n型半导体,所述有源层适合于发射或检测光,并且布置在所述电子收集层(4)之上,所述p型有机半导体的最高占据分子轨道的能级为HO1;
- 一个空穴收集层(6),其布置在所述有源层(5)之上;以及
- 一个阳极(7),其布置在所述空穴收集层(6)之上,
- 所述电子收集层(4)连续并且包括微晶(16),所述微晶(16)成列布置在所述电子收集层(4)的厚度方向中,所述共用的电子收集层(4)的所述材料的电阻率在所述电子收集层(4)的厚度方向上比在所述电子收集层(4)的主平面方向上更低;
所述工艺包括沉积所述电子收集层(4)的至少两个子步骤,所述至少两个子步骤包括:
- 沉积第一共用的电子收集子层(21);以及
- 在与所述光电装置(1)的所述图案相对应的图案中沉积多个第二子层(22)。
CN201680075746.6A 2015-12-23 2016-12-21 有机光电装置、这种装置的阵列以及制造这种阵列的方法 Active CN108604639B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1563286 2015-12-23
FR1563286A FR3046300B1 (fr) 2015-12-23 2015-12-23 Dispositif optoelectronique organique, matrice de tels dispositifs et procede de fabrication de telles matrices.
PCT/EP2016/082064 WO2017108882A1 (fr) 2015-12-23 2016-12-21 Dispositif optoelectronique organique, matrice de tels dispositifs et procede de fabrication de telles matrices

Publications (2)

Publication Number Publication Date
CN108604639A CN108604639A (zh) 2018-09-28
CN108604639B true CN108604639B (zh) 2022-04-12

Family

ID=55346116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680075746.6A Active CN108604639B (zh) 2015-12-23 2016-12-21 有机光电装置、这种装置的阵列以及制造这种阵列的方法

Country Status (7)

Country Link
US (1) US10586938B2 (zh)
EP (1) EP3394912B1 (zh)
JP (1) JP6980662B2 (zh)
KR (1) KR20180113498A (zh)
CN (1) CN108604639B (zh)
FR (1) FR3046300B1 (zh)
WO (1) WO2017108882A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073088B1 (fr) * 2017-10-26 2019-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electronique organique ou hybride et son procede de fabrication
JP7464987B2 (ja) 2018-10-22 2024-04-10 国立大学法人 東京大学 導電性ポリマー材料及びその製造方法、光電変換素子並びに電界効果トランジスタ
FR3098821B1 (fr) 2019-07-19 2023-05-26 Isorg Encre pour une couche d’injection d’électrons
CN111628085B (zh) * 2020-06-08 2023-04-07 遵义师范学院 一种基于双电子传输层的有机太阳能电池及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412128A (zh) * 2012-06-20 2015-03-11 皇家飞利浦有限公司 具有有机光电二极管的辐射探测器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706963B2 (en) * 2002-01-25 2004-03-16 Konarka Technologies, Inc. Photovoltaic cell interconnection
EP1419286A1 (en) * 2001-08-20 2004-05-19 Nova-Plasma Inc. Coatings with low permeation of gases and vapors
US7291782B2 (en) * 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US20040159793A1 (en) * 2003-02-19 2004-08-19 Christoph Brabec Carbon-based photodiode detector for nuclear medicine
US7829781B2 (en) * 2004-06-01 2010-11-09 Konarka Technologies, Inc. Photovoltaic module architecture
DE102005037289A1 (de) * 2005-08-08 2007-02-22 Siemens Ag Fotodetektor, Röntgenstrahlenflachbilddetektor und Verfahren zur Herstellung dergleichen
JP2007080911A (ja) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子、露光装置および画像形成装置
DE102007021843A1 (de) * 2007-05-07 2008-11-13 Leonhard Kurz Gmbh & Co. Kg Photovoltaisches Modul
JP5523803B2 (ja) * 2009-11-27 2014-06-18 富士フイルム株式会社 放射線センサおよび放射線画像撮影装置
JP5560142B2 (ja) * 2010-02-10 2014-07-23 富士フイルム株式会社 光電変換素子及び固体撮像素子
GB201008142D0 (en) * 2010-05-14 2010-06-30 Imp Innovations Ltd Device comprising graphene oxide film
GB201008697D0 (en) * 2010-05-25 2010-07-07 Solar Press Uk The Ltd Photovoltaic modules
TWI422525B (zh) * 2010-09-10 2014-01-11 Univ Nat Chiao Tung 可交聯之富勒烯衍生物及其反式結構有機太陽能電池
EP2490235B1 (en) * 2011-02-16 2014-04-02 Imec Electron transporting titanium oxide layer
JP2012195512A (ja) * 2011-03-17 2012-10-11 Ricoh Co Ltd 光電変換素子
CA2831394A1 (en) * 2011-03-29 2012-10-04 The Regents Of The University Of California Active materials for electro-optic devices and electro-optic devices
US20130248822A1 (en) * 2012-03-23 2013-09-26 Xiong Gong Broadband Polymer Photodetectors Using Zinc Oxide Nanowire as an Electron-Transporting Layer
KR20130117144A (ko) * 2012-04-17 2013-10-25 삼성전자주식회사 인버티드 유기 태양전지 및 그 제조방법
US20150034910A1 (en) * 2013-07-31 2015-02-05 General Electric Company Organic x-ray detector
CN103811663A (zh) * 2014-02-27 2014-05-21 西南大学 一种免退火的有机太阳能电池及其制备方法
FR3020896B1 (fr) * 2014-05-07 2016-06-10 Commissariat Energie Atomique Dispositif matriciel de detection incorporant un maillage metallique dans une couche de detection et procede de fabrication
CN108369992B (zh) * 2015-12-08 2021-09-10 出光兴产株式会社 有机el发光装置和电子设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412128A (zh) * 2012-06-20 2015-03-11 皇家飞利浦有限公司 具有有机光电二极管的辐射探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Solution Processed ZnO Hybrid Nanocomposite with Tailored Work Function for Improved Electron Transport Layer in Organic Photovoltaic Devices";Yun-Ju Lee 等;《ACS Appl. Mater. Interfaces》;20130827;第5卷(第18期);第9128-9133页 *

Also Published As

Publication number Publication date
US20180366669A1 (en) 2018-12-20
EP3394912A1 (fr) 2018-10-31
KR20180113498A (ko) 2018-10-16
WO2017108882A1 (fr) 2017-06-29
FR3046300B1 (fr) 2018-07-20
JP6980662B2 (ja) 2021-12-15
CN108604639A (zh) 2018-09-28
EP3394912B1 (fr) 2021-02-17
FR3046300A1 (fr) 2017-06-30
US10586938B2 (en) 2020-03-10
JP2019501531A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
CN108604639B (zh) 有机光电装置、这种装置的阵列以及制造这种阵列的方法
US20120204931A1 (en) Method for manufacturing organic thin film solar cell module
JP2010263175A (ja) 有機感光性の光電装置
US10229952B2 (en) Photovoltaic cell and a method of forming a photovoltaic cell
JPWO2008152889A1 (ja) 光電変換素子の製造方法、イメージセンサおよび放射線画像検出器
WO2015187225A2 (en) Ultrasensitive solution-processed perovskite hybrid photodetectors
WO2011052582A1 (ja) 有機薄膜太陽電池モジュールの製造方法
JP2010041022A (ja) 光電変換素子
US10121982B2 (en) Solar cell, solar cell module, and method for manufacturing solar cell
WO2016014345A2 (en) Two-terminal electronic devices and their methods of fabrication
US20110132453A1 (en) Organic photoelectric conversion element and production method thereof
US20120266954A1 (en) Organic photovoltaic cell
US20160268532A1 (en) Solar cell module and method for manufacturing the same
JP5932928B2 (ja) 光電変換装置
JP5715796B2 (ja) 有機光電変換素子の製造方法
JP2011119705A (ja) 有機光電変換素子及びその製造方法
KR101198912B1 (ko) 1차원 나노구조를 갖는 전하수송층을 구비하는 유기태양전지 및 그 제조방법
JP2016042508A (ja) 電子素子
CN103782407B (zh) 光电转换元件及其制造方法
Fernández-Castro et al. Enabling Roll-Processed and Flexible Organic Solar Cells Based On PffBT4T Through Temperature-Controlled Slot-Die Coating
KR101161582B1 (ko) 투명광학다층체 및 이를 포함하는 투명태양전지
US20190386163A1 (en) Film for photovoltaic cell and associated manufacturing method, photovoltaic cell and photovoltaic module
KR20220151063A (ko) 패턴화된 유기 반도체 적층체, 그를 포함하는 유기 전자 소자 및 그의 제조방법
US20180301649A1 (en) Organic photoelectric conversion element
WO2011052578A1 (ja) 有機光電変換素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant