CN108599584B - 三相多电平变频器的调制方法 - Google Patents

三相多电平变频器的调制方法 Download PDF

Info

Publication number
CN108599584B
CN108599584B CN201710135651.5A CN201710135651A CN108599584B CN 108599584 B CN108599584 B CN 108599584B CN 201710135651 A CN201710135651 A CN 201710135651A CN 108599584 B CN108599584 B CN 108599584B
Authority
CN
China
Prior art keywords
phase
temperature
water
set temperature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710135651.5A
Other languages
English (en)
Other versions
CN108599584A (zh
Inventor
陈凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Shanghai Co Ltd
Original Assignee
Delta Electronics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Shanghai Co Ltd filed Critical Delta Electronics Shanghai Co Ltd
Priority to CN201710135651.5A priority Critical patent/CN108599584B/zh
Priority to TW106118441A priority patent/TWI642263B/zh
Priority to US15/908,825 priority patent/US10097110B2/en
Publication of CN108599584A publication Critical patent/CN108599584A/zh
Application granted granted Critical
Publication of CN108599584B publication Critical patent/CN108599584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/11Sinusoidal waveform

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种三相多电平变频器的调制方法,调制方法包含如下步骤:步骤1,三相多电平变频器的控制环路产生第1三相正弦调制波信号;步骤2,向第1三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,在保证最高电压利用率的条件下使第2三相调制波信号中的任两相在线电压峰值附近的绝对值不相等;步骤3,基于第2三相调制波信号产生PWM脉冲信号;步骤4,根据PWM脉冲信号产生三相多电平变频器的各功率单元的控制信号。

Description

三相多电平变频器的调制方法
技术领域
本发明涉及一种三相多电平变频器的调制方法,具体地说,尤其涉及一种能够抑制系统输出的线电压产生两电平跳变的调制方法。
背景技术
传统的三相多电平变频器采用马鞍形调制波加单极性倍频载波移相调制时,在系统输出线电压的峰值附近,存在同一级的两相IGBT同时动作的区域,导致线电压上出现两电平的跳变。当变频器通过长电缆与电机连接时,由于电缆中分布参数的影响,会在电机端产生电压反射现象,从而在电机端产生最高两倍的过电压。变频器输出电压每次跳变的电平数越多,在电机端产生的过电压越高,从而加速电动机绝缘老化,缩短使用寿命。
图11是现有三相H桥多电平变频器拓扑结构图;图12A是图11中A相的功率单元拓扑结构图;图12B是图11中B相的功率单元拓扑结构图;图12C是图11中C相的功率单元拓扑结构图。
当图11的多电平变频器采用传统的马鞍形调制波加单极性倍频载波移相调制时,请参照图1-3。图1是三相正弦调制波ua、ub、uc和注入三次谐波后的传统马鞍形调制波u′a、u′b、u′c示意图;图2是采用单极性倍频调制时的示意图;图3是采用传统的马鞍形调制波加单极性倍频载波移相调制时A、B相输出线电压的示意图及其局部放大图。如图1-3所示,当采用传统的马鞍形调制波加单极性倍频载波移相调制时,以扇区VI为例,调制波中注入的三次谐波为:
Figure BDA0001241264900000011
则注入三次谐波后的调制波为:
Figure BDA0001241264900000012
Figure BDA0001241264900000021
Figure BDA0001241264900000022
可以看出,在该扇区中,u′a≡-u′b,采用单极性倍频调制时,再请参照图2,同一级A相和B相的开关管(如IGBT)同时动作,导致线电压uAB上出现两电平的电压跳变。
因此急需开发一种克服上述缺陷的三相多电平变频器的调制方法。
发明内容
为了克服上述现有技术存在的问题,本发明的目的在于提供一种三相多电平变频器的调制方法,其中,包含如下步骤:
步骤1:所述三相多电平变频器的控制环路产生第1三相正弦调制波信号;
步骤2:向所述第1三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,在保证最高电压利用率的条件下使所述第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等;
步骤3:基于所述第2三相调制波信号产生PWM脉冲信号;
步骤4:根据所述PWM脉冲信号产生所述三相多电平变频器的各功率单元的控制信号。
上述的调制方法,其中,所述步骤3包含:
步骤31:对所述第2三相调制波信号进行载波移相调制以产生所述PWM脉冲信号;
步骤32:在所述线电压的峰值附近,实时计算所述第2三相调制波信号中每两相的绝对值之差,并将所述绝对值之差与一阈值比较。
上述的调制方法,其中,所述步骤3还包含步骤33:当两相的绝对值之差小于所述阈值时,将该两相对应的PWM脉冲信号分别在一开关周期内进行移相。
上述的调制方法,其中,所述两相中的一相对应的PWM脉冲信号与所述两相中的另一相对应的PWM脉冲信号在所述开关周期内的移相方向相反,且移相时间相等。
上述的调制方法,其中,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure BDA0001241264900000031
时,
Figure BDA0001241264900000032
Figure BDA0001241264900000033
时,
Figure BDA0001241264900000034
Figure BDA0001241264900000035
时,
Figure BDA0001241264900000036
Figure BDA0001241264900000037
时,
Figure BDA0001241264900000038
Figure BDA0001241264900000039
时,
Figure BDA00012412649000000310
Figure BDA00012412649000000311
时,
Figure BDA00012412649000000312
Figure BDA00012412649000000313
时,
Figure BDA00012412649000000314
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的所述第1正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
上述的调制方法,其中,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure BDA00012412649000000315
时,
Figure BDA00012412649000000316
Figure BDA00012412649000000317
时,
Figure BDA00012412649000000318
Figure BDA00012412649000000319
时,
Figure BDA00012412649000000320
Figure BDA00012412649000000321
时,
Figure BDA00012412649000000322
Figure BDA00012412649000000323
时,
Figure BDA00012412649000000324
Figure BDA0001241264900000041
时,
Figure BDA0001241264900000042
Figure BDA0001241264900000043
时,
Figure BDA0001241264900000044
Figure BDA0001241264900000045
时,
Figure BDA0001241264900000046
Figure BDA0001241264900000047
时,
Figure BDA0001241264900000048
Figure BDA0001241264900000049
时,
Figure BDA00012412649000000410
Figure BDA00012412649000000411
时,
Figure BDA00012412649000000412
Figure BDA00012412649000000413
时,
Figure BDA00012412649000000414
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的第1正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
本发明还提供一种三相多电平变频器,包括调制装置、控制环路和多个功率单元,所述控制环路产生第1三相正弦调制波信号,所述调制装置电性耦接于所述控制环路和多个功率单元,其中,所述调制装置向所述三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,并基于所述第2三相调制波信号产生PWM脉冲信号,将所述PWM脉冲信号分别传送给所述多个功率单元,所述多个功率单元根据所述PWM脉冲信号产生控制信号;其中,通过注入三次谐波信号,在保证最高电压利用率的条件下使所述第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等。
上述的三相多电平变频器,其中,所述调制装置包含:
信号注入模块,向所述第1三相正弦调制波信号中注入所述三次谐波信号,并输出所述第2三相调制波信号;
移相控制模块,电性耦接于所述信号注入模块,所述移相控制模块接收并对所述第2三相调制波信号进行载波移相调制以产生所述PWM脉冲信号,在所述线电压的峰值附近,实时计算所述第2三相调制波信号中每两相的绝对值之差,并将所述绝对值之差与一阈值比较。
上述的三相多电平变频器,其中,当两相的绝对值之差小于所述阈值时,所述移相控制模块将该两相对应的PWM脉冲信号分别在一开关周期内进行移相。
上述的三相多电平变频器,其中,所述两相中一相对应的PWM脉冲信号与所述两相中另一相对应的PWM脉冲信号在所述开关周期内的移相方向相反,且移相时间相等。
上述的三相多电平变频器,其中,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure BDA0001241264900000051
时,
Figure BDA0001241264900000052
Figure BDA0001241264900000053
时,
Figure BDA0001241264900000054
Figure BDA0001241264900000055
时,
Figure BDA0001241264900000056
Figure BDA0001241264900000057
时,
Figure BDA0001241264900000058
Figure BDA0001241264900000059
时,
Figure BDA00012412649000000510
Figure BDA00012412649000000511
时,
Figure BDA00012412649000000512
Figure BDA00012412649000000513
时,
Figure BDA00012412649000000514
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
上述的三相多电平变频器,其中,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure BDA00012412649000000515
时,
Figure BDA00012412649000000516
Figure BDA0001241264900000061
时,
Figure BDA0001241264900000062
Figure BDA0001241264900000063
时,
Figure BDA0001241264900000064
Figure BDA0001241264900000065
时,
Figure BDA0001241264900000066
Figure BDA0001241264900000067
时,
Figure BDA0001241264900000068
Figure BDA0001241264900000069
时,
Figure BDA00012412649000000610
Figure BDA00012412649000000611
时,
Figure BDA00012412649000000612
Figure BDA00012412649000000613
时,
Figure BDA00012412649000000614
Figure BDA00012412649000000615
时,
Figure BDA00012412649000000616
Figure BDA00012412649000000617
时,
Figure BDA00012412649000000618
Figure BDA00012412649000000619
时,
Figure BDA00012412649000000620
Figure BDA00012412649000000621
时,
Figure BDA00012412649000000622
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
与现有技术相比,本发明具有以下全部或部分有益的技术效果:
本发明公开的上述技术方案旨在抑制三相多电平逆变器的桥臂输出的线电压产生两电平跳变,进而减小了电机端的过电压,从而保护电机绝缘,延长电机寿命。
附图说明
图1是三相正弦调制波ua、ub、uc和注入三次谐波后的传统马鞍形调制波u′a、u′b、u′c示意图;
图2是采用单极性倍频调制时的示意图;
图3是采用传统的马鞍形调制波加单极性倍频载波移相调制时,三相多电平变频器输出的线电压及其局部放大示意图;
图4A是本发明三相多电平变频器的调制方法的步骤流程图;
图4B是图4A中步骤3的分步流程图;
图5是本发明第一实施例的第1三相正弦调制波信号及第2三相调制波信号的示意图;
图6是本发明第二实施例的第1三相正弦调制波信号及第2三相调制波信号的示意图;
图7A表示A相和B相中各一个功率单元对应的PWM脉冲信号的移相示意图;
图7B表示一载波周期内,A相和B相的其中一功率单元输出的相电压及线电压;
图8是A相和B相PWM脉冲信号移相后的三级级联型系统输出A、B相电压和线电压;
图9是通过本发明的调制方法三相多电平变频器输出的线电压波形及其局部放大示意图;
图10是本发明的三相多电平变频器原理图;
图11是现有三相H桥多电平变频器拓扑结构图;
图12A是图11中A相的功率单元拓扑结构图;
图12B是图11中B相的功率单元拓扑结构图;
图12C是图11中C相的功率单元拓扑结构图;
图13A是采用传统的马鞍形调制波加单极性倍频载波移相调制时,三级级联型变频器的输出线电压FFT的示意图;
图13B是本发明的调制方法应用于三级级联型变频器的输出线电压FFT的示意图。
具体实施方式
下面结合附图与具体实施例对本发明作进一步详细描述:本实施例在以本发明技术方案为前提下进行实施,给出了实施方式和操作过程,但本发明的保护范围不限于下述的实施例。
请参照图4A,图4A是本发明三相多电平变频器的调制方法的步骤流程图。如图4A所示,本发明三相多电平变频器的调制方法包含:
步骤1:三相多电平变频器的控制环路产生第1三相正弦调制波信号;
步骤2:向所述第1三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,在保证最高电压利用率的条件下使所述第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等;
步骤3:对第2三相调制波信号进行移相控制以产生PWM脉冲信号;
步骤4:根据PWM脉冲信号产生三相多电平变频器的各功率单元的控制信号。
图5是本发明第一实施例的第1三相正弦调制波信号及第2三相调制波信号的示意图。请参照图5,ua、ub、uc表示第1三相正弦调制波信号,将图5中调制波信号的一个周期(可为一个工频周期)划分成多个调制区间(如12个区间),不同的调制波区间注入不同的三次谐波信号,得到第2三相调制波信号u′a、u′b、u′c。其中所需的三次谐波注入信号为分段式三次谐波信号,所述分段式三次谐波信号的表达式为:
Figure BDA0001241264900000081
时,
Figure BDA0001241264900000082
Figure BDA0001241264900000083
时,
Figure BDA0001241264900000084
Figure BDA0001241264900000085
时,
Figure BDA0001241264900000086
Figure BDA0001241264900000087
时,
Figure BDA0001241264900000088
Figure BDA0001241264900000089
时,
Figure BDA00012412649000000810
Figure BDA00012412649000000811
时,
Figure BDA00012412649000000812
Figure BDA00012412649000000813
时,
Figure BDA00012412649000000814
其中,三相多电平变频器的三角载波的幅值变化范围为-Um~Um,uz表示本实施例中注入的三次谐波信号,ua、ub、uc分别为三相多电平变频器的A相、B相、C相的第1三相正弦调制波信号,θ为第1三相正弦调制波信号中ua的相位。
图6是本发明第二实施例的第1三相正弦调制波信号及第2三相调制波信号的示意图。和第一实施例类似,图6中的一个周期划分为多个调制波区间,不同的调制波区间注入不同的三次谐波信号,得到本实施例的第2三相调制波信号u′a、u′b、u′c。所需的三次谐波注入信号为分段式三次谐波信号,所述分段式三次谐波信号的表达式为:
Figure BDA0001241264900000091
时,
Figure BDA0001241264900000092
Figure BDA0001241264900000093
时,
Figure BDA0001241264900000094
Figure BDA0001241264900000095
时,
Figure BDA0001241264900000096
Figure BDA0001241264900000097
时,
Figure BDA0001241264900000098
Figure BDA0001241264900000099
时,
Figure BDA00012412649000000910
Figure BDA00012412649000000911
时,
Figure BDA00012412649000000912
Figure BDA00012412649000000913
时,
Figure BDA00012412649000000914
Figure BDA00012412649000000915
时,
Figure BDA00012412649000000916
Figure BDA00012412649000000917
时,
Figure BDA00012412649000000918
Figure BDA00012412649000000919
时,
Figure BDA00012412649000000920
Figure BDA00012412649000000921
时,
Figure BDA00012412649000000922
Figure BDA0001241264900000101
时,
Figure BDA0001241264900000102
其中,三相多电平变频器的三角载波的幅值变化范围为-Um~Um,uz表示注入的三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的第1三相正弦调制波信号,θ为所述第1三相正弦调制波信号ua的相位。
值得注意的是,本发明并不局限于上述注入的三次谐波信号,在其他实施例中设计者可根据设计需求相应调整注入的三次谐波信号,只要所注入的三次谐波信号使生成的第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等即可。
将上述所获得的三次谐波信号uz,根据划分的调制区间注入第1三相正弦调制波信号ua、ub、uc中,得到第2三相调制波信号的表达式为:
u′=u+u
ua=ua+uz
ub′=ub+uz
u′c=uc+uz
在保证最高电压利用率的条件下,上式中的第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等,使三相多电平级联型变频器的桥臂输出的线电压不会产生两电平跳变,进而减小了电机端的过电压,从而保护电机绝缘,延长电机寿命。上述实施例中,峰值附近指的是第2三相调制波信号的幅值的绝对值达到最大的区间,如图5中以u′b为例,峰值附近对应的区间为(π/2,5π/6)和(3π/2,11π/6),如图6中以u′b为例,峰值附近对应的区间为(π/3,π/2)、(5π/6,π)(4π/3,3π/2)和(11π/6,2π)。
对第2三相调制波信号进行移相控制以产生PWM脉冲信号。其中移相控制包括载波移相调制和个别点PWM脉冲信号的移相控制。
载波移相调制可指单极性倍频载波移相调制,具体地,将上述得到的第2三相调制波信号u′a、u′b、u′c分别与载波信号进行交割产生各相桥臂开关管Ta11、Tb11、Tc11的PWM脉冲信号,Ta13、Tb13、Tc13的PWM脉冲信号分别与Ta11、Tb11、Tc11的PWM脉冲信号反相。
将第2三相调制波信号u′a、u′b、u′c分别与上述的载波信号的反相信号交割产生各相桥臂开关管Ta12、Tb12、Tc12的PWM脉冲信号,Ta14、Tb14、Tc14的PWM脉冲信号分别与Ta12、Tb12、Tc12的PWM脉冲信号反相。
类似的,对于每相中第N个功率模块,将按照调制区间注入分段式三次谐波后获得的第2三相调制波信号u′a、u′b、u′c分别与移相角度为180°/N的载波信号进行交割产生各相桥臂开关管TaN1、TbN1、TcN1的PWM脉冲信号,TaN3、TbN3、TcN3的PWM脉冲信号分别与TaN1、TbN1、TcN1的PWM脉冲信号反相;
将第2三相调制波信号u′a、u′b、u′c分别与上述的移相角度为180°/N的载波信号的反相信号交割产生各相桥臂开关管TaN2、TbN2、TcN2的PWM脉冲信号,TaN4、TbN4、TcN4的PWM脉冲信号分别与TaN2、TbN2、TcN2的PWM脉冲信号反相。
针对本发明的调制方法,请参照图4B,图4B是图4A中步骤3的分步流程图;上述步骤3包含步骤31:对第2三相调制波信号进行载波移相调制以产生PWM脉冲信号;步骤32:在线电压的峰值附近,实时计算第2三相调制波信号中每两相的绝对值之差,并将所述绝对值之差与一阈值比较;步骤33:当两相的绝对值之差小于阈值时,将该两相对应的PWM脉冲信号分别在一开关周期内进行移相。其中两相中的一相对应的PWM脉冲信号与两相中的另一相对应的PWM脉冲信号在所述开关周期内的移相方向相反,且移相时间相等。
在某些特殊点,如图5中峰值区间的边界点π/2、5π/6、3π/2和11π/6等,第2三相调制波信号中会出现两相的绝对值近似相等,如图5中π/2处u′b的绝对值近似等于u′c的绝对值。因此为了避免在这些点处形成两电平的跳变,需要将这些点对应的PWM脉冲信号在一个开关周期(对应载波信号的周期)内进行移相。
图7A表示A相和B相中各一个功率单元对应的PWM脉冲信号的移相示意图。本发明的调制波信号为工频信号,频率为50HZ,三角载波信号的频率为600HZ,在载波信号的一个周期内u′a和u′b可近似为一条直线。如图7A所示,第2三相正弦调制波信号u′a和u′b在同一载波周期的绝对值近似相等,即该两相的绝对值差值小于设定的阈值,对由调制信号u′a与三角载波信号及其反相信号交割产生的A相中功率单元对应的PWM脉冲信号PA1和PA2进行移相,对由调制信号u′b与三角载波信号及其反相信号交割产生的B相中功率单元对应的PWM脉冲信号PB1和PB2进行移相。其中,阈值可根据需求自行设定。对PWM脉冲信号进行移相可通过很多种方式实现,如在进行载波移相调制时调整某时刻对应的调制信号的幅值,实现对应PWM脉冲信号的移相。如图7A所示,将调制信号u′a产生的PWM脉冲信号右移Td,u′b产生的PWM脉冲信号左移Td。具体实现方法为,t1时刻在调制波u′a上减去偏移量ud且t4时刻在调制波u′a上加上偏移量ud,使脉冲信号PA1向右偏移,且偏移时间为Td;t2时刻在调制波u′a上加上偏移量ud且t3时刻在调制波u′a上减去偏移量ud,使脉冲信号PA2向右偏移,且偏移时间为Td;t1时刻在调制波u′b上减去偏移量ud且t4时刻在调制波u′b上加上偏移量ud,使脉冲信号PB1向左偏移,且偏移时间为Td;t2时刻在调制波u′b上加上偏移量ud且t3时刻在调制波u′b上减去偏移量ud,使脉冲信号PB2向左偏移,且偏移时间为Td。最终,使A、B两相对应的PWM脉冲信号在一个开关周期内进行移相,且A相对应的PWM脉冲信号PA1和PA2和B相对应的PWM脉冲信号PB1和PB2在所述开关周期内的移相方向相反,且移相时间相等。
需要说明的是,实现PWM脉冲信号移相的方法有很多种,本发明仅列举了其中一种进行说明。本发明中主要以A相、B相为例,其它与上述原理类似,此处不再赘述。
根据移相后得到的PWM脉冲信号产生三相多电平变频器的各功率单元的控制信号。
图7B表示一载波周期内,A相和B相的其中一功率单元输出的相电压及线电压。如图7B所示,经由控制信号的控制,A相中的一功率单元输出相电压uA,B相中的一功率单元输出相电压uB,最终得到A、B两相的线电压uAB。图7B中,u′a和u′b在同一载波周期的绝对值近似相等,经过移相后,A相中的开关管和B相中的开关管不再同时导通,导通时间错开了2Td。因此,最终得到AB相的线电压uAB不会产生两电平的跳变。
图8表示一载波周期内,变频器输出的A相和B相的相电压及线电压。请一并参考图8和图11,图11中的三相H桥级联型变频器每相包含3个级联的功率单元,则每相中各功率单元对应的三角载波的移相角度为60°(即180°/N)。图8中以A相和B相为例,第2三相调制波信号u′a和u′b分别与三角载波信号进行交割以产生PWM脉冲信号,并对得到的PWM脉冲信号进行移相处理。根据移相后的PWM脉冲信号产生三相多电平变频器的各功率单元的控制信号。经由控制信号的控制,变频器的A相输出相电压uA,变频器的B相输出相电压uB,最终得到A、B两相的线电压uAB
请参照图3和图9,图9是通过本发明的调制方法三相多电平变频器输出的线电压波形及其局部放大示意图。如图9所示,在一个工频周期内,特别是线电压的峰值附近都没有出现两电平的跳变。通过图3和图9可知与传统调制方法相比,本发明提出的调制方法,使系统输出线电压的峰值附近不会出现两电平的电压跳变,当系统通过长电缆和电机连接时,使电机端因电缆分布参数引起的电机端过电压得到了减小,从而保护了电机的绝缘,延长了电机的寿命。
图10是本发明的三相多电平变频器原理图。如图10所示,三相多电平变频器6包括控制环路61、调制装置62和多个功率单元63,控制环路61产生第1三相正弦调制波信号,调制装置62电性耦接于控制环路61和功率单元63,调制装置62向第1三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,并基于第2三相调制波信号产生PWM脉冲信号,根据所述PWM脉冲信号产生控制信号分别传送给各功率单元63,各功率单元63根据控制信号对应控制各桥臂开关管的导通和关断;其中,通过注入三次谐波信号,在保证最高电压利用率的条件下使所述第2三相调制波信号中的的任两相的绝对值在线电压的峰值附近不相等。
进一步地,调制装置包含:信号注入模块621,向第1三相正弦调制波信号中注入三次谐波信号,并输出第2三相调制波信号。其中,所需的三次谐波注入信号为分段式三次谐波信号,所述分段式三次谐波信号的表达式可以为前述第一实施例或第二实施例中的分段式三次谐波信号的表达式,但本发明并不以此为限,在其他实施例中设计者可根据设计需求相应调整注入的三次谐波信号,只要所注入的三次谐波信号使生成的第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等即可,将上述所获得的三次谐波信号uz,根据划分的调制区间注入第1三相正弦调制波信号ua、ub、uc中,得到第2三相调制波信号的表达式为:
u′a=ua+uz
ub′=ub+uz
u′c=uc+uz
在保证最高电压利用率的条件下,上式中的第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等,使三相多电平级联型变频器的桥臂输出的线电压不会产生两电平跳变,进而减小了电机端的过电压,从而保护电机绝缘,延长电机寿命。上述实施例中,峰值附近指的是第2三相调制波信号的幅值的绝对值达到最大的区间,如图5中以u′b为例,峰值附近对应的区间为(π/2,5π/6)和(3π/2,11π/6),如图6中以u′b为例,峰值附近对应的区间为(π/3,π/2)、(5π/6,π)(4π/3,3π/2)和(11π/6,2π)。
移相控制模块622,电性耦接于信号注入模块621,接收第2三相调制波信号,并对第2三相调制波信号进行移相控制以产生PWM脉冲信号,移相控制模块622根据PWM脉冲信号产生三相多电平变频器的各功率单元的控制信号。其中,移相控制模块622具体工作过程参见前述的调制方法,在此就不再赘述了,需要说明的是移相控制包括载波移相调制和个别点PWM脉冲信号的移相控制。
进一步地,移相控制模块622在线电压的峰值附近,实时计算所述第2三相调制波信号中每两相的绝对值之差,并将绝对值之差与一阈值比较;当两相的绝对值之差小于阈值时,将该两相对应的PWM脉冲信号分别在一开关周期内进行移相。其中两相中的一相对应的PWM脉冲信号与两相中的另一相对应的PWM脉冲信号在所述开关周期内的移相方向相反,且移相时间相等。其中,移相控制模块622的移相方式参见前述的调制方法,在此就不再赘述了,需要说明的是,实现PWM脉冲信号移相的方法有很多种,本发明仅列举了其中一种进行说明。
请参照图13A及13B,图13A是采用传统的马鞍形调制波加单极性倍频载波移相调制时三级级联型变频器的输出线电压FFT(快速傅里叶变换)的示意图,图13B是本发明的调制方法应用于三级级联型变频器的输出线电压FFT的示意图。图13A与图13B的傅里叶分析曲线相同,说明采用本发明所提出的调制方案,系统输出线电压的谐波分布,与采用传统马鞍形调制波加单极性倍频载波移相调制时系统输出线电压的谐波分布相同。即本发明提出的方案既能消除线电压峰值附件的两电平跳变,又不会对线电压的谐波分布产生不利影响。
综上所述,本发明通过抑制三相多电平逆变器的桥臂输出的线电压两电平跳变,减小了电机端的过电压,从而保护电机绝缘,延长电机寿命。
需要说明的是:以上实施例仅仅用以说明本发明,而并非限制本发明所描述的技术方案;同时,尽管本说明书参照上述实施例对本发明进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;因此,一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明所附权利要求的保护范围之内。

Claims (11)

1.一种三相多电平变频器的调制方法,其特征在于,包含如下步骤:
步骤1:所述三相多电平变频器的控制环路产生第1三相正弦调制波信号;
步骤2:向所述第1三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,在保证最高电压利用率的条件下使所述第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等;
步骤3:基于所述第2三相调制波信号产生PWM脉冲信号,其中,计算所述第2三相调制波信号中每两相的绝对值之差,所述绝对值之差小于阈值时,将该两相对应的PWM脉冲信号分别在一开关周期内进行移相;
步骤4:根据所述PWM脉冲信号产生所述三相多电平变频器的各功率单元的控制信号。
2.如权利要求1所述的调制方法,其特征在于,所述步骤3包含:
步骤31:对所述第2三相调制波信号进行载波移相调制以产生所述PWM脉冲信号;
步骤32:在所述线电压的峰值附近,实时计算所述第2三相调制波信号中每两相的绝对值之差,并将所述绝对值之差与所述阈值比较。
3.如权利要求1所述的调制方法,其特征在于,所述两相中的一相对应的PWM脉冲信号与所述两相中的另一相对应的PWM脉冲信号在所述开关周期内的移相方向相反,且移相时间相等。
4.如权利要求1所述的调制方法,其特征在于,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure FDA0002388009180000011
时,
Figure FDA0002388009180000012
Figure FDA0002388009180000013
时,
Figure FDA0002388009180000014
Figure FDA0002388009180000015
时,
Figure FDA0002388009180000016
Figure FDA0002388009180000017
时,
Figure FDA0002388009180000018
Figure FDA0002388009180000021
时,
Figure FDA0002388009180000022
Figure FDA0002388009180000023
时,
Figure FDA0002388009180000024
Figure FDA0002388009180000025
时,
Figure FDA0002388009180000026
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的所述第1正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
5.如权利要求1所述的调制方法,其特征在于,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure FDA0002388009180000027
时,
Figure FDA0002388009180000028
Figure FDA0002388009180000029
时,
Figure FDA00023880091800000210
Figure FDA00023880091800000211
时,
Figure FDA00023880091800000212
Figure FDA00023880091800000213
时,
Figure FDA00023880091800000214
Figure FDA00023880091800000215
时,
Figure FDA00023880091800000216
Figure FDA00023880091800000217
时,
Figure FDA00023880091800000218
Figure FDA00023880091800000219
时,
Figure FDA00023880091800000220
Figure FDA00023880091800000221
时,
Figure FDA00023880091800000222
Figure FDA00023880091800000223
时,
Figure FDA00023880091800000224
Figure FDA00023880091800000225
时,
Figure FDA00023880091800000226
Figure FDA0002388009180000031
时,
Figure FDA0002388009180000032
Figure FDA0002388009180000033
时,
Figure FDA0002388009180000034
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的第1正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
6.一种三相多电平变频器,包括调制装置、控制环路和多个功率单元,所述控制环路产生第1三相正弦调制波信号,所述调制装置电性耦接于所述控制环路和多个功率单元,其特征在于,所述调制装置向所述三相正弦调制波信号中注入三次谐波信号以产生第2三相调制波信号,并基于所述第2三相调制波信号产生PWM脉冲信号,其中,计算所述第2三相调制波信号中每两相的绝对值之差,所述绝对值之差小于阈值时,将该两相对应的PWM脉冲信号分别在一开关周期内进行移相;将所述PWM脉冲信号分别传送给所述多个功率单元,所述多个功率单元根据所述PWM脉冲信号产生控制信号;其中,通过注入三次谐波信号,在保证最高电压利用率的条件下使所述第2三相调制波信号中的任两相的绝对值在线电压的峰值附近不相等。
7.如权利要求6所述的三相多电平变频器,其特征在于,所述调制装置包含:
信号注入模块,向所述第1三相正弦调制波信号中注入所述三次谐波信号,并输出所述第2三相调制波信号;
移相控制模块,电性耦接于所述信号注入模块,所述移相控制模块接收并对所述第2三相调制波信号进行载波移相调制以产生所述PWM脉冲信号,在所述线电压的峰值附近,实时计算所述第2三相调制波信号中每两相的绝对值之差,并将所述绝对值之差与所述阈值比较。
8.如权利要求7所述的三相多电平变频器,其特征在于,当两相的绝对值之差小于所述阈值时,所述移相控制模块将该两相对应的PWM脉冲信号分别在一开关周期内进行移相。
9.如权利要求8所述的三相多电平变频器,其特征在于,所述两相中一相对应的PWM脉冲信号与所述两相中另一相对应的PWM脉冲信号在所述开关周期内的移相方向相反,且移相时间相等。
10.如权利要求6所述的三相多电平变频器,其特征在于,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure FDA0002388009180000041
时,
Figure FDA0002388009180000042
Figure FDA0002388009180000043
时,
Figure FDA0002388009180000044
Figure FDA0002388009180000045
时,
Figure FDA0002388009180000046
Figure FDA0002388009180000047
时,
Figure FDA0002388009180000048
Figure FDA0002388009180000049
时,
Figure FDA00023880091800000410
Figure FDA00023880091800000411
时,
Figure FDA00023880091800000412
Figure FDA00023880091800000413
时,
Figure FDA00023880091800000414
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
11.如权利要求6所述的三相多电平变频器,其特征在于,所述三相多电平变频器的三角载波变化范围为-Um~Um,所述三次谐波信号的表达式为:
Figure FDA00023880091800000415
时,
Figure FDA00023880091800000416
Figure FDA00023880091800000417
时,
Figure FDA00023880091800000418
Figure FDA00023880091800000419
时,
Figure FDA00023880091800000420
Figure FDA00023880091800000421
时,
Figure FDA00023880091800000422
Figure FDA00023880091800000423
时,
Figure FDA00023880091800000424
Figure FDA0002388009180000051
时,
Figure FDA0002388009180000052
Figure FDA0002388009180000053
时,
Figure FDA0002388009180000054
Figure FDA0002388009180000055
时,
Figure FDA0002388009180000056
Figure FDA0002388009180000057
时,
Figure FDA0002388009180000058
Figure FDA0002388009180000059
时,
Figure FDA00023880091800000510
Figure FDA00023880091800000511
时,
Figure FDA00023880091800000512
Figure FDA00023880091800000513
时,
Figure FDA00023880091800000514
其中uz为所述三次谐波信号,ua、ub、uc分别为所述三相多电平变频器的A相、B相、C相的正弦调制波信号,θ为所述第1正弦调制波信号ua的相位。
CN201710135651.5A 2017-03-08 2017-03-08 三相多电平变频器的调制方法 Active CN108599584B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710135651.5A CN108599584B (zh) 2017-03-08 2017-03-08 三相多电平变频器的调制方法
TW106118441A TWI642263B (zh) 2017-03-08 2017-06-03 三相多電平變頻器的調製方法
US15/908,825 US10097110B2 (en) 2017-03-08 2018-03-01 Modulation method for a three-phase multilevel converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710135651.5A CN108599584B (zh) 2017-03-08 2017-03-08 三相多电平变频器的调制方法

Publications (2)

Publication Number Publication Date
CN108599584A CN108599584A (zh) 2018-09-28
CN108599584B true CN108599584B (zh) 2020-09-11

Family

ID=63445519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710135651.5A Active CN108599584B (zh) 2017-03-08 2017-03-08 三相多电平变频器的调制方法

Country Status (3)

Country Link
US (1) US10097110B2 (zh)
CN (1) CN108599584B (zh)
TW (1) TWI642263B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586554B (zh) * 2018-11-06 2020-08-25 中国人民解放军海军工程大学 多倍频均匀化载波斜率随机分布脉宽调制方法
CN109713969B (zh) * 2018-12-20 2020-09-25 西北工业大学 一种永磁同步电机正弦脉冲宽度变载波控制方法
CN111327300B (zh) * 2020-03-04 2024-05-17 惠州化能汇通智能科技有限公司 一种大功率交直流一体化的电子负载系统及其控制方法
CN114257102B (zh) * 2020-09-24 2023-07-18 苏州爱科赛博电源技术有限责任公司 一种基于三相两电平拓扑结构的双采样单刷新的方法
CN114337341B (zh) * 2021-09-30 2024-01-30 深圳市英威腾电气股份有限公司 一种两电平变流器优化最远矢量pwm方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282093A (zh) * 2007-04-04 2008-10-08 三垦力达电气(江阴)有限公司 用于串联式多电平逆变器的pwm控制方法
CN103746590A (zh) * 2014-01-22 2014-04-23 丽水学院 单极性控制的三相二电平逆变器空间电压矢量调制算法
CN105207514A (zh) * 2015-10-28 2015-12-30 兖州东方机电有限公司 一种用于多相变频器的多相平顶波的生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW296882U (en) * 1996-01-20 1997-01-21 Yung Tay Engineering Co Ltd PWM signal generator for three-phase AC inductive motor
US7894224B2 (en) * 2008-10-07 2011-02-22 DRS Power & Technologies, Inc. Voltage drive system with hysteretic current control and method of operating the same
US8278850B2 (en) * 2010-03-09 2012-10-02 GM Global Technology Operations LLC Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine
RU2628765C1 (ru) * 2013-08-21 2017-08-22 Тойота Дзидося Кабусики Кайся Аппаратура управления электродвигателя
CN106208735A (zh) * 2016-08-24 2016-12-07 中南大学 一种三次谐波注入的矩阵变换器及控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282093A (zh) * 2007-04-04 2008-10-08 三垦力达电气(江阴)有限公司 用于串联式多电平逆变器的pwm控制方法
CN103746590A (zh) * 2014-01-22 2014-04-23 丽水学院 单极性控制的三相二电平逆变器空间电压矢量调制算法
CN105207514A (zh) * 2015-10-28 2015-12-30 兖州东方机电有限公司 一种用于多相变频器的多相平顶波的生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
级联型多电平逆变器及其调制方法研究;贺升学;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20120415(第4期);第32-33页第4.1.1节,图4-1、图4-2;第40-45页第4.2.2节,图4-12、图4-14 *

Also Published As

Publication number Publication date
TWI642263B (zh) 2018-11-21
TW201834372A (zh) 2018-09-16
US10097110B2 (en) 2018-10-09
US20180262125A1 (en) 2018-09-13
CN108599584A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108599584B (zh) 三相多电平变频器的调制方法
JP5892955B2 (ja) 電力変換装置
WO2018098975A1 (zh) 一种脉冲宽度调制方法、脉冲宽度调制系统及控制器
JP2012170324A (ja) 電力コンバータのためのコントローラおよびその動作方法
JP5551833B2 (ja) 電力変換制御装置、電力変換制御方法、電動機および車両駆動システム
EP2713498A1 (en) Space vector pulse width modulation method and apparatus
Colak et al. A modified harmonic mitigation analysis using Third Harmonic Injection PWM in a multilevel inverter control
CN103490652B (zh) 载波移相脉宽调制方法
CN113271027B (zh) 一种二极管钳位的三电平逆变器高性能同步过调制算法
US11456680B2 (en) Over-modulation pulse width modulation with maximum output and minimum harmonics
JP2010213377A (ja) 電力変換装置および電力変換方法
US20200328697A1 (en) Control method and apparatus for single-phase five-level converter
CN108322074B (zh) 一种基于十二边形空间电压矢量的级联二电平逆变器svpwm调制方法
CN102629850B (zh) 一种两电平svpwm过调制方法
JP2010200537A (ja) 電力変換装置
US20230147775A1 (en) Common-mode voltage injection control method and apparatus for inverter
CN109818515B (zh) 一种三电平逆变器无死区空间矢量脉宽调制方法
Bakbak et al. An approach for space vector PWM to reduce harmonics in low switching frequency applications
CN112803823A (zh) 脉冲宽度调制方法、逆变器和控制器
Mane et al. Performance of 5-level NPC inverter with multi-multicarrier multi-modulation technique
CN111245278B (zh) 脉冲调制方法、装置以及存储介质
CN111332133B (zh) 轨道车辆及其牵引电机的控制方法、控制装置
Peter et al. Comparison of quarter-wave with half-wave symmetrical pulse patterns applied in electrical high-speed drives
JP2009232606A (ja) 電力変換装置の制御装置および制御方法
Jian et al. A new three-level NPC inverter based on phase individual DC-link circuit and high quality digital SPWM control technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant