CN108598165B - 屏蔽栅场效应晶体管及其制造方法(柱形) - Google Patents

屏蔽栅场效应晶体管及其制造方法(柱形) Download PDF

Info

Publication number
CN108598165B
CN108598165B CN201810351439.7A CN201810351439A CN108598165B CN 108598165 B CN108598165 B CN 108598165B CN 201810351439 A CN201810351439 A CN 201810351439A CN 108598165 B CN108598165 B CN 108598165B
Authority
CN
China
Prior art keywords
shielded gate
effect transistor
field effect
oxide layer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810351439.7A
Other languages
English (en)
Other versions
CN108598165A (zh
Inventor
张帅
黄昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan Anhai Semiconductor Co., Ltd
Original Assignee
Jinan Anhai Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan Anhai Semiconductor Co ltd filed Critical Jinan Anhai Semiconductor Co ltd
Priority to CN201810351439.7A priority Critical patent/CN108598165B/zh
Publication of CN108598165A publication Critical patent/CN108598165A/zh
Application granted granted Critical
Publication of CN108598165B publication Critical patent/CN108598165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种屏蔽栅场效应晶体管及其制造方法,属于半导体技术领域。由于该屏蔽栅场效应晶体管的制造方法中,在完成沟槽底部的第一次屏蔽栅掺杂多晶硅淀积后,刻蚀减薄了屏蔽栅侧壁氧化层,再进行第二次屏蔽栅掺杂多晶硅淀积,因此利用该方法形成的屏蔽栅场效应晶体管的屏蔽栅底部的氧化层厚度较其它位置更厚,可以达到减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且本发明的屏蔽栅场效应晶体管的结构简单,其制造方法工艺简便,成本也相当低廉。

Description

屏蔽栅场效应晶体管及其制造方法(柱形)
技术领域
本发明涉及半导体技术领域,特别涉及场效应晶体管技术领域,具体是指一种屏蔽栅场效应晶体管及其制造方法。
背景技术
随着电子信息技术的迅速发展,特别是像时尚消费电子和便携式产品的快速发展,金属氧化物半导体场效应晶体管(MOSFET)等功率器件的需求量越来越大,MOSFET主要分为横向和纵向两种,横向MOSFET的明显优势是其较好的集成性,可以更容易集成到现有技术的工艺平台上,但由于其耐压的漂移区在表面展开,显示出了其最大的不足,占用的面积较大,面积代表成本,耐压越高的器件,劣势越明显,而纵向MOSFET很好的避免了这一问题,因此,超高压的分立器件仍然以纵向为主。
图1为传统的沟槽型纵向场效应晶体管。为了满足高频应用,对电容的要求越来越高,带有屏蔽栅结构的沟槽型场效应晶体管得到了广泛的应用,基本结构如图2所示。随着电压应用的增大,这种结构的弱点就会越来越明显,如图3所示,屏蔽栅底部为器件电场最强的位置,容易被击穿。因此,如何降低屏蔽栅底部电场,防止其被击穿,成为本领域亟待解决的问题。
发明内容
本发明的目的是克服了上述现有技术中的缺点,提供一种通过优化屏蔽栅底部的氧化层的厚度实现减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且结构简单,生产工艺简便,成本低廉的屏蔽栅场效应晶体管及其制造方法。
为了实现上述的目的,本发明的屏蔽栅场效应晶体管的制造方法包括以下步骤:
(1)在作为漏极的N+衬底上利用外延生长工艺产生N-区;
(2)在所述的N-区上设置掩模版进行刻蚀形成位于该N-区内的沟槽;
(3)氧化修复所述沟槽的缺陷,并在器件表面淀积屏蔽栅氧化层;
(4)在所述沟槽底部进行屏蔽栅掺杂多晶硅淀积并回刻;
(5)刻蚀位于所述沟槽底部上方屏蔽栅侧壁的氧化层,减薄屏蔽栅侧壁氧化层;
(6)在所述沟槽内进行屏蔽栅第二次掺杂多晶硅淀积并回刻;
(7)对所述的屏蔽栅顶部进行多晶硅氧化;
(8)在所述的沟槽内淀积氧化层,回刻,并去除所述的掩模版;
(9)在所述的N-区顶部进行P-body区注入和退火,形成P-body区;
(10)进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀,形成位于所述沟槽顶部的栅极;
(11)在所述的P-body区顶部沿所述的沟道进行N+注入;
(12)利用后段工艺在器件顶部形成源极。
该屏蔽栅场效应晶体管的制造方法中,所述的掩模版为氮化硅。
该屏蔽栅场效应晶体管的制造方法中,所述的步骤(5)具体为,湿法刻蚀位于所述沟槽底部上方屏蔽栅侧壁的氧化层,减薄屏蔽栅侧壁氧化层。
该屏蔽栅场效应晶体管的制造方法中,所述的步骤(12)具体为,利用后段工艺,设置层间介质层,P+注入及金属连线在器件顶部形成源极。
本发明还提供一种利用上述制造方法制成的屏蔽栅场效应晶体管,其位于所述沟槽底部的屏蔽栅氧化层的厚度为0.7至1.7μm。
采用了该发明屏蔽栅场效应晶体管及其制造方法,由于其在完成沟槽底部的第一次屏蔽栅掺杂多晶硅淀积后,刻蚀减薄了屏蔽栅侧壁氧化层,再进行第二次屏蔽栅掺杂多晶硅淀积,因此其屏蔽栅底部的氧化层的厚度较其它位置更厚,达到减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且本发明的屏蔽栅场效应晶体管的结构简单,其制造方法工艺简便,成本也相当低廉。
附图说明
图1为传统沟槽型纵向场效应晶体管结构示意图。
图2为现有技术中的带有屏蔽栅结构的沟槽型场效应晶体管结构示意图。
图3为现有技术中的带有屏蔽栅结构的沟槽型场效应晶体管屏蔽栅底部击穿点示意图。
图4为本发明的屏蔽栅场效应晶体管及其制造方法的流程示意图。
图5为本发明的屏蔽栅场效应晶体管及其制造方法中EPI生长工艺示意图。
图6为本发明的屏蔽栅场效应晶体管及其制造方法中沟槽刻蚀示意图。
图7为本发明的屏蔽栅场效应晶体管及其制造方法中淀积屏蔽栅氧化层示意图。
图8为本发明的屏蔽栅场效应晶体管及其制造方法中第一次多晶硅淀积示意图。
图9为本发明的屏蔽栅场效应晶体管及其制造方法中减薄屏蔽栅侧壁氧化层示意图。
图10为本发明的屏蔽栅场效应晶体管及其制造方法中第二次多晶硅淀积示意图。
图11为本发明的屏蔽栅场效应晶体管及其制造方法中屏蔽栅多晶硅氧化示意图。
图12为本发明的屏蔽栅场效应晶体管及其制造方法中淀积氧化层、去除掩模版示意图。
图13为本发明的屏蔽栅场效应晶体管及其制造方法中P-body区注入和退火示意图。
图14为本发明的屏蔽栅场效应晶体管及其制造方法中进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀示意图。
图15为本发明的屏蔽栅场效应晶体管及其制造方法中进行N+注入示意图。
图16为本发明的屏蔽栅场效应晶体管的结构示意图。
图17为本发明的屏蔽栅场效应晶体管与传统屏蔽栅场效应晶体管的底部电场分布对比示意图。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明。
请参阅图4所示,为本发明的屏蔽栅场效应晶体管及其制造方法的流程示意图。
在一种实施方式中,该屏蔽栅场效应晶体管的制造方法,包括以下步骤:
(1)如图5所示,在作为漏极的N+衬底上利用外延生长工艺产生N-区;
(2)如图6所示,在所述的N-区上设置氮化硅掩模版进行刻蚀形成位于该N-区内的沟槽;
(3)如图7所示,氧化修复所述沟槽的缺陷,并在器件表面淀积屏蔽栅氧化层;
(4)如图8所示,在所述沟槽底部进行屏蔽栅掺杂多晶硅淀积并回刻;
(5)如图9所示,刻蚀位于所述沟槽底部上方屏蔽栅侧壁的氧化层,减薄屏蔽栅侧壁氧化层;
(6)如图10所示,在所述沟槽内进行屏蔽栅第二次掺杂多晶硅淀积并回刻;
(7)如图11所示,对所述的屏蔽栅顶部进行多晶硅氧化;
(8)如图12所示,在所述的沟槽内淀积氧化层,回刻,并去除所述的掩模版;
(9)如图13所示,在所述的N-区顶部进行P-body区注入和退火,形成P-body区;
(10)如图14所示,进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀,形成位于所述沟槽顶部的栅极;
(11)如图15所示,在所述的P-body区顶部沿所述的沟道进行N+注入;
(12)如图16所示,利用后段工艺在器件顶部形成源极。
在优选的实施方式中,
所述的步骤(5)具体为,湿法刻蚀位于所述沟槽底部上方屏蔽栅侧壁的氧化层,减薄屏蔽栅侧壁氧化层。
所述的步骤(12)具体为,利用后段工艺,设置层间介质层,P+注入及金属连线在器件顶部形成源极。
本发明还提供一种利用上述制造方法制成的屏蔽栅场效应晶体管,其结构如图16所示。在优选的实施方式中,位于所述沟槽底部的屏蔽栅氧化层的厚度为0.7至1.7μm。
在本发明的应用中,屏蔽栅底部的氧化层的厚度可根据不同的应用而有所不同。本发明可以涵盖20V~250V的广泛应用范围,以100V应用为例,传统技术屏蔽栅底部的氧化层的厚度大概在0.5~0.7um的范围,而本发明的厚度大致为传统厚度的1.2~2倍;
增大底部氧化层厚度一方面可以承担更大的电场进而得到更高的击穿电压。本发明与传统结构底部电场分布对比如图17所示。本发明中更厚的底部二氧化硅可以有效降低N-外延层(硅)中的电场强度(本发明电场强度E1<传统结构电场强度E2),进而可以更晚到达临界电场,从而得到更高的击穿电压。
另一方面,同增大底部氧化层厚度还可以进一步减小漏极与源极之间的寄生电容;根据平板电容的理论,C=εA/d,其中ε为介质层二氧化硅的介电常数,A为面积,d为介质层厚度,因此,Cds会随着介质层厚度d的增大而减小。
采用了该发明屏蔽栅场效应晶体管及其制造方法,由于其在完成沟槽底部的第一次屏蔽栅掺杂多晶硅淀积后,刻蚀减薄了屏蔽栅侧壁氧化层,再进行第二次屏蔽栅掺杂多晶硅淀积,因此其屏蔽栅底部的氧化层的厚度较其它位置更厚,达到减弱屏蔽栅底部电场的目的,从而避免屏蔽栅底部击穿,提升器件耐用性,且本发明的屏蔽栅场效应晶体管的结构简单,其制造方法工艺简便,成本也相当低廉。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (6)

1.一种屏蔽栅场效应晶体管的制造方法,其特征在于,该方法包括以下步骤:
(1)在作为漏极的N+衬底上利用外延生长工艺产生N-区;
(2)在所述的N-区上设置掩模版进行刻蚀形成位于该N-区内的沟槽;
(3)氧化修复所述沟槽的缺陷,并在器件表面淀积屏蔽栅氧化层;
(4)在所述沟槽底部进行屏蔽栅掺杂多晶硅淀积并回刻;
(5)刻蚀位于所述沟槽底部上方屏蔽栅侧壁的氧化层,减薄屏蔽栅侧壁氧化层;
(6)在所述沟槽内进行屏蔽栅第二次掺杂多晶硅淀积并回刻;
(7)对所述的屏蔽栅顶部进行多晶硅氧化;
(8)在所述的沟槽内淀积氧化层,回刻,并去除所述的掩模版;
(9)在所述的N-区顶部进行P-body区注入和退火,形成P-body区;
(10)进行器件栅刻蚀、栅氧化、多晶硅淀积并刻蚀,形成位于所述沟槽顶部的栅极;
(11)在所述的P-body区顶部沿所述的沟槽进行N+注入;
(12)利用后段工艺在器件顶部形成源极。
2.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的掩模版为氮化硅。
3.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的步骤(5)具体为,
湿法刻蚀位于所述沟槽底部上方屏蔽栅侧壁的氧化层,减薄屏蔽栅侧壁氧化层。
4.根据权利要求1所述的屏蔽栅场效应晶体管的制造方法,其特征在于,所述的步骤(12)具体为,
利用后段工艺,设置层间介质层,P+注入及金属连线在器件顶部形成源极。
5.一种屏蔽栅场效应晶体管,其特征在于,利用权利要求1至4中任一项所述的制造方法制成。
6.根据权利要求5所述的屏蔽栅场效应晶体管,其特征在于,位于所述沟槽底部的屏蔽栅氧化层的厚度为0.7至1.7μm。
CN201810351439.7A 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法(柱形) Active CN108598165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810351439.7A CN108598165B (zh) 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法(柱形)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810351439.7A CN108598165B (zh) 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法(柱形)

Publications (2)

Publication Number Publication Date
CN108598165A CN108598165A (zh) 2018-09-28
CN108598165B true CN108598165B (zh) 2020-12-25

Family

ID=63611253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810351439.7A Active CN108598165B (zh) 2018-04-19 2018-04-19 屏蔽栅场效应晶体管及其制造方法(柱形)

Country Status (1)

Country Link
CN (1) CN108598165B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993690A (zh) * 2019-11-15 2020-04-10 杰华特微电子(杭州)有限公司 沟槽型mosfet器件及其制造方法
CN113327858B (zh) * 2020-07-15 2024-02-06 上海积塔半导体有限公司 屏蔽栅场效应晶体管及其制造方法
CN111739936B (zh) * 2020-08-07 2020-11-27 中芯集成电路制造(绍兴)有限公司 一种半导体器件及其形成方法
CN113078066B (zh) * 2021-03-30 2023-05-26 电子科技大学 一种分离栅功率mosfet器件的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710418A (zh) * 2015-05-07 2018-02-16 德克萨斯仪器股份有限公司 多屏蔽沟槽栅极场效应晶体管
CN107799585A (zh) * 2017-12-01 2018-03-13 苏州凤凰芯电子科技有限公司 一种具有渐变深槽的屏蔽栅mos结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487370B2 (en) * 2010-07-30 2013-07-16 Infineon Technologies Austria Ag Trench semiconductor device and method of manufacturing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710418A (zh) * 2015-05-07 2018-02-16 德克萨斯仪器股份有限公司 多屏蔽沟槽栅极场效应晶体管
CN107799585A (zh) * 2017-12-01 2018-03-13 苏州凤凰芯电子科技有限公司 一种具有渐变深槽的屏蔽栅mos结构

Also Published As

Publication number Publication date
CN108598165A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108400094B (zh) 屏蔽栅场效应晶体管及其制造方法(锤形)
CN108598165B (zh) 屏蔽栅场效应晶体管及其制造方法(柱形)
US9893168B2 (en) Split gate semiconductor device with curved gate oxide profile
US7033891B2 (en) Trench gate laterally diffused MOSFET devices and methods for making such devices
US20100078682A1 (en) Power mosfet having a strained channel in a semiconductor heterostructure on metal substrate
US9997601B2 (en) Metal-oxide-semiconductor field-effect transistor with extended gate dielectric layer
CN103189987A (zh) 混合型有源-场间隙延伸漏极mos晶体管
US8377755B2 (en) Method for fabricating SOI high voltage power chip with trenches
CN114038915A (zh) 半导体功率器件及其制备方法
CN111785625A (zh) 超级结器件的工艺方法
CN110957357A (zh) 屏蔽栅极式金氧半场效应晶体管及其制造方法
CN108376647B (zh) 屏蔽栅场效应晶体管及其制造方法
US20070128810A1 (en) Ultra high voltage MOS transistor device and method of making the same
CN113078066A (zh) 一种分离栅功率mosfet器件的制造方法
CN114975126B (zh) 一种降低栅电荷的屏蔽栅沟槽型mosfet制造方法
CN106876450B (zh) 低栅漏电容的纵向场效应晶体管及其制造方法
CN103545374A (zh) 半导体器件
US11817496B2 (en) High voltage semiconductor device
US8080457B1 (en) Fabrication method of power semiconductor structure with low gate charge
CN108899282B (zh) 带有电荷平衡结构的沟槽栅场效应晶体管及其制造方法
CN114551244A (zh) 一种垂直mos晶体管的制备方法
TWI517263B (zh) 半導體裝置及其製造方法
TWI675409B (zh) 屏蔽閘極式金氧半場效應電晶體及其製造方法
US20090212355A1 (en) Metal-Oxide-Semiconductor Transistor Device and Method for Making the Same
TWI431695B (zh) 溝槽式金屬氧化半導體場效電晶體的製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191204

Address after: Floor 12, building a1-3, Hanyu Jingu, no.7000, jingshidong Road, Jinan area, China (Shandong) pilot Free Trade Zone, Jinan City, Shandong Province, 250102

Applicant after: Jinan Anhai Semiconductor Co., Ltd

Address before: Room 302, room 88, 7, Guiping Road, Xuhui District, Shanghai

Applicant before: Zhang Shuai

Applicant before: Huang Cuan

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant