CN110957357A - 屏蔽栅极式金氧半场效应晶体管及其制造方法 - Google Patents

屏蔽栅极式金氧半场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN110957357A
CN110957357A CN201811129396.4A CN201811129396A CN110957357A CN 110957357 A CN110957357 A CN 110957357A CN 201811129396 A CN201811129396 A CN 201811129396A CN 110957357 A CN110957357 A CN 110957357A
Authority
CN
China
Prior art keywords
oxide layer
trench
gate
polysilicon region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811129396.4A
Other languages
English (en)
Other versions
CN110957357B (zh
Inventor
涂高维
蔡柏安
翁焕忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Force Mos Technology Co ltd
Original Assignee
Force Mos Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Force Mos Technology Co ltd filed Critical Force Mos Technology Co ltd
Priority to CN201811129396.4A priority Critical patent/CN110957357B/zh
Priority to US16/244,395 priority patent/US10700175B2/en
Publication of CN110957357A publication Critical patent/CN110957357A/zh
Application granted granted Critical
Publication of CN110957357B publication Critical patent/CN110957357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种屏蔽栅极式金氧半场效应晶体管及其制造方法,其中的制造方法包含下列步骤:形成具有沟渠的半导体衬底;以氧化方式形成牺牲氧化层于沟渠内,牺牲氧化层至少覆盖沟渠的侧壁;形成源极多晶硅区于沟渠内;以氧化方式形成绝缘氧化层在源极多晶硅区上方,使得源极多晶硅区完全为牺牲氧化层及绝缘氧化层所包覆;以多晶硅沉积填入沟渠并进行回蚀刻以控制源极多晶硅区上方的绝缘氧化层的厚度;以氧化方式形成栅极氧化层于沟渠内,栅极氧化层至少覆盖沟渠的侧壁;形成栅极多晶硅区于沟渠内;以及以离子布植形成围绕沟渠的基体层及重掺杂区。本发明不需使用特殊机台、较简易且可有效控制氧化层厚度。

Description

屏蔽栅极式金氧半场效应晶体管及其制造方法
技术领域
本发明涉及一种沟渠式(trench)金氧半场效应晶体管及其制造方法,尤其涉及一种可控制氧化层厚度的屏蔽栅极式(shielded gate)金氧半场效应晶体管及其制造方法。
背景技术
金氧半场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)被广泛地应用于电力装置的开关组件,例如是电源供应器、整流器或低压马达控制器等等。现有的金氧半场效应晶体管多采取垂直结构的设计,例如沟渠式(trench)金氧半场效应晶体管,以提升组件密度。屏蔽栅极式(shielded gate)金氧半场效应晶体管,或称断栅极式(split-gate)金氧半场效应晶体管,此结构为目前业界常见用来改善现有的沟渠式金氧半场效应晶体管结构中过高的栅极-漏极电容,并可降低开关损耗(switchingloss)。
屏蔽栅极式金氧半场效应晶体管,其中一种结构是将沟渠式金氧半场效应晶体管内的栅极与屏蔽电极以介电层或氧化层隔开,而分为两个电位。位于上方的栅极用于金氧半场效应晶体管的通道形成,位于下方的电极则电性连接至源极电位,栅极与源极通过介电层或氧化层相互绝缘。此氧化层必须有足够的质量与厚度以使栅极与源极之间能维持必要的电压。
现有的屏蔽栅极式金氧半场效应晶体管的制造方式有两种,一种制造方式是在沉积或是氧化生成栅极氧化层的时候,源极与栅极间的隔离氧化层同时生成,如此作法的好处是制程简单,但却会使隔离氧化层厚度较薄,且隔离氧化层的均匀性不受控制,而使栅极与源极间的绝缘不良,芯片良率偏低。若为了要改善此一问题,势必将氧化层增厚,此举又会造成金氧半场效应晶体管的阈值电压(threshold voltage)升高,而使产品的种类及应用受到局限。
另一种制造方式是在栅极与源极间,多一道制程来沉积一层厚的氧化层,然后再以回蚀刻至栅极所设定的深度,接着再形成栅极氧化层及进行栅极多晶硅的回填,此作法可避免隔离氧化层厚度不均匀。然而,此方法需在价格高昂的特殊机台才可进行,且对于回蚀刻的深度控制,必须相当精细。因此,业界目前亟需一种简易且成本低廉的制造方法来有效保持栅极与源极间的绝缘,确保氧化层的厚度,以维持芯片良率。
发明内容
有鉴于上述现有技术的问题,本发明的目的在于提供一种不需使用特殊机台、较简易且可有效控制氧化层厚度的屏蔽栅极式金氧半场效应晶体管及其制造方法。
为达上述目的,本发明提供一种屏蔽栅极式金氧半场效应晶体管的制造方法,包含下述步骤:形成具有沟渠的半导体衬底;以氧化方式形成牺牲氧化层于沟渠内,牺牲氧化层至少覆盖沟渠的侧壁;形成源极多晶硅区于沟渠内;以氧化方式形成绝缘氧化层在源极多晶硅区上方,使得源极多晶硅区完全为牺牲氧化层及绝缘氧化层所包覆;以多晶硅沉积填入沟渠并进行回蚀刻以控制源极多晶硅区上方的绝缘氧化层的厚度;以氧化方式形成栅极氧化层于沟渠内,栅极氧化层至少覆盖沟渠的侧壁;形成栅极多晶硅区于沟渠内;以及以离子布植形成围绕沟渠的基体层及重掺杂区。
在一实施例中,屏蔽栅极式金氧半场效应晶体管的制造方法还包含下列步骤:形成栅极氧化层之前以多晶硅沉积填入沟渠并进行回蚀刻,形成缓冲多晶硅区以控制源极多晶硅区上方的绝缘氧化层的厚度。
在一实施例中,屏蔽栅极式金氧半场效应晶体管的制造方法还包含下列步骤:以氧化方式形成栅极氧化层时,将缓冲多晶硅区全部氧化形成栅极氧化层的一部分以控制源极多晶硅区上方的绝缘氧化层与栅极氧化层的厚度。
在一实施例中,屏蔽栅极式金氧半场效应晶体管的制造方法还包含以下步骤:提供半导体衬底;于半导体衬底上方沉积硬掩模(hard mask)层;于半导体衬底及硬掩模层进行沟渠图形布建;以及进行干蚀刻,形成沟渠。
在一实施例中,屏蔽栅极式金氧半场效应晶体管的制造方法还包含下列步骤:将多晶硅沉积电性连接至源极,将沟渠中下层的多晶硅区置换电极形成源极多晶硅区。
在一实施例中,屏蔽栅极式金氧半场效应晶体管的制造方法还包含下列步骤:以离子布植方式在基体层上形成井区及重掺杂区;在栅极多晶硅区上方形成内层介电层(Inter-Layer Dielectric, ILD)及硼磷硅玻璃(Boro-Phospho-Silicate Glass, BPSG);以及进行接触蚀刻、植入接触区及形成金属层与金属掩模层。
本发明另提供一种屏蔽栅极式金氧半场效应晶体管,包含半导体衬底、隔绝氧化层、源极多晶硅区、栅极多晶硅区以及栅极氧化层。半导体衬底具有沟渠。隔绝氧化层位于沟渠内。源极多晶硅区位于沟渠内深度较深的第一部分,由隔绝氧化层所包覆。栅极多晶硅区位于沟渠内深度较浅的第二部分。栅极氧化层位于栅极多晶硅区与源极多晶硅区之间。隔绝氧化层与栅极氧化层用以隔离栅极多晶硅区与源极多晶硅区,且其中隔绝氧化层与栅极氧化层的厚度经由一次以上的多晶硅沉积填入沟渠并进行蚀刻的程序所控制。
在一实施例中,屏蔽栅极式金氧半场效应晶体管还包含缓冲多晶硅区,介于隔绝氧化层与栅极氧化层之间。
在一实施例中,栅极多晶硅区及源极多晶硅区所使用的材料包含多晶硅、掺杂多晶硅、金属、非晶硅或上述的组合,且其中隔绝氧化层与栅极氧化层所使用的材料为氧化硅。
在一实施例中,半导体衬底包含衬底(substrate)以及外延层(epitaxiallayer)。外延层外延成长于衬底上方。
附图说明
图1A至图1E依序为根据本发明的一实施例说明形成沟渠与牺牲氧化层的制程中各阶段的简化截面图。
图2A至图2C依序为根据本发明的一实施例说明形成源极多晶硅区的制程中各阶段的简化截面图。
图3A至图3C依序为根据本发明的一实施例说明形成缓冲多晶硅区的制程中各阶段的简化截面图。
图4A至图4C依序为根据本发明的一实施例说明形成栅极多晶硅区的制程中各阶段的简化截面图。
图5A至图5D依序为根据本发明的一实施例说明形成基体层及重掺杂区的制程中各阶段的简化截面图。
图6A至图6C依序为根据本发明的另一实施例说明形成栅极多晶硅区的制程中各阶段的简化截面图。
图7A至图7D依序为根据本发明的另一实施例说明形成基体层及重掺杂区的制程中各阶段的简化截面图。
标号说明
100:衬底
102:外延层
104:硬掩模层
106:光阻
108:牺牲氧化层
110:沟渠
112:绝缘氧化层
113:多晶硅
114:源极多晶硅区
115:多晶硅
116:缓冲多晶硅区
118:栅极氧化层
119:多晶硅
120:栅极多晶硅区
122:基体层
124:重掺杂区
126:内层介电层
128:硼磷硅玻璃
132:金属掩模层。
具体实施方式
在附图中,为了清楚起见,膜层、区域或结构组件的相对厚度及位置可能缩小或放大,且省略部分公知的组件。
图1A至图1E依序为根据本发明的一实施例说明形成沟渠110与牺牲氧化层108的制程中各阶段的简化截面图。如图1A所示,在此实施例中提供半导体衬底。半导体衬底可包含衬底100以及外延层102。衬底100由离子布植第一导电型重掺杂物于硅衬底所形成。外延层102外延成长于衬底100上方,并由离子布植第一导电型轻掺杂物所形成。举例而言,在一实施例中,第一导电型为N型,第二导电型为P型。在另一实施例中,第一导电型为P型,第二导电型为N型。接着,如图1B所示,于外延层102上方沉积硬掩模层104。如图1C所示,将光阻106涂布于硬掩模层104上。如图1D所示,先通过光阻106对硬掩模层104进行蚀刻制程后移除光阻106,进而定义出沟渠的位置与范围,再以硬掩模层104为屏蔽,对暴露出的部分外延层102进行蚀刻制程,例如干蚀刻以完成沟渠图形布建,形成沟渠110,然后移除硬掩模层104。如图1E所示,以氧化方式形成牺牲氧化层108于沟渠110中,而此牺牲氧化层108至少覆盖沟渠110的侧壁。
图2A至图2C依序为根据本发明的一实施例说明形成源极多晶硅区114的制程中各阶段的简化截面图。如图2A所示,使用现有的多晶硅沉积技术,例如化学气相沉积(Chemical Vapor Deposition, CVD)、物理气相沉积(Physical Vapor Deposition, PVD)或其他适当的成膜制程于沟渠110内牺牲氧化层108上沉积多晶硅113并填满沟渠110。如图2B所示,使用现有的蚀刻制程,例如非等向性蚀刻、回蚀刻、干蚀刻等,使多晶硅113变薄,进而形成源极多晶硅区114。举例而言,使此多晶硅沉积电性连接至外部源极,将沟渠中下层的多晶硅区置换电极形成源极多晶硅区114。此制程可使原来的栅极-漏极电容转换为漏极-源极电容,可大幅降低米勒电容,提升组件的开关效率及速度。如图2C所示,以氧化方式形成绝缘氧化层112在源极多晶硅区114上方,使得源极多晶硅区114完全为牺牲氧化层108及绝缘氧化层112所包覆。应注意的是,本发明在制程中于上层栅极多晶硅沉积之前具有缓冲多晶硅的沉积与蚀刻步骤(在后面图3A至图3C详述),故绝缘氧化层112上方并非直接沉积形成栅极多晶硅区,而使得绝缘氧化层112的厚度可加以控制,且可保持均匀的厚度。
在第一优选实施例中,在依序执行如图1A至图1E、图2A至图2C所示的制程后,接着会依序执行如图3A及图3B、图4A至图4C、图5A至图5D所示的制程。其中,图3A及图3B依序为根据本发明的一实施例说明形成缓冲多晶硅区116的制程中各阶段的简化截面图,图4A至图4C依序为根据本发明的一实施例说明形成栅极多晶硅区120的制程中各阶段的简化截面图,图5A至图5D依序为根据本发明的一实施例说明形成基体层122及重掺杂区124的制程中各阶段的简化截面图。由于图4A至图4C所示的牺牲氧化层108、绝缘氧化层112与栅极氧化层118均是氧化层,只是在制程中不同阶段所产生,为了清楚起见,在图5A至图5D中将它们视为一体而删除其界线与标号。
在第一优选实施例中,如图3A所示,沉积多晶硅115于绝缘氧化层112上方,并进行回蚀刻,形成如图3B所示的缓冲多晶硅区116。应说明的是,回蚀刻的深度可不用控制的很精准,若如图3B所示回蚀刻使得缓冲多晶硅区116有一较薄的厚度,接着如图4A所示,以氧化方式形成栅极氧化层118于沟渠110内时,将缓冲多晶硅区116全部氧化形成栅极氧化层118的一部分,藉此控制氧化层之厚度。其中,栅极氧化层118至少覆盖沟渠110的侧壁。同时可以调整缓冲多晶硅区116的掺杂浓度,来调整生长栅极氧化层118的厚度。如图4B及图4C所示,接着再次沉积多晶硅119并进行蚀刻以形成栅极多晶硅区120于沟渠110内。
接着,如图5A所示,进行毯覆式本体植入及驱入制程以沿着外延层102上半部形成基体层122,例如P型井区。如图5B所示,进行毯覆式本体植入及驱入制程以沿着基体层122上方形成重掺杂区124,例如N+源极区。如图5C所示,在栅极多晶硅区120上方形成内层介电层126及硼磷硅玻璃128。如图5D所示,进行接触蚀刻、植入接触区及形成金属层与金属掩模层132。
在第二优选实施例中,在依序执行如图1A至图1E、图2A至图2C所示的制程后,接着会依序执行如图3A及图3B、图6A至图6C、图7A至图7D所示的制程。其中,图3A及图3B依序为根据本发明的一实施例说明形成缓冲多晶硅区116的制程中各阶段的简化截面图,图6A至图6C依序为根据本发明的另一实施例说明形成栅极多晶硅区120的制程中各阶段的简化截面图,图7A至图7D依序为根据本发明的另一实施例说明形成基体层122及重掺杂区124的制程中各阶段的简化截面图。由于图6A至图6C所示的牺牲氧化层108、绝缘氧化层112与栅极氧化层118均是氧化层,只是在制程中不同阶段所产生,为了清楚起见,在图7A至图7D中将它们视为一体而删除其界线与标号。
在第二优选实施例中,如图3A所示,沉积多晶硅115于绝缘氧化层112上方,并进行回蚀刻,形成如图3B的缓冲多晶硅区116。如图6A所示,接着以氧化方式形成栅极氧化层118于沟渠110内,栅极氧化层118至少覆盖沟渠110的侧壁。如图6B及图6C所示,接着再次沉积多晶硅119并进行蚀刻以形成栅极多晶硅区120于沟渠110内。应说明的是,回蚀刻的深度可不用控制的很精准,若回蚀刻使得缓冲多晶硅区116有一厚度,则形成三明治结构,源极到漏极间有两层氧化层,即栅极氧化层118与绝缘氧化层112。再者,此缓冲多晶硅区116是浮动电位的,就算是与上方的栅极多晶硅区120短路,也不会有电性上的问题,进而产生良率问题。
接着,如图7A所示,进行毯覆式本体植入及驱入制程(drive-in)以沿着外延层102上半部形成基体层122,例如P型井区。如图7B所示,进行毯覆式本体植入及驱入制程以沿着基体层122上方形成重掺杂区124,例如N+源极区。如图7C所示,在栅极多晶硅区120上方形成内层介电层126及硼磷硅玻璃128。如图7D所示,进行接触蚀刻、植入接触区及形成金属层与金属掩模层132。
在第三优选实施例中,在依序执行如图1A至图1E、图2A至图2C所示的制程后,接着会依序执行如图3A至图3C、图4A至图4C、图5A至图5D所示的制程。其中,图3A至图3C依序为根据本发明的一实施例说明形成缓冲多晶硅区116的制程中各阶段的简化截面图。
在第三优选实施例中,如图3A所示,沉积多晶硅115于绝缘氧化层112上方,并进行回蚀刻,且由于回蚀刻的精度问题,在形成如图3B所示的缓冲多晶硅区116后又进一步将缓冲多晶硅区116完全蚀刻掉而形成如图3C的结构。如图4A所示,接着以氧化方式形成栅极氧化层118于沟渠110内,栅极氧化层118至少覆盖沟渠110的侧壁。如图4B及图4C所示,接着再次沉积多晶硅119并进行蚀刻以形成栅极多晶硅区120于沟渠110内。应说明的是,即使所沉积的缓冲多晶硅被完全蚀刻掉,因为先前的绝缘氧化层112长厚点仍可保证栅极多晶硅区120与源极多晶硅区114的绝缘,之后的栅极氧化层118仍然可长薄点使沟渠110侧壁的栅极氧化层118较薄而有较小的阈值电压。
接着,如图5A所示,进行毯覆式本体植入及驱入制程以沿着外延层102上半部形成基体层122,例如P型井区。如图5B所示,进行毯覆式本体植入及驱入制程以沿着基体层122上方形成重掺杂区124,例如N+源极区。如图5C所示,在栅极多晶硅区120上方形成内层介电层126及硼磷硅玻璃128。如图5D所示,进行接触蚀刻、植入接触区及形成金属层与金属掩模层132。
在一实施例中,如图4C或图5D所示,屏蔽栅极式金氧半场效应晶体管包含半导体衬底、隔绝氧化层(包含牺牲氧化层108及绝缘氧化层112)、源极多晶硅区114、栅极多晶硅区120以及栅极氧化层118。半导体衬底具有沟渠。隔绝氧化层位于沟渠内。源极多晶硅区114位于沟渠内深度较深的第一部分,由隔绝氧化层所包覆。栅极多晶硅区120位于沟渠内深度较浅的第二部分。栅极氧化层118位于栅极多晶硅区120与源极多晶硅区114之间。其中隔绝氧化层与栅极氧化层118用以隔离栅极多晶硅区120与源极多晶硅区114,且其中隔绝氧化层与栅极氧化层118的厚度可经由一次以上的多晶硅沉积填入沟渠并进行蚀刻的程序所控制。在另一实施例中,如图6C或图7D所示,经由一次以上的多晶硅沉积填入沟渠并进行蚀刻的程序可形成缓冲多晶硅区116,介于隔绝氧化层与栅极氧化层之间。
在一实施例中,栅极多晶硅区及源极多晶硅区所使用的材料包含多晶硅、掺杂多晶硅、金属、非晶硅或上述的组合,且其中隔绝氧化层与栅极氧化层所使用的材料为氧化硅。
上述的目的在于解释,各种特定细节是为了提供对于本发明的彻底理解。本领域技术人员应可实施本发明,而无需其中某些特定细节。在其他实施例中,现有的结构及装置并未显示于方块图中。在附图组件之间可能包含中间结构。所述的组件可能包含额外的输入和输出,其并未详细描绘于附图中。
若文中有组件A连接(或耦接)至组件B,组件A可能直接连接(或耦接)至组件B,亦或是经组件C间接地连接(或耦接)至组件B。若说明书载明组件、特征、结构、程序或特性A会导致组件、特征、结构、程序或特性B,其表示A至少为B的一部分原因,亦或是表示有其他组件、特征、结构、程序或特性协助造成B。在说明书中所提到的“可能”一词,其组件、特征、程序或特性不受限于说明书中;说明书中所提到的数量不受限于“一”或“一个”等词。
本发明无论就目的、手段及功效,在在均显示其迥异于现有技术的特征,为一大突破。惟须注意,上述实施例仅为例示性说明本发明的原理及其功效,而非用于限制本发明的范围。虽然在这里已阐明与解释特定实施例与所揭露的应用,实施例并不意图局限于精确解释,任何本领域技术人员均可在不违背本发明的技术原理及精神下,对实施例作修改与变化。也应当了解,在不背离本发明所揭露的精神与范畴下,本发明所揭露于此的组件与其的各种修正、变更、对于本领域技术人员为显而易见的加以排列的延伸、操作、方法的细节,以及在此所揭露的装置与方法将不被局限,且应包含于下述专利申请范围内。

Claims (10)

1.一种屏蔽栅极式金氧半场效应晶体管的制造方法,其特征在于包含下列步骤:
形成具有沟渠的半导体衬底;
以氧化方式形成牺牲氧化层于所述沟渠内,所述牺牲氧化层至少覆盖所述沟渠的侧壁;
形成源极多晶硅区于所述沟渠内;
以氧化方式形成绝缘氧化层在所述源极多晶硅区上方,使得所述源极多晶硅区完全为所述牺牲氧化层及所述绝缘氧化层所包覆;
以多晶硅沉积填入所述沟渠并进行回蚀刻以控制所述源极多晶硅区上方的所述绝缘氧化层的厚度;
以氧化方式形成栅极氧化层于所述沟渠内,所述栅极氧化层至少覆盖所述沟渠的侧壁;
形成栅极多晶硅区于所述沟渠内;以及
以离子布植形成围绕所述沟渠的基体层及重掺杂区。
2.如权利要求1所述的屏蔽栅极式金氧半场效应晶体管的制造方法,还包含下列步骤:形成所述栅极氧化层之前以多晶硅沉积填入所述沟渠并进行回蚀刻,形成缓冲多晶硅区以控制所述源极多晶硅区上方的所述绝缘氧化层的厚度。
3.如权利要求2所述的屏蔽栅极式金氧半场效应晶体管的制造方法,还包含下列步骤:以氧化方式形成所述栅极氧化层时,将所述缓冲多晶硅区全部氧化形成所述栅极氧化层的一部分以控制所述源极多晶硅区上方的所述绝缘氧化层及所述栅极氧化层的厚度。
4.如权利要求1所述的屏蔽栅极式金氧半场效应晶体管的制造方法,还包含下列步骤:
提供所述半导体衬底;
于所述半导体衬底上方沉积硬掩模层;
于所述半导体衬底及所述硬掩模层进行沟渠图形布建;以及
进行干蚀刻,形成所述沟渠。
5.如权利要求1所述的屏蔽栅极式金氧半场效应晶体管的制造方法,还包含下列步骤:
将多晶硅沉积电性连接至源极,将所述沟渠中下层的多晶硅区置换电极形成所述源极多晶硅区。
6.如权利要求1所述的屏蔽栅极式金氧半场效应晶体管的制造方法,还包含下列步骤:
以离子布植方式形成井区及重掺杂区;
在所述栅极多晶硅区上方形成内层介电层及硼磷硅玻璃;以及
进行接触蚀刻、植入接触区及形成金属层与金属掩模层。
7.一种屏蔽栅极式金氧半场效应晶体管,其特征在于包含:
半导体衬底,具有沟渠;
隔绝氧化层,位于所述沟渠内;
源极多晶硅区,位于所述沟渠内深度较深的第一部分,由所述隔绝氧化层所包覆;
栅极多晶硅区,位于所述沟渠内深度较浅的第二部分;以及
栅极氧化层,位于所述栅极多晶硅区与所述源极多晶硅区之间;
其中所述隔绝氧化层及所述栅极氧化层用以隔离所述栅极多晶硅区与所述源极多晶硅区,且其中所述隔绝氧化层与所述栅极氧化层的厚度经由一次以上的多晶硅沉积填入所述沟渠并进行蚀刻的程序所控制。
8.如权利要求7所述的屏蔽栅极式金氧半场效应晶体管,还包含缓冲多晶硅区,介于所述隔绝氧化层与所述栅极氧化层之间。
9.如权利要求7所述的屏蔽栅极式金氧半场效应晶体管,其中所述栅极多晶硅区及所述源极多晶硅区所使用的材料包含多晶硅、掺杂多晶硅、金属、非晶硅或上述的组合,且其中所述隔绝氧化层及所述栅极氧化层所使用的材料为氧化硅。
10.如权利要求7所述的屏蔽栅极式金氧半场效应晶体管,其中所述半导体衬底包含:
衬底;以及
外延层,外延成长于所述衬底上方。
CN201811129396.4A 2018-09-27 2018-09-27 屏蔽栅极式金氧半场效应晶体管的制造方法 Active CN110957357B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811129396.4A CN110957357B (zh) 2018-09-27 2018-09-27 屏蔽栅极式金氧半场效应晶体管的制造方法
US16/244,395 US10700175B2 (en) 2018-09-27 2019-01-10 Shielded gate MOSFET and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811129396.4A CN110957357B (zh) 2018-09-27 2018-09-27 屏蔽栅极式金氧半场效应晶体管的制造方法

Publications (2)

Publication Number Publication Date
CN110957357A true CN110957357A (zh) 2020-04-03
CN110957357B CN110957357B (zh) 2023-06-02

Family

ID=69946117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811129396.4A Active CN110957357B (zh) 2018-09-27 2018-09-27 屏蔽栅极式金氧半场效应晶体管的制造方法

Country Status (2)

Country Link
US (1) US10700175B2 (zh)
CN (1) CN110957357B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117637480A (zh) * 2023-11-13 2024-03-01 中晶新源(上海)半导体有限公司 一种sgt-mosfet器件及其制作工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888003A (zh) * 2019-03-12 2019-06-14 电子科技大学 一种分离栅增强的功率mos器件
CN113206146B (zh) * 2021-05-26 2023-03-24 吉林华微电子股份有限公司 半导体器件终端结构、制造方法及半导体器件
CN114023811B (zh) * 2021-10-20 2023-08-22 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽型mosfet器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061824A (ko) * 2002-12-31 2004-07-07 주식회사 하이닉스반도체 반도체소자의 트랜지스터 형성방법
US20060209887A1 (en) * 2005-02-11 2006-09-21 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US20080150020A1 (en) * 2003-05-20 2008-06-26 Ashok Challa Trenched Shield Gate Power Semiconductor Devices and Methods of Manufacture
CN101728266A (zh) * 2008-10-15 2010-06-09 尼克森微电子股份有限公司 沟渠式功率半导体的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061824A (ko) * 2002-12-31 2004-07-07 주식회사 하이닉스반도체 반도체소자의 트랜지스터 형성방법
US20080150020A1 (en) * 2003-05-20 2008-06-26 Ashok Challa Trenched Shield Gate Power Semiconductor Devices and Methods of Manufacture
US20060209887A1 (en) * 2005-02-11 2006-09-21 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
CN101728266A (zh) * 2008-10-15 2010-06-09 尼克森微电子股份有限公司 沟渠式功率半导体的制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117637480A (zh) * 2023-11-13 2024-03-01 中晶新源(上海)半导体有限公司 一种sgt-mosfet器件及其制作工艺
CN117637480B (zh) * 2023-11-13 2024-05-28 中晶新源(上海)半导体有限公司 一种屏蔽栅沟槽mosfet器件及其制作工艺

Also Published As

Publication number Publication date
US10700175B2 (en) 2020-06-30
CN110957357B (zh) 2023-06-02
US20200105890A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US6365942B1 (en) MOS-gated power device with doped polysilicon body and process for forming same
US8252647B2 (en) Fabrication of trench DMOS device having thick bottom shielding oxide
JP4833517B2 (ja) 迅速な拡散によって形成されるドープカラムを含む電圧維持領域を有する高電圧電力mosfetを製造する方法
CN112713184B (zh) 具有屏蔽栅的沟槽栅mosfet及其制造方法
KR101047945B1 (ko) 트렌치 금속 산화막 반도체 전계 효과 트랜지스터
CN110957357B (zh) 屏蔽栅极式金氧半场效应晶体管的制造方法
EP3651202B1 (en) Semiconductor device with superjunction and oxygen inserted si-layers
JP2006060224A (ja) 強化された遮蔽構造を備えた金属酸化膜半導体デバイス
JP2005514785A (ja) ドーピング源でもあるエッチャントガスを用いてトレンチをエッチングすることで形成されるドープカラムを含む電圧維持領域を有する高電圧電力mosfet
KR20220074921A (ko) Ldmos 소자 및 이의 제조방법
US20160172436A1 (en) Semiconductor device, termination structure and method of forming the same
US8492221B2 (en) Method for fabricating power semiconductor device with super junction structure
EP1162665A2 (en) Trench gate MIS device and method of fabricating the same
CN110620153A (zh) 一种屏蔽栅场效应晶体管及其制造方法
TWI675409B (zh) 屏蔽閘極式金氧半場效應電晶體及其製造方法
US11444167B2 (en) Method of manufacturing trench type semiconductor device
EP4300550A1 (en) Semiconductor device having split gate structure and manufacturing method therefor
CN113594043A (zh) 沟槽型mosfet器件及其制造方法
CN114639608A (zh) 耗尽型沟槽晶体管及其形成方法
KR101063567B1 (ko) Mos 디바이스 및 그 제조방법
KR102062050B1 (ko) 결합된 게이트 트렌치 및 컨택 에칭 프로세스 및 그와 관련된 구조체
KR20080081550A (ko) 모스펫 소자 및 그의 제조방법
CN113437149B (zh) 半导体结构及其形成方法
CN217062020U (zh) 耗尽型沟槽晶体管
TWI775695B (zh) 溝槽式電晶體及其製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant